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An analysis of naive Bayes classifier on low-entropy distributions

I. Rish, J.L. Hellerstein, J.S. Thathachar

T.J. Watson Research Center
30 Saw Mill River Road
Hawthorne, NY 10532

Abstract

Naive Bayes classifier assumes that features are in-
dependent given class. Despite this unrealistic as-
sumption, it is often highly competitive with more
sophisticated learning techniques. Indeed, a clas-
sifier’s optimality depends on its prediction of the
most-likely class, rather than on the correct prob-
ability estimates. Although previous studies char-
acterized certain cases of naive Bayes optimality,
a better understanding of data characteristics that
affect the performance of this classifier is still re-
quired. In this paper, we focus on problems in-
cluding deterministic and almost-deterministic de-
pendencies. Such dependencies are often present
in practical problems, e.g., in error-correcting cod-
ing and in computer system performance manage-
ment, to name a few. We derive error bounds
for approximation of a joint distribution by the
product of marginals for almost-deterministic (low-
entropy) distributions, and demonstrate empirically
how decreasing entropy of class-conditional feature
distributions affects the error of naive Bayes clas-
sifier. We also prove that naive Bayes is optimal
in certain cases of functionally dependent features.
Then we relax those dependencies by adding noise,
demonstrating empirically that naive Bayes reaches
optimal performance in cases of completely inde-
pendent and functionally dependent features, while
it behaves worst between the two extremes.

1 Introduction

Classification is one of the central problems in machine learn-
ing, statistics, pattern recognition and data-mining. A va-
riety of problems from different domains, such as image
recognition, speech understanding, natural language process-
ing, error-correcting coding, and medical diagnosis, can be
viewed as classification problems, and a large variety of clas-
sification approaches has been proposed and tested in the
past years. However, a better theoretical understanding of
key factors that influence the classification accuracy of differ-
ent learning algorithms, i.e. a better understanding of “what
works well where”, is still required.

One of the well-established approaches is Bayesian classi-
fication, which becomes increasingly popular in the recent
years in AI community, especially due to recent develop-
ments in learning with Bayesian belief networks [Hecker-
man, 1995; Friedman et al., 1997]. The simplest version of
a Bayesian network classifier is a widely used naive Bayes
classifier that assumes independence of features given class
[Duda and Hart, 1973]. Although this assumption is of-
ten violated, naive Bayes is surprisingly successful in prac-
tice [Langley et al., 1992; Domingos and Pazzani, 1997;
Mitchell, 1997; Hellerstein et al., 2000]. For example,
naive Bayes is a state-of-the-art classifier in text classification
[Mitchell, 1997]. Systems performance management [Heller-
stein et al., 2000] is another example, among many other ap-
plications. An explanation of those results is that naive Bayes
can be optimal in terms of zero-one loss (classification error)
even if its class probability estimates are wrong, as long as
both true and estimated distributions agree on most-probable
class [Domingos and Pazzani, 1997]. Domingos and Pazzani
[Domingos and Pazzani, 1997] analyzed some cases of naive
Bayes optimality (such as disjunctive and conjunctive con-
cepts), and provided empirical studies on a set of UCI bench-
mark problems, many of which have high degree of feature
dependencies. However, further analysis of data distributions
that violate independence assumption but yield a good perfor-
mance of naive Bayes, and characterizing naive Bayes accu-
racy as a function of distribution’s parameters is still required.

In this paper, we focus on problems that include determin-
istic or close-to-deterministic dependencies. Note that such
dependencies are often present in practical problems, such
as error-correcting coding and computer system performance
management, to name a few. We prove naive Bayes opti-
mality in certain cases of functionally dependent features.
Then we relax those dependencies by adding noise, demon-
strating empirically that naive Bayes reaches optimal per-
formance in two extreme cases of completely independent
and functionally dependent features, while its worst perfor-
mance appears in the middle. We also show that a joint dis-
tribution and its approximation by the product of marginals
converge with decreasing entropy of the distribution (i.e.,���������
	 	 	 ���������� �� � � �����

� �
for low-entropy distributions),

and demonstrate how decreasing entropy of class-conditional
feature distributions affects the error of naive Bayes classifier.

We should emphasize that our error analysis only focuses



on the bias of naive Bayes classifier, not on its variance, i.e.
we assume an infinite amount of data, or perfect knowledge
of data distribution to be available and compare naive Bayes
versus Bayes-optimal classifier.

Although it may seem counterintuitive, the boundary error
and, subsequently, the naive Bayes error are not really corre-
lated with class-conditional mutual information between the
features. This phenomenon was observed before by several
researchers (e.g., see empirical evaluations on UCI bench-
marks in [Domingos and Pazzani, 1997]). Our simulations
also demonstrate this fact on different problem generators.

Our ultimate objective is to understand how data character-
istics (e.g., low entropy, almost-deterministic dependencies)
affect the accuracy of approximate classification algorithms
making simplifying independence assumptions, such as naive
Bayes classifier. In particular, naive Bayes is optimal when
features are independent given class; on the other hand, it can
be optimal in case of functionally dependent features, so the
class-conditional mutual information is not a good predictor
of naive Bayes performance. Therefore, we need other pa-
rameters characterizing probability distributions that are in-
sensitive to the independence assumption w.r.t. to classifica-
tion task.

Our focus on almost-deterministic dependencies is also
motivated by significant amount of empirical evidence sug-
gesting that problems involving such dependencies often
yield a good performance of approximate probabilistic infer-
ence algorithms based on independence assumptions. One
of the most prominent examples is successful application of
Pearl’s belief propagation algorithm to probabilistic decod-
ing [Frey and MacKay, 1998]: although belief propagation
performs local inference ignoring long-range dependencies,
its iterative variant applied to certain coding networks re-
sults into lower error rates than the state-of-the-art decod-
ing algorithms. Another example of local inference algo-
rithm that ignores some dependencies is the mini-bucket ap-
proach [Dechter, 1997]. When applied to finding most proba-
ble state, it demonstrates lower error on problems that involve
close-to-deterministic dependencies [Rish, 1999]).

2 Definitions and Background

Let
��� ��� ���
	 	 	 �������

be a vector of observed random vari-
ables, called features, where each feature takes values from
its domain � � . A feature vector is also called an example,
or a state (of nature), and the set of all possible examples, or
the state space, is denoted � � � �	� 	 	 	
� � � . Let � be
an unobserved random variable denoting class of an exam-
ple, where � can take one of � values ������ �
	 	 	 � ������� 	
Capital letters, such as

� �
, will denote variables, while lower-

case letters, such as � � , will denote their values; boldface let-
ters will denote vectors. Also, we will sometimes use shorter
notation

����� �
and

��� � � �
	 	 	 � � ��� instead of
��������� �

and����� ��� � � �
	 	 	 ������� � � � , respectively.
A classifier is a function  "!#�%$&��� �
	 	 	 � �'�(��� , where

that assigns class to a given example. A common approach is
to associate each class ) with a discriminant function * � ��� � ,) � � �
	 	 	 � �+�,� , and let the classifier select the class with

maximum discriminant function on a given example1: ��� �-�/.�021 3�.54��687:9 ; < < < ; =?> �2@ *
� ��� � 	

(1)

The Bayes classifier  BA ��� � (that we also call Bayes-optimal
classifier and sometimes denote CED ��� � ), uses as discrimi-
nant functions the class posterior probabilities given a feature
vector, i.e. *FA� ��� �G� ��� � � )IH �'�J� � � . Applying the Bayes
rule gives

��� � � )IH �K��� �E�ML#N O �QPSR T � � U L#N T � � UL#N O �QP U , where�������V� �
is same for all classes, and therefore can be ig-

nored, which yields Bayes discriminant functions* A� ��� �-� �������/� H � � ) � ��� � � ) � 	 (2)

Thus, the Bayes classifier A ��� �-�J.�021W3�.54� �������/� H � � ) � ��� � � ) � (3)

finds the maximum a posteriori probability (MAP) hypothe-
sis given example

�
. However, direct estimation of

�����X�� H � � ) � from a given set of training examples is hard when
feature space is high-dimensional. Therefore, approximations
are commonly used, such as using the simplifying assump-
tion that features are independent given the class. This yields
naive Bayes classifier YZC ��� � defined by discriminant func-
tions *\[G]� ��� �-�J^ �_ � � ����� _ � � _ H � � ) � ��� � � ) � 	 (4)

Subsequently, we will use the following shorter notation for
class-conditional distributions:

� � ��` � 	� ����` H � � ) � .a��  � denotes the error, or b�):c�d , of a classifier  , i.e.a��  �W� ���  ��� �?e� � �W�%fP 6hg
���  ��� �?e� � � �����i�j� �-�

�Jk P � ���  ��� �?e� � � � �
where

k P is the expectation over
�

.
a A �Ja��  lA � denotes the

Bayes error (Bayes risk). We will call a classifier optimal on
a problem if its error probability coincides with Bayes risk on
that problem.

As a measure of dependence between two features
��m

and� _ we use the class-conditional mutual information [Cover
and Thomas, 1991], which can be defined asn ���om8p�� _ H � �W�Jq ���om H � �Frsq ��� _ H � � � q ���om ��� _ H � � �
where

q ��` H � � is the class-conditional entropy of
`

, defined
as:� f � ��� � � ) �lf8t ����`(�ju H � � ) �8v wh1 ����`(�ju H � � ) � 	
It can be shown [Cover and Thomas, 1991] that mutual
information

n ���om8p�� _ H � � equals the class-conditional KL-
divergence between the joint distribution

������m ��� _ H � � and
the product of marginals

�����xm H � � ����� _ H � � ,f � ��� � � ) � fy{z �}| z ; y
~ �}| ~
�����om�� � m ��� _ � � _ H � � ) �

�	v wh1 �����om�� � m ��� _ � � _ H � � ) ������om�� � m H � � ) � ����� _ � � _ H � � ) � �
1Clearly, discriminant functions are not unique, since classifier

does not change if a monotone function (e.g., � ��� ) is applied to all�I�
’s.
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which is zero when
�xm

and
� _ are mutually independent

given class � , and increases with increasing level of depen-
dence, reaching the maximum when one feature is a deter-
ministic function of the other.

3 Naive Bayes on low-entropy distributions
We start with analysis of naive Bayes on domains with almost
deterministic, i.e. low-entropy, or “extreme”, probability dis-
tributions, i.e. distributions having almost all the probability
mass concentrated in one state. We show that approximations
to such distributions based on independence assumption be-
come more accurate with decreasing entropy, and therefore
yield asymptotically optimal performance of naive Bayes.

The following lemma states that if a joint distribution over
a set of variables is “extreme”, than the marginal distributions
of those variables are also “extreme”.

Lemma 1 Given a joint probability distribution����� ���
	 	 	 �������
such that

����� A � � ����� for some state� A � � �QA� �
	 	 	 � �QA� � , � A �Z� ,then for each ) ,
����� � � � A� � � ����� 	

Proof. Let �-A� � ��� ��� � � ; < < < ; � � � H � � � �QA� � � �j�?� . Since����� � � �QA� �W��� P 6��
	� ����� � , and since � A� includes the point� �QA� �
	 	 	 � �QA� � that has ����� of all probability mass, we get����� � � �QA� � � ����� .
The opposite result is also true: if all marginal distributions

are “extreme”, the joint distribution is “extreme”.

Lemma 2 Given marginal probability distributions����� � � �
	 	 	 ��������� �
such that for each ) ����� � � �QA� � � �����

for some �QA� , then
��� � A� �
	 	 	 � � A� � � �G���� 	

Proof. Since
����� � e� �QA� ��� � for all ) ,

����� � e� � A����������� ���Ze� � A� ���Jf � ����� � e� � A� ��� �� �

using the simple union bound. The claimed bound follows by
taking the complement of the event in the left hand side of the
above inequality.

These results allow to compute a bound on approximation
error when using independence assumption with “extreme”
distributions, i.e. when the joint distribution is replaced by
the product of marginals:

Theorem 3 Given a joint probability distribution����� ���
	 	 	 �������
such that

��� �QA� �
	 	 	 � �QA� � � �J��� for
some state

� A � � �QA� �
	 	 	 � �QA� � , then

H ��� � � �
	 	 	 � � ��� �
���
� �
����� � � � � � H � �� 	

Proof. From lemma 1 it follows that
����� � � �QA� � � � ���

for any ) � � �
	 	 	 �  . Since ������ � � � ��� � � for � � � � � ,
we get

H ����� A � �
���
� �
����� � � � A� � H � ��� � � ��� � � � �� 	

On the other hand, if
� � � � � �
	 	 	 � � � � and � � e� �QA� for some) , then

����� � � � � ��� � , and
����� ��� � , so that

H ����� � �
���
� �
����� � � � � � H � � � �� �

which concludes the proof.
Similarly, it can be shown that

Theorem 4 Given a set of marginal probability distributions����� � � �
	 	 	 ��������� �
such that for each ) ����� � � �QA� � � �����

for some � A� , then

H ��� � � �
	 	 	 � � ��� �
���
� �
����� � � � � � H � �� 	

Proof. Let
� A � � �QA� �
	 	 	 � �QA� � . From lemma 2 it follows

that
����� A � � �W���� , therefore, since �W���� � � �W��� � � , we

get H �����+� � A � � ^ �� � � ����� � � � A� � H � �� 	
On the other hand, if

� � � � � �
	 	 	 � � � � and � � e� �QA� for some) , then
����� ��� �� , and

����� � � �QA� ��� � , so that

H ����� � �
���
� �
����� � � � � � H � � � �� �

which concludes the proof.

3.1 Empirical results
Clearly, if the difference between the joint feature distribution
and its approximation by the product of marginals (all condi-
tioned on class) vanishes with �Z$ � , we would expect the
naive Bayes error to vanish as well. Indeed, this is demon-
strated by simulations on randomly generated problems.

The problem generator, called EXTREME, takes the num-
ber of classes, � , number of features,  , number of values
per feature, d , and the parameter � , and creates � class-
conditional feature distributions, each satisfying the condi-
tion

����� H � �  �E� � ��� if
���V� �

, where
� �

are � dif-
ferent states randomly selected from d � possible states. For
each class ) , the remaining probability mass � in

����� H � � ) �
is randomly distributed among the remaining d � �(� states.
Class prior distributions are uniform. Once

����� H � � is gener-
ated, we compare naive Bayes classifier (NB) versus Bayes-
optimal classifier (BO), assuming that both classifiers have
perfect knowledge of data distribution (i.e., infinite amount
of data).

Simulation results on a set of 500 problems with  �"!
,� �#!

, d � ��� , and � varying from 0 to 1 are shown in
Figures 1a-1c. The maximum Bayes error (boptErr) and the
maximum naive Bayes (NBerr) decrease to zero with � $X� ,
as shown in Figure 1a. Figure 1b shows the distributions of
the difference between Bayes and naive Bayes errors,

a [G] �a A , as a function of � . As expected, the distributions shift to
the smaller values with decreasing � .

It is interesting to observe that the strength of dependen-
cies among features (for the sake of simplicity, we consider
only two features here) is not correlated with naive Bayes er-
ror, as we see in figure 1c which plots Bayes error and naive
Bayes error versus average mutual information between the
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Figure 1: Results for the generator EXTREME: (a) Max-
imum Bayes and naive Bayes errors; (b) Distribution ofa [G] � a A , the difference between average naive Bayes and
Bayes errors; (c) Average Bayes and naive Bayes errors ver-
sus average class-conditional mutual information.

two features, as functions of � . The errors are monotone func-
tions increasing with � , while mutual information is a concave
function reaching its maximum at intermediate value of � (ap-
proximately between 0.45 and 0.5). Note that empirical stud-
ies on UCI benchmark problems by [Domingos and Pazzani,
1997]) also revealed low correlation between the degree of
feature dependence and relative performance of naive Bayes
with respect to other state-of-the art classifiers, such as C4.5,
CN2, and PEBLS.

Similar results were obtained for a different class of prob-
lems that mixes low-entropy distributions with an arbitrary
ones. For one class, our generator called MIX creates a
low-entropy class-conditional distribution as described be-
fore, and for the other one, it generates d � random entries
in the feature probability table, and then normalizes the prob-
abilities. The Naive Bayes error converges slower than in the
case of two low-entropy distributions, since for same value of� there is more noise in the problems due to random (instead
of low-entropy) nature of one of the class-conditional feature
distributions. The plot for average errors versus average mu-
tual information (omitted here due to space limitations) looks
very similar to the one we showed before, except that the er-
rors are higher, and the average mutual information does not
reach zero with � $X� since now the features do not become
independent in the limit.

4 Functional and almost-functional
dependencies among features

Surprisingly, naive Bayes can be optimal in cases just oppo-
site to the class-conditional feature independence (when mu-
tual information is at minimum) - namely, in cases of com-
pletely deterministic dependence among the features (when
mutual information achieves its maximum).

Theorem 5 Given equal class priors, Naive Bayes is optimal
if
� � � * � ��� �
� for every feature

� �
, ) � ! �
	 	 	 �  , where * � � � �

is a one-to-one mapping.

Proof. Clearly, for every class  and feature ) , � � ��� � �� � H � �Z� � �
� is 1 if � � � * � � � �
� and 0 otherwise (assum-
ing that * � � � �
�-� � � ). Let

� A � � � � � * � � � � �
	 	 	 � * � � � � � . Then
this is the only non-zero-probability state. Therefore, by the
theorem of total probability� � � � �
�-� f

P�� P���QP 	
� � ��� �Fr � � ��� A �-� � � ��� A � 	

Then the Bayes-optimal for selecting class  can be written as� � ��� � � � �
��� � ��� ��� ��� � � �
	 �� e�  	
On the other hand, the naive Bayes rule for selecting class 
can be written as���

� �
� � � * � � � �
� ��

���
� �
� ��� � * � � � �
� ��	 �� e�  �

and, since
	  , � � � * � � � �
� �-� � � � � �
� , we get� � ��� ��� � �
� � � � � � ��� � � � �
� � 	  � e�  	

Clearly, those two classification rules agree for every value
of
�

that has nonzero probability, i.e. for every
� �� � � � * � � � �
� �
	 	 	 � * = � � �
� � . Thus naive Bayes is optimal.
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4.1 Empirical results
Our next question is how does naive Bayes behave with in-
creasing noise in functional dependencies between the fea-
tures. To answer this question, we used two random problem
generators that relax functional dependencies using a noise
parameter � in a way similar to the low-entropy distribution
generators. As before, we assume uniform class priors. Con-
sider a simple case of two classes and two variables (  � !
and � � !

) with d values each. Our almost-functional distri-
bution generator called FUNC1 selects a random permutation
of d numbers, which corresponds to a one-to-one function *
that binds the two features:

� � � * ��� � � � ����� � . Then it
generates randomly two class-conditional (marginal) distri-
butions for the

� �
feature,

� 9 ��� � �
and

� � ��� �
�
, for class 0

and class 1, respectively. Finally, it creates class-conditional
joint feature distributions satisfying the following conditions:

� � � � � � � � � * � � � � �-� � � � � �
� � ����� � � and
� � � � � � � � e� * � � �
� �W� � � � � �
� �d � � �  � � � � 	

This way the states satisfying functional dependence obtain��� � probability mass, so that by controlling � we can get
as close as we want to the functional dependence described
before, i.e. the generator relaxes the conditions of theorem 5.
Note that, on the other hand, � � m > �m gives us uniform distri-
butions over the second feature

� � � � � �-� � | �
� � � � � � � � �W��m , which makes it independent of

� �
(given class  ). Thus

varying � from 0 to 1 explores the whole range from deter-
ministic dependence to complete independence between the
features given class. Figure 2 summarizes the results for 500
problems with  � !

, � � !
and d � ��� . In Figure 2a we

show maximum errors for each value of � (note that Bayes
error is constant). In Figure 2b we show the average errors;
as we can see, naive Bayes is optimal when � � � and when� � � 	 �

, while the maximum error is reached between the
two extremes. Note again, that errors are not correlated with
the average class-conditional mutual information between the
features (see Figure 2c), which decreases monotonically with� going from 0 to 0.9. So, we can conclude that naive Bayes
is close to the optimal not only for close-to-independent fea-
tures (low mutual information), but also for close to one-to-
one functional dependence.

Similar results are obtained for a modification of generator
FUNC1, called FUNC2, where the probability mass � is dis-
tributed over the rest of states not uniformly but randomly. As
expected, in this case we do not get complete independence,
and therefore average naive Bayes error only increases with � .
Again, no (linear) correlation was observed between average
error and average mutual information.

5 Conclusions
Naive Bayes classifier assumes that features are indepen-
dence given class. Despite this unrealistic assumption, it
is often highly competitive with more sophisticated learning
techniques [Domingos and Pazzani, 1997; Mitchell, 1997;
Friedman et al., 1997]. Indeed, naive Bayes can be optimal
in terms of zero-one loss (classification error) even if its class
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Figure 2: Results for the generator FUNC1: (a) Maximum
Bayes and naive Bayes errors; (b) Average Bayes and naive
Bayes errors ; (c) Average Bayes and naive Bayes errors ver-
sus average class-conditional mutual information.
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probability estimates are wrong, as long as both true and esti-
mated distributions agree on most-probable class [Domingos
and Pazzani, 1997]. Although some optimality conditions of
naive Bayes (such as conjunctive and disjunctive concepts)
have been already identified in the past [Domingos and Paz-
zani, 1997], a deeper understanding of data characteristics
that affect the performance of naive Bayes is still required. In
this paper, we focus on problems including deterministic and
close to deterministic dependencies. Such dependencies are
often present in practical problems, e.g., in error-correcting
coding [Frey and MacKay, 1998] and in computer system
performance management [Hellerstein et al., 2000], to name
a few. We prove that naive Bayes is optimal in certain cases of
functionally dependent features. Then we relax those depen-
dencies by adding noise, demonstrating empirically that naive
Bayes reaches optimal performance in cases of completely
independent and functionally dependent features, while it
behaves worst between the two extremes. We also derive
bounds on the absolute error between a joint distribution and
its approximation by the product of marginals for almost-
deterministic, or low-entropy distributions, and demonstrate
empirically how decreasing entropy of class-conditional fea-
ture distributions affects the error of naive Bayes classifier.

Directions for future work include analysis of naive Bayes
on more complex problem classes that include almost-
deterministic dependencies, including practical application,
and further investigation of cases when ignoring dependence
among features still yields a good classification accuracy. An
ultimate goal is characterizing probability distributions that
are insensitive to the independence assumption w.r.t. to clas-
sification task. This approach aims directly at learning prob-
abilistic models that result into better classification accuracy,
even though such models may not provide good approxima-
tions with respect to other criteria, such as KL-distance be-
tween true and estimated probability distributions, or such
as MDL criterion. Empirical results also suggest that such
general model selection criteria do not always lead to better
classifiers [Friedman et al., 1997].
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