
RC 22002 (98835) 19 March 2001                                                                                 Computer Science

IBM Research Report

Web-Application Development Using the
Model/View/Controller Design Pattern 

               Avraham Leff, James T. Rayfield               
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY  10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research Report
for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home  .



 Abstract

The Model/View/Controller design pattern is very useful
for architecting interactive software systems. This design
pattern is partition-independent, because it is expressed in
terms of an interactive application running in a single
address space. Applying the Model/View/Controller
design pattern to web-applications is therefore
complicated by the fact that current technologies
encourage developers to partition the application as early
as in the design phase. Subsequent changes to that
partitioning require considerable changes to the
application's implementation -- despite the fact that the
application logic has not changed.  This paper introduces
the concept of Flexible Web-Application Partitioning, a
programming model and implementation infrastructure,
that allows developers to apply the Model/View/Controller
design pattern in a partition-independent manner.
Applications are developed and tested in a single address-
space; they can then be deployed to various client/server
architectures without changing the application's source
code. In addition, partitioning decisions can be changed
without modifying the application.

1. Introduction

1.1. The Model/View/Controller Design 
Pattern

The well-known Model/View/Controller[12][5] (or
MVC) design pattern is a useful way to architect interac-
tive software systems. Also known as the Presentation/
Abstraction/Control[6] (or PAC) design pattern, the key
idea is to separate user interfaces from the underlying data
represented by the user interface. The "classic" MVC
design pattern actually applies to low-level user interac-
tion such as individual keystrokes or activation of mouse
buttons. In MVC, the View displays information to the
user and, together with the Controller which processes the
user's interaction, comprises the application's user inter-

face. The Model is the portion of the application that con-
tains both the information represented by the View and the
logic that changes this information in response to user
interaction. The PAC design pattern similarly decouples
the application's information from the user interface. Here,
the MVC's View and Controller are combined into a Pre-
sentation; the application's data is termed the Abstraction
component; and the Control component is responsible for
communication between the decoupled Presentation and
Abstraction components. Use of the MVC and PAC
design pattern makes it easier to develop and maintain an
application since: 

• the application's "look" can be drastically changed
without changing data structures and business logic.

• the application can easily maintain different inter-
faces, such as multiple languages, or different sets of user
permissions.

Colloquially (e.g., [3]), the term "MVC" has been
extended to describe the way that large-scale changes to an
application's Model are driven by a Controller that is
responsible, not only for accepting and processing user
interactions, but for logic that changes an application's
overall state in response to the event created by the user's
interaction. In response to changes in the Model, the Con-
troller initiates creation of the application's new View.
This paper uses the term MVC in this, more general and
"PAC-like", sense of architecting an application so that
business logic, presentation logic, and request processing
are deliberately separated. 

1.2. Web-Applications and the MVC Design 
Pattern

Web-applications, like other interactive software sys-
tems, can benefit by being architected with the MVC
design pattern. For example, one "all Java" approach uses
Entity Enterprise JavaBeans (EJBs [7]) as the Model, con-
structs the View through HTML and JavaServer Pages,

Web-Application Development Using the Model/View/Controller Design Pattern
Avraham Leff, James T. Rayfield

IBM T. J. Watson Research Center
{avraham,jtray}@us.ibm.com



and implements the Controllers through Servlets and Ses-
sion EJBs. 

The problem with using the MVC design pattern to
develop web-applications arises from the fact that web-
applications are intrinsically partitioned between the client
and the server. The View, of course, is displayed on the
client; but the Model and Controller can (theoretically) be
partitioned in any number of ways between the client and
server. The developer is forced to partition the web-appli-
cation "up-front" -- certainly at the implementation stage,
and often as early as the design phase. In contrast, MVC is
partition-independent: i.e., the Model, View, and Control-
ler reside and execute in a single-address space in which
partitioning issues do not arise. Partition-independence is
one of MVC's features since location-dependent issues
should not drive architecture or design decisions. Unfortu-
nately, partitioning implies that web-applications are loca-
tion-dependent, and this characteristic means that it is
much harder to apply the MVC design pattern in the web-
application context. 

Of course, developers can simply partition the web-
application, deciding that method A will run on the server
and method B on the client. Once partitioning is done, the
MVC design pattern can be applied, in parallel, to imple-
ment the client and server portions of the application. The
problem with this approach is that it is often impossible to
make correct partitioning decisions early in the design
phase since these decisions depend on application require-
ments that change considerably over the course of the
project. The problem is made even more difficult by the
fact that the correct partitioning decision depends on static
(e.g., relative power of client to server machines) and
dynamic (e.g., network congestion) environmental factors.
Applying the MVC design pattern in an environment
where the partitioning decision is not fixed is a difficult
task. 

To make matters worse, "controller partitioning" is
often not an independent, "tunable" feature of the develop-
ment process. Rather than being a function only of the
web-application's intrinsic characteristics, partitioning
depends on technology decisions that have nothing to do
with the application. Take, for example, the "thin-client"
versus "fat-client" dichotomy. Often, application develop-
ers are constrained in their choice of implementation tech-
nologies. Perhaps they are told "applets are bad because
they are heavy-weight and because of security concerns".
Perhaps they are told "you can't build sophisticated views
in HTML". Once technology selections are made, they
greatly determine how the application will be partitioned.
When deployed as a thin-client, only the web-application's

View is resident on the client; the Controllers (excluding
the actual window screen controls) and the Model are resi-
dent on the server. When deployed as a fat-client, the web-
application's Model and Controllers are also resident on
the client. Technology choices, in other words, mean that
developers may not be able to make the right partitioning
decisions -- even if they know what the right decision is. 

To summarize, web-applications can certainly use the
MVC design pattern when: 

• the correct partitioning is known and
• the available technology infrastructure is compati-

ble with that partitioning.

In practice, developers simplify the problem by mak-
ing a priori assumptions about the technology and parti-
tioning solution. This approach is discussed in more detail
later (Section 3.2.3). 

We introduce the concept of Flexible Web-Applica-
tion Partitioning (or fwap) to enable web-applications to
use the MVC design pattern more naturally. Before dis-
cussing fwap and other, related work, in Section 3, we first
provide a simple motivating example of web-application
partitioning in Section 2. 

2. Partitioning a Web-Application:  
Example

 Picture a web-application that enables clients to get
information about a company's employees. We simplify
the example by allowing the client to perform only two
operations. 

1. By supplying a name, and clicking on a "search"
button, search the employee directory "by name". The
search returns the set of employees that match the search
criteria in a format that displays an abbreviated employee
record for each member of the returned set. 

2.  By clicking on a "details?" button, get detailed
information about a specific employee. 

 Implemention in a stand-alone, single address-space,
environment, is straightforward. From the perspective of
the MVC design pattern (see Figure 1):

• The Model consists of the records in the employee
directory. 

• There are four Views: a "search" panel; a display of
abbreviated information about a set of employee records; a
display of detailed information about a specific employee;
and a report that no employees match the search criteria. 



• There are two Controllers: one that, given a
"search" directive, drives the process of querying the
Model and returns a result set; and one that, given a
"details" directive, queries the Model to get the full set of
information about the specified employee. 

 However, implementation as a web-application in a
client/server environment raises the issue of partitioning
which is conceptually orthogonal to, but in practice com-
plicates, the MVC design pattern. Naively, as there are
two Controllers, the application can be implemented in
one of four ways. Either both Controllers execute exclu-
sively on the client or server, or one Controller executes
on the client and the other executes on the server. Each
partitioning decision greatly affects the way that the appli-
cation is implemented. For example, if both Controllers
run on the client (the "fat-client" approach), the entire
Model must be downloaded to the client -- which is often
impractical. If both Controllers run on the server (the
"thin-client" approach), two round trips between client and
server must be performed each time that the client
searches for an employee and then asks for more detail
about that employee. 

In fact, for many environments, neither the thin-client
or the fat-client is ideal. Instead, using a dual-mvc
approach [4], we partition the Controllers between the cli-
ent and server. Specifically, the "search" Controller exe-
cutes on the server in association with a Model consisting
of the complete employee directory. However, when
returning relatively small sets of employee records, the
Controller also returns the full record for each of the
employees, so that they can be maintained in the client-
side Model. The dual-mvc approach allows requests for
detailed employee information to be served by the client,
thus eliminating a client/server interaction. (This imple-
mentation is beneficial only when application scenarios

typically consist of a preliminary search for an employee
using a "partial name", followed by request for more infor-
mation after the specific employee is determined by
inspection. Remember: this is only a motivating example!) 

Of course, what we really want is to do avoid parti-
tioning while implementing the application, since the cor-
rect partitioning decision depends on factors that are not
necessarily determined until actual deployment. For exam-
ple, if the employee directory is relatively small, the "fat-
client" approach with both Controllers executing on the
client makes sense and would provide better performance.
Conversely, if the application is deployed in a "internet"
environment in which users want minimal customization
of their environment, the "thin-client" approach may be
the only solution possible. Delaying application partition-
ing for as long as possible is even more attractive because
partitioning gets in the way of designing the Views and
developing the business logic needed by the Controllers.
Flexible web-application partitioning addresses these
needs. In fact, flexible web-application partitioning goes
further, allowing partitioning decisions to vary dynami-
cally, during application execution. 

The fwap programming model explictly supports the
MVC design pattern, and enables programs executing in
smvc mode (Section 3.1) to execute in a single address-
space. When deployed, these programs can be flexibly
partitioned without changing the source code used during
smvc development. We refer to such fwap applications as
fwaplications. 

3. Flexible Web-Application Partitioning

Although web-applications must intrinsically deal
with partitioning issues, Section 2 illustrates why it is pref-

Name Phone

123456 Smith, John 555-1234

Serial Number

Model

Query employee DB (Model)
Foreach employee in queryResult

Create "Detail" button
Create employee-name label

end

ControllerView

{

FIGURE 1. Model/View/Controller Representation of the Sample Application



erable to implement web-applications in a manner that is
partition-independent. Partition-independence enables
developers to be flexible about partitioning, because it
allows them to deal with changing technology infrastruc-
tures, changing application characteristics, and even
changing environment conditions such as network conges-
tion. The problem, of course, is how to maintain partition-
independence given that web-applications are location-
dependent. The fwap programming model, implementa-
tion, and infrastructure, enable developers to build web-
applications in precisely such a partition-independent
manner. Applications are developed and tested in a single-
address space; they can then be deployed to various client/
server architectures without changing the application's
source code. In addition, partitioning decisions can be
changed in without modifying the application. 

In order to provide partition-independence, fwap must
address a set of difficult problems. These problems
involve partition-independent technologies for the individ-
ual Model, View, and Controller components of an appli-
cation; integration of these components in a consistent
application programming model; and the construction of
transforms that map the partition-independent representa-
tion of an application to a partitioned application running
on actual client/server platforms. We are currently focus-
ing our efforts on enabling fwap to support a variety of
deployment architectures. In order to make progress on
this front, we have made certain simplifying assumptions
that allow us to avoid some of the above problems for the
moment. We discuss these assumptions below (Section
3.2). 

3.1. fwap Architectures

fwap supports the following architectures: 

• single-mvc (or smvc), which serves as the fwap
development architecture. The smvc architecture corre-
sponds to the classic MVC design pattern (e.g., Figure 1):
the Model, View, and Controllers all reside and execute in
a single address space in which client-server and partition-
ing issues do not arise. 

• thin-client, a deployment architecture in which the
Model and Controllers reside and execute in a single
address space on the server, and generate the View that is
rendered on the client. 

• dual-mvc (or dmvc), a deployment architecture [4]
in which Controllers and Model reside on both the client
and server. Either the client or server can generate the
View, as needed, to be displayed on the client. 

3.2. Related Work

3.2.1. View Specification and Generation. In order for
Views to be rendered on different client platforms, they
must be specified in a manner that is independent of plat-
form-specific characteristics. One approach to this prob-
lem [1] is to use XML as the basis of a universal,
appliance-independent, markup language for user inter-
faces. Our approach differs only in that we use a Java API
to specify a library of GUI components and to construct
Views out of these components. Then, at runtime, plat-
form-specific implementation libraries render the Views
on the client device (e.g., using HTML for web-browsers).
We are not currently focusing on issues relating to how
such "canonical" Views should be rendered on devices
with considerably different form factors from desktop and
web-browser environments (e.g., PDAs and web-phones). 

3.2.2. Controller Specification and Execution. Because
we want fwaplications to be deployable to the dual-mvc
architecture, Controllers must be able to execute "as is" on
the client as well as on the server. Since we code fwaplica-
tion Controllers to the Java Virtual Machine, this excludes
a number of client platforms as fwaplication deployment
platforms. PDAs and web-phones, for example, may not
support the JVM -- although we do expect J2ME [11] to
increasingly enable such devices to support Java applica-
tions. Even in the case of web-browsers, the requirement
of device independence (e.g., Microsoft Internet Explorer
versus Netscape Navigator) implies that it might better to
write Controller in JavaScript [9] than in Java. At present,
we simplify the problem of "single source" Controller
specification by using the Java Plug-in [8]: this allows
standard web-browsers to run applications written to the
JDK 1.2 libraries. 

3.2.3. Thin-Client Presentation Frameworks. It is
important to note that a number of other projects
[2][13][14] are also engaged in the application of the
Model/View/Controller design pattern to web-application
development. The key contribution of fwap is its emphasis
of partition-independence. In contrast, these other efforts
are explictly partition-dependent, and assume that web-
applications are deployed to the thin-client architecture. 

These presentation frameworks are being developed
in the following context. The introduction of Java Servlets
[10] in the late 1990s encouraged a style of web-applica-
tion design in which servlet code generated Views through
a series of println statements that wrote HTML to the
client's web browser. JavaServer Pages [3], introduced in
1999, inverted this paradigm by allowing developers to



embed scripting code (that accessed server-side Model and
Controller code) into HTML pages. Both of these
approaches violate the MVC design pattern because they
tend to inextricably mix View generation code with Con-
troller and Model code. Thin-client presentation frame-
works are being developed with the intention of
facilitating the use of MVC design pattern to build web-
applications. The basic idea is to use servlets and server-
side JavaBeans as an application's Controllers (application
logic); use EJBs to represent the Model and the business
logic; and use JavaServer Pages to extract Model data and
generate Views. Individual frameworks emphasize differ-
ent issues. Thus, Barracuda uses a "push MVC" approach
in which the Model knows about, and is responsible for
generating the View; WebWork and Struts use a "pull
MVC" approach in which the View accesses the Model as
needed. Struts is more tightly coupled to the Servlet API
than WebWork. 

Although fwaplications can also deploy to the thin-
client architecture, fwap emphasizes the ability to deploy
to the dual-mvc architecture so as to improve performance
through client-side execution. As a result, fwap is con-
cerned with issues, such as Model synchronization and
transparent Controller delegation, that are not of interest to
the thin-client presentation frameworks. 

3.3. fwap Programming Model

One way that the fwap infrastructure supports the pro-
gramming model is by providing a base fwaplication inter-
face which specifies that every fwaplication is associated
with a Model and View, each accessed through their own
API. Web-applications are developed by supplying an
interface that extends the base fwaplication interface with
application-specific methods. 

3.3.1. View.  fwap Views are composed from a suite of
GUI components such as buttons and input text fields. The
programmer can associate method invocations with user-
interaction events (e.g., a button click) through the regis-
terEvent method; the fwap infrastructure ensures that the
specified method executes when the event occurs. The
GUI components are specified through interfaces; this
allows the implementation provided in the smvc develop-
ment infrastructure to be replaced by platform-specific
implementations when the application is deployed. 

Components are created, removed, and accessed only
through the fwap (key-based) API invoked against the
fwaplication's getView method. The fwaplication may not
directly refer to a component by storing a reference to the
component. Because components are accessed only

through the API, the fwap infrastructure can, for example,
transparently synchronize a stale server-side View with
the current client-side View. Transparency is a basic
requirement, since the fwap programming model pre-
cludes explicit code to transmit user input to the server.
Without this ability, a Controller repartitioned so that it
executes on the server rather than on the client, could not
access the contents of an input field. The fwap infrastruc-
ture ensures that Controller code, partitioned to run on the
server, and accessing the View through getView, will
access up-to-date values. 

3.3.2. Model. A fwaplication's Model follows the same
principles as a fwaplication's View: components are speci-
fied by interface, and components are accessed only via a
key-based API. Although many component models are
suitable for fwaplications (e.g., COM or CORBA), the
fwap Model components follow the Enterprise JavaBeans
component specification [7]. 

3.3.3. Controllers.  In the fwap programming model, a
Controller is an functional unit that may be invoked to run
on either the web-application client or on the server. The
actual location of a Controller's execution is determined
by explicit directives in a controller deployment descrip-
tor. This is in contrast to "utility" code that always exe-
cutes in the same address space as the caller. It also
contrasts to classic "client/server" code in which client
code must explictly call out of its address space to invoke
code on the server. 

The first step in fwaplication development is to spec-
ify the set of methods (i.e., Controllers) that can be "flexi-
bly partitioned". These methods comprise the interface
extending the base fwaplication interface, supplied as part
of the fwap infrastructure. A method can be "flexibly parti-
tioned" only if it's part of this application-specific inter-
face. Note that these methods are not constrained to take
only user-interaction events as their input (as in "classic"
Controllers). Rather, they may take arbitrary input and
return arbitrary output. For example, one well-known per-
formance optimization performs "syntactic" validation of
user input on the client so that the client can immediately
reprompt the user for valid input if it detects a problem.
The client only sends the request to the server after the
user's input has been validated. This optimization is usu-
ally implemented by JavaScript code running in a thin-cli-
ent browser which then sends the request to a Servlet after
it has validated the user's input. In fwap terms, the pro-
grammer simply specifies two methods validate(...) and
process(...) in which validate calls process only if it deter-
mines that the input is syntactically valid. At deployment,
the two methods can be partitioned so that validate runs on



the client, and transparently calls process which runs on
the server. 

3.4. Development

fwaplication development consists of supplying an
implementation for the subclassed fwaplication interface.
Because this is completely application-specific, the fwap
infrastructure provides no additional support for this
phase. Following the Model/View/Controller design pat-
tern, the programmer supplies the logic that generates the
required Views, accesses the Model in order to generate
Views, and updates the Model as necessary. 

4. Current Implementation

This section describes the status of the current imple-
mentation of the fwap programming model and infrastruc-
ture. 

4.1. smvc

The smvc View components are rendered using Java
Swing components, and the fwaplication is developed and
tested as a stand-alone Swing application. 

4.2. thin-client

Figure 2 shows how the MVC structure of the sample
application is deployed to the thin-client architecture. 

Using a factory-pattern, the Swing-based View imple-
mentation of smvc mode is replaced by components that
generate HTML that produce the equivalent View when
rendered in a standard web-browser. 

The fwaplication's .class files are installed in a
standard web-server such as Tomcat, and made available
to web-clients by creating a corresponding servlet entry in
the web.xml file [10]. 

A web-client's initial GET request to the URL desig-
nated in the servlet-mapping entry causes a controller
servlet to: 

• instantiate a new fwaplication instance that will be
associated with this client. 

• request that the fwaplication generate the initial
View. In thin-client deployment, this consists of a stream
of HTML that will be rendered in the client's web-
browser. 

• returns the HTML to the client. 

Name Phone

123456 Smith, John 555-1234

Serial Number

Model

Controller

View

Query employee DB (Model)
Foreach employee in queryResult

Create "Detail" button
Create employee-name label

end

{

Thin client

Server

HTML 
View-generation

libraries

HTTP
Response

HTTP POST
Request

FIGURE 2. The Sample Application Deployed to the Thin-Client Architecture



Because all fwaplications inherit the same lifecycle
methods, the controller servlet is generic so that a single
instance can service all web requests to all installed fwa-
plications. 

The web-client proceeds to interact with the fwaplica-
tion's GUI precisely as in smvc mode, with the identical
Controller and Model executing (on the server) as in smvc
development. Each time that the user triggers an interac-
tion event (e.g., clicks a button), embedded (and generic)
JavaScript generates a POST request to the controller serv-
let. The request specifies the Controller invocation associ-
ated, through the registerEvent method, with this
interaction event. Using reflection, the controller servlet
invokes the specified method, which proceeds to execute
precisely as it does when the user clicks a button in smvc
mode. 

4.3. dual-mvc

One way to look at the current implementation of the
dmvc deployment architecture is that two instances of the
smvc fwaplication implementation execute: one in the cli-
ent, and one in the server. Figure 3 shows how the sample
application of Figure 1 is deployed to the dual-mvc archi-
tecture. In order for the smvc fwaplication implementation
to execute "as is" on a web-client, we deploy the client-
side fwaplication into a generic loader applet that runs in
the web-browser. An HTML file is associated with each
type fwaplication. It specifies the name of the fwaplication
interface class; the location of the controller deployment
descriptor file; and the URL through which the dmvc con-
troller servlet can be contacted. By using the Java Plug-in
[8], even standard web-browsers can run applications
written to the JDK 1.2 libraries. As a result, the View and
Model code of a dmvc fwaplication are identical to the
code used in smvc mode. 

FIGURE 3. The Sample Application Deployed to the Dual-MVC Architecture

View

Thin client

Server

Name Phone

123456 Smith, John 555-1234

Serial Number

Model

Controller

Query employee DB (Model)
Foreach employee in queryResult

Create "Detail" button
Create employee-name label

end

{

Nondisplaying
View

libraries

FW
A

P
 R

un
tim

e

Name Phone

123456 Smith, John 555-1234

Serial Number

Model

Controller

Query employee DB (Model)
Foreach employee in queryResult

Create "Detail" button
Create employee-name label

end

{

Client

Swing-based 
View-generation

libraries

FW
A

P
 R

un
tim

e

H
TT

P

Common path

Client-only path

Client-Server path



Coordination of the two activated fwaplication
instances is simplified by the following observation.
Although the purpose of the dmvc architecture is to enable
Controller execution on either the client or server, dmvc
execution always proceeds serially, never in parallel.
When a user interaction with a GUI element triggers a
Controller execution, the Controller will execute only at
the location specified by the controller deployment
descriptor. During the Controller's execution, fwaplication
execution at the other location will not occur. 

However, the client-side fwaplication must be
enhanced with the ability to delegate Controller execution
to the server when directed to do so by the controller
deployment descriptor, or when the client requires Model
components that are available only on the server (see
Ongoing Work). We do this by having the client-side
implementation class extend the smvc, server-side, imple-
mentation. 

 The client-side implementation class overrides the
smvc implementation of each Controller with the follow-
ing algorithm. 

1. At runtime, access the controller deployment
descriptor to determine whether the Controller is to be
executed locally (on the client), or remotely (delegated to
the server). 

2. Perform local execution by calling
super.Method(...), i.e., by executing exactly the same code
as in smvc mode. This is denoted by the "dashed arrow"
execution path in the client side of Figure 3. 

3. Perform server-side execution (denoted by the
“dotted-arrow execution path of Figure 3) by:

a. Serializing the client-side Model.
b. "Serializing" the client-side View. We do not

serialize the client-side GUI components which,
after all, encapsulate Java Swing components
that are meaningless to the server-side of the
fwaplication. Instead, we serialize a "distilled"
version of the client-side View, containing only
the property values of each component. 

The server-side requires access to the current
View for two reasons. First, as in the thin-client
architecture, it needs to be aware of the state
state changes caused by the user's interactions
with the client-side View. Second, the server-
side will likely construct the next View in terms
of changes to the current View: e.g., by leaving
one panel unchanged, and replacing a second
panel.

Serializing the View also involves serialization
of all "event handlers" (Controller invocations)
associated with View components through the
registerEvent method. Although the user cannot
interact with the server-side View, the server-
side must include this information when it trans-
fers control back to the client-side of the fwapli-
cation. 

c. Serializing the values of the parameters passed
to the Controller. 

d. Using Java's ObjectInputStream and
ObjectOutputStream classes, the client-side
Model, View, and Controller parameters are
passed to the dmvc controller servlet in an
HTTP POST request.

e. The controller servlet synchronizes the state of
the server-side fwaplication with the client-side
Model and View.

f. Using Java dynamic invocation, the specified
Controller is invoked on the server-side fwapli-
cation instance. Recall that the server-side
implementation of the Controller is identical to
the code used in smvc mode.

g. The return value, (possibly) updated server-side
Model, and new View (recall that Controller
execution is responsible for constructing the
fwaplication's next View), are serialized and
transmitted back to the client-side fwaplication
as the response to an HTTP POST request. 

4. After its delegation to the server-side completes,
the client-side Controller updates the client-side Model to
reflect changes made to the server-side Model, "reconsti-
tutes" the new View as client-side GUI components, and
renders the View for the user. 

5. Ongoing Work

fwap is a work in progress, and we discuss here some
of the ongoing design issues and implementation that we
are currently working on. 

With respect to the smvc development architecture
and the thin-client architecture, the ongoing work focuses
on enriching the suite of View components. This relates
both to the types of components supported and the number
of properties provided by each type of component. The
current framework and implementation, however, ade-
quately supports the Model/View/Controller design pat-
tern and deployment to a thin-client architecture. Our main
research focus is on the dmvc deployment architecture. 



5.1. Model Synchronization

Currently, when synchronizing the client and server
portions of a deployed dmvc fwaplication, we simply copy
the entire set of Model components from one location to
the other. This is inefficient, since only components that
have changed state need to be synchronized. We are there-
fore working on the use of "dirty bit" techniques to elimi-
nate unnecessary Model synchronization operations. 

5.2. Model Pre-Fetching

The basic motivation of the dmvc deployment archi-
tecture is to provide web-clients with the ability to directly
service user requests rather than delegating requests to the
server. Currently, we simply load the entire Model into
both the client and server portions of a dmvc fwaplication;
this trivially assures that the client will have the necessary
Model components. Obviously, this approach does not
scale beyond "proof of concept" applications. We are
therefore adding infrastructure hooks to allow fwaplica-
tion programmers to "pre-fetch" Model components from
the server side of a dmvc fwaplication to the client side.
Once this is provided, fwaplication programmers can
study typical flows of their application to determine which
portions of the Model are best suited for client-side pro-
cessing. For example, the example of Section 2 assumes
that directory queries often proceed in two stages: first, a
broad query to retrieve a small set of possible employees
matches; second, a "drill down" request to get more infor-
mation about a specific employee from the first stage.
Given such a scenario flow, it makes sense to pre-fetch the
"details" information when processing the initial broad
query; this allows client-side processing of the "drill
down" request. However, if the result set of the broad
query is too large, it will then be impractical (i.e., will
degrade performance) to pre-fetch the detail information
for the result set. 

5.3. Dealing with Cache Misses

Because the client-side of a dmvc fwaplication con-
tains only transient Model components, it in effect serves
as a Model cache for the server. As a cache, the client-side
Model must be able to deal with situation of a "cache
miss" -- i.e., where Controller execution requires a Model
component that is not resident on the client. (Note that
Model "pre-fetching", discussed above, is a technique
used to reduce the number of cache misses. Even with per-
fect knowledge, cache misses may occur since the client
can cache only a portion of the server-side Model.) 

The fwap infrastructure can transparently catch the
exception thrown when a cache miss occurs. At that point,
two possibilities exist: 

• As the next cache "tier", ask the server-side Model
for the necessary Model component. (If the component is
not resident in the server's transient Model, it will perform
the required requests to persistent storage to bring the
component into the transient Model). Once the component
has been fetched into the client-side Model, proceed with
the client-side Controller execution. 

• Cease client-side execution of the Controller, and
delegate execution to the server-side of the dmvc fwapli-
cation.

The first approach, "cache miss recovery on the cli-
ent", makes sense when the Controller will not trigger
many more cache misses. Otherwise, the overhead of con-
tacting the server on a per-component basis will cause
considerable performance degradation. Conversely, the
second approach, "cache miss recovery on the server",
makes sense in situations where the Controller will trigger
many more cache misses. As with Model pre-fetching,
determining which approach is appropriate for a given
Controller greatly depends on the typical scenarios for a
specific application. 

6. Conclusion

This paper describes how the partition-independent
Model/View/Controller design pattern can be used in the
intrinsically location-dependent environment of parti-
tioned web-applications. Flexible web-application parti-
tioning enables the code used to develop a stand-alone
application and in a single address-space, to be used (with-
out modification) in deployments to various client plat-
forms and with any desired partitioning scheme. 

 fwap encourages an approach to web-application
deployment in which the application's "scenario flows" are
continuously studied to get insight about how clients actu-
ally use the application. By understanding the scenario
flows, the application can be partitioned in a way that
improves performance. In contrast, traditional implemen-
tation techniques require that such analysis be performed
only in the design and requirements phase because it is
much too costly to repartition the application once it is
deployed. Unfortunately, the necessary insights can often
be made only after the application has been deployed and
in production for some time. Repartitioning, under fwap,
imposes no extra cost; an application can therefore be
readily tuned after deployment based on feedback from
actual client use. 



 We are currently implementing the algorithms and
infrastructure needed to enable fwaplications to scale over
non-trivial application Models. We are also working with
a customer to validate the fwap concepts and implementa-
tion. 

7. References

1. Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S., 
Shuster, J., UIML: AnAppliance-Independent XML User Inter-
face Language, Proceedings of the Eight International World 
Wide Web Conference, May, 1999, 617-630.
2. Barracuda: Open Source Presentation Framework, http://
barracuda.enhydra.org/, 2001.
3. Bergsten, Hans, JavaServer Pages, O’Reilly, 2000.
4. Betz, K., Leff, A., Rayfield, J., Developing Highly-Respon-
sive User Interfaces with DHTML and Servlets'', Proceedings of 
the 19th IEEE International Performance, Computing, and Com-
munications Conference -- IPCCC-2000, 2000.

5. Buschmann, F. et al, Pattern-Oriented Software Architec-
ture: A System of Patterns, John Wiley and Sons, 1996, 123-168.
6. Coutaz, J., PAC, An Object-Oriented Model for Dialog 
Design, Elsevier Science Publishers, Proceedings of Human-
Computer Interaction - INTERACT, 1987, 431-436.
7. Enterprise JavaBeans Specifications, http://java.sun.com/
products/ejb/docs.html, 2001.
8. JAVA PLUG-IN 1.2 SOFTWARE FAQ, http://java.sun.com/
products/plugin/1.2/plugin.faq.html , 2001.
9. Flanagan, David, JavaScript: The Definitive Guide, 3rd, 
O’Reilly, 1998.
10. JAVA SERVLET TECHNOLOGY IMPLEMENTATIONS & 
SPECIFICATIONS, http://java.sun.com/products/servlet/down-
load.html#specs , 2001.
11. Java 2 Platform, Micro Edition (J2ME), http://
java.sun.com/j2me/, 2001.
12. G.E. Krasner and S.T. Pope, A Cookbook for Using the 
Model-View-Controller User-Interface Paradigm in Smalltalk-
80, SIGS Publication, 26-49, Journal of Object-Oriented Pro-
gramming, August/September, 1988.
13. Struts, http://jakarta.apache.org/struts/index.html, 2001.
14. WebWork, http://sourceforge.net/projects/webwork, 2001.


