
RC22025 (98128) 18 July 2000 Computer Science

IBM Research Report

Dynamic Binary Translation and Optimization

 Kemal Ebcioglu, Erik Altman, Michael Gschwind, Sumedh Sathaye
 IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Abstract

We describe a VLIW architecture designed speci�cally as a target for dy-
namic compilation of an existing instruction set architecture. This design
approach o�ers the simplicity and high performance of statically scheduled
architectures, achieves compatibility with an established architecture, and
makes use of dynamic adaptation. Thus, the original architecture is imple-
mented using dynamic compilation, a process we refer to as DAISY (Dynam-
ically Architected Instruction Set from Yorktown). The dynamic compiler
exploits runtime pro�le information to optimize translations so as to extract
instruction level parallelism. This work reports di�erent design trade-o�s in
the DAISY system, and their impact on �nal system performance. The re-
sults show high degrees of instruction parallelism with reasonable translation
overhead and memory usage.

Contents

1 Introduction 4
1.1 Historical VLIW Design . 5
1.2 Compatibility Issues and Dynamic Adaptation 6

2 Architecture Overview 8

3 Binary Translation Strategy 12
3.1 System Operation . 13
3.2 Interpretation . 14
3.3 Translation Unit . 15
3.4 Stopping Points for Paths in Tree Regions 19
3.5 Translation Cache Management 20

4 Group Formation and Scheduling 22
4.1 Branch conversion . 23
4.2 Scheduling . 25
4.3 Adaptive Scheduling Principles 28
4.4 Implementing Precise Exceptions 29
4.5 Communicating Exceptions and Interrupts to the OS 31
4.6 Self-modifying and self-referential code 32

5 Performance Evaluation 34

6 Related Work 51

7 Conclusion 54

1

List of Figures

3.1 Components of a DAISY System. 13
3.2 Tree regions and where operations are scheduled from di�erent

paths. 18

4.1 Translation of Indirect Branch 24
4.2 Example of conversion from PowerPC code to VLIW tree in-

structions. 27

5.1 CPI for system design points of a DAISY system. 39
5.2 Dynamic group path length for system design points of a

DAISY system. 40
5.3 Code page expansion ratio for system design points of a DAISY

system. 41
5.4 CPI for di�erent threshold values for the preferred DAISY

con�guration. 43
5.5 Dynamic group path length for di�erent threshold values for

the preferred DAISY con�guration. 44
5.6 Code page expansion ratio for di�erent threshold values for

the preferred DAISY con�guration. 45
5.7 CPI for di�erent machine con�gurations for the preferred DAISY

con�guration. 47
5.8 CPI for varying register �le size for the preferred DAISY con-

�guration. 48

2

List of Tables

2.1 Cache and TLB Parameters. 11

5.1 This table lists the resources available in the machine con�g-
urations explored in this article. 46

5.2 Performance on SPECint95 and TPC-C for a clustered DAISY
system with 16 execution units arranged in 4 clusters. 49

3

Chapter 1

Introduction

Instruction level parallelism (ILP) is an important enabler for high perfor-
mance microprocessor implementation. Recognizing this fact, all modern mi-
croprocessor implementations feature multiple functional units and attempt
to execute multiple instructions in parallel to achieve high performance. To-
day, there are essentially two approaches which can be used to exploit the
parallelism available in programs:

dynamic scheduling In dynamic scheduling, instructions are scheduled by
issue logic implemented in hardware at program run time. Many mod-
ern processors use dynamic scheduling to exploit multiple functional
units.

static scheduling In static scheduling, instruction ordering is performed by
software at compile time. This approach is used by VLIW architectures
such as the TI C6x DSP [1] and the Intel/HP IA-64 [2].

Dynamic scheduling has been attractive for system architects to maintain
compatibility with existing architectures. Dynamic scheduling a�ords the
opportunity to use existing application code and execute it with improved
performance on newer implementations.

While compatibility can be maintained, the cost of this can be high in
terms of hardware complexity. This leads to error-prone systems with high
validation e�ort. Legacy instruction sets are often ill suited to the needs of
a high-performance ILP architecture which thrives on small atomic opera-
tions which can be reordered to achieve maximum parallelism. This is typi-
cally dealt with by performing instruction cracking in hardware, i.e., complex

4

instructions are decomposed into multiple, simpler micro-operations which
a�ord higher scheduling freedom to exploit the available function units.

In contrast, static scheduling is performed in software during compilation
time, leading to simpler hardware designs and allowing processors with wider
issue capabilities. Such architectures are referred to as very long instruction
word (VLIW) architectures. While VLIW architectures have demonstrated
their performance potential in scienti�c code, some issues remain unresolved
for their widespread adoption.

1.1 Historical VLIW Design

VLIW architectures have historically been a good execution platform for ILP-
intensive programs since they o�er a high number of uniform execution units
with low control overhead. Its performance potential has been demonstrated
by superior performance on scienti�c code.

However, extracting instruction level parallelism from programs has been
a challenging task. Early VLIW architectures were targeted at highly regular
code, typically scienti�c numeric code which spent the major execution time
in a few loops which were highly parallelizable [3][4][5]. Integer code with
control ow has been less amenable to e�cient parallelization due to frequent
control transfers.

In the past, adoption of VLIW has been hampered by perceived problems
of VLIW in the context of code size, branch-intensive integer code and inter-
generational compatibility.

Code-size issues have been largely resolved with the introduction of vari-
able length VLIW architectures.

In previous work [6], we have presented an architectural approach called
\tree VLIW" to increase the available control transfer bandwidth using a
multi-way branching architecture. Multiway branching capabilities have been
included in all recently proposed architectures. [7][8][9]

Much work has been performed in the area of inter-generational compat-
ibility. In hardware implementations, scalable VLIW architectures allow the
speci�cation of parallelism independent of the actual execution target. The
parallel instruction word is then divided into chunks which can be executed
simultaneously on a given implementation [10][11][9]. In software implemen-
tations, dynamic rescheduling can be used to adapt code pages at program

5

load or page fault time to the particular hardware architecture. [12]

1.2 Compatibility Issues and Dynamic Adap-

tation

Years of research have culminated in renewed interest in VLIW designs, and
new architectures have been proposed for various application domains, such
as DSP processing and general purpose applications.

However, two issues remain to be resolved for wide deployment of VLIW
architectures:

compatibility with legacy platforms A large body of programs exists
for established architectures, representing a massive investment in as-
sets. This results in slow adoption of any new system designs which
break compatibility with the installed base.

dynamic adaptation Statically compiled code relies on pro�ling informa-
tion gathered during the program release cycle and cannot adapt to
changes in program behavior at run time.

We address these issues critical to widespread deployment of VLIW ar-
chitectures in the present work. The aim is to use a transparent software
layer based on dynamic compilation above the actual VLIW architecture
to achieve compatibility with legacy platforms and to respond to dynamic
program behavior changes. This e�ectively combines the performance ad-
vantages of a low complexity statically scheduled hardware platform with
wide issue capabilities with the bene�ts of dynamic code adaptation.

The software layer consists of dynamic binary translation and optimiza-
tion components to achieve compatibility and dynamic response. We refer to
this approach as DAISY for Dynamically Architected Instruction Set from
Yorktown [7, 8].

The DAISY research group at IBM T.J. Watson Research Center has fo-
cused on bringing the advantages of VLIW architectures with high instruction-
level parallelism to general purpose programs. The aim is to achieve 100%
architectural compatibility with an existing instruction set architecture by
transparently executing existing executables through the use of dynamic com-
pilation. While we describe DAISY in the context of PowerPC implemen-

6

tation, this technique can be applied to any ISA. In fact, multiple ISAs,
such as PowerPC, Intel x86 or IBM System/390, can be implemented using
a single binary translation processor with appropriate personalization in the
translation �rmware.

In this paper, the \base architecture" [13, 14] refers to the architecture
with which we are trying to achieve compatibility, e.g., PowerPC, S/390
[15], or a virtual machine such as JVM [16]. The DAISY VLIW which
emulates the old architecture we called the migrant architecture, following
the terminology of [14]. In this paper, our examples will be from PowerPC.
To avoid confusion, we will refer to PowerPC instructions as operations,
and reserve the term instructions for VLIW instructions (each potentially
containing many PowerPC -like primitive operations).

The remainder of the paper describes our approach in designing a high
performance PowerPC compatible microprocessor through dynamic binary
translation. A number of di�culties are addressed, such as self modifying
code, multi-processor consistency, memory mapped I/O, preserving precise
exceptions while aggressively re-ordering VLIW code, and so on. We give an
overview of the DAISY target architecture in Chapter 2. Chapter 3 describes
how the processor forms tree groups of PowerPC operations and the trans-
lation process into the DAISY architecture. Chapter 4 gives an overview of
the adaptive group formation and instruction scheduling performed during
translation. Chapter 5 gives experimental microarchitectural performance
results. We discuss related work in chapter 6 and draw our conclusions in
chapter 7.

7

Chapter 2

Architecture Overview

The target architecture for the DAISY binary translation system is a clus-
tered VLIW processor. Each cluster contains 4 execution units and either
one or two load/store units. Within a cluster dependent operations can be is-
sued back-to-back, but when a cluster is crossed a one cycle delay is incurred.
This basic cluster building block can be used to build con�gurations ranging
from a single-cluster 4-issue architecture to a 16-issue processor consisting of
four clusters.

The preferred execution target of the DAISY binary translation system
is a clustered VLIW architecture with 16 execution units con�gured as 4x4
clusters (this corresponds to con�guration 16.8 in table 5.1). This con�gu-
ration o�ers high execution bandwidth while maintaining high frequency by
limiting the size of bypassing wire length to local clusters.

The DAISY architecture de�nes execution primitives similar to the Pow-
erPC architecture in both semantics and scope. However, not all PowerPC
operations have an equivalent DAISY primitive. Complex PowerPC oper-
ations (such as \Load Multiple Registers") are intended to be layered, i.e.,
implemented as a sequence of simpler DAISY primitives to enable an ag-
gressive high-frequency implementation. To this end, instruction semantics
and data formats in the DAISY architecture are similar to the PowerPC
architecture to eliminate data representation issues which could necessitate
potentially expensive data format conversion operations.

The DAISY architecture provides extra machine registers to support ef-
�cient code scheduling and aggressive speculation using register renaming.
Data are stored in one of 64 integer registers, 64 oating point registers,

8

and 16 condition code registers. This represents a twofold increase over the
architected resources available in the PowerPC architecture. The architec-
ture supports renaming of the carry and overow bits in conjunction with
the general purpose register. Thus, each register has extra bits to contain
carry and overow. This rename capability enables changes to global state
(such as the carry and cumulative overow information) to be renamed in
conjunction with the speculative destination register until the point where
the state change would occur in the original in-order PowerPC program.

The DAISY VLIW also has the usual support for speculative execution
in the form of non-excepting instructions which propagate and defer excep-
tion information with renamed registers [6][17][13][14][18]. Each register of
the VLIW has an additional exception tag bit, indicating that the register
contains the result of an operation that caused an error. Each opcode has
a speculative version (in the present implementation, speculative operations
are identi�ed by using a set of registers known to receive speculative opera-
tions as result register). A speculative operation that causes an error does not
cause an exception, it just sets the exception tag bit of its result register and
resets it if no exception is encountered. The exception tag may propagate
through other speculative operations. When a register with the exception
tag is used by a non-speculative commit operation, or any non-speculative
operation, an exception occurs. This mechanism allows the dynamic com-
piler to schedule instructions which may encounter exceptions aggressively
above conditional branches without changing the exception behavior of the
original program. [18][6][17]

Note that neither exception tags nor the nonarchitected registers are part
of the base architecture state; they are invisible to the base architecture oper-
ating system, which does not need to be modi�ed in any way. With the pre-
cise exception mechanism, there is no need to save or restore non-architected
registers at context switch time.

E�cient control ow operations are supported by the tree VLIW concept.
Based on this architecture, each instruction has the ability to perform a 4-way
multiway branch [6].

The cluster concept is also applied to the caches. L1 data caches are
duplicated in each cluster, but stores are broadcast to all copies. A cache miss
during a memory access will stall the entire processor until the appropriate
data are retrieved from memory. While stall-on-use implementations can
provide better CPI, they also result in more complex designs and impact

9

operating frequency.
Instruction caches are partitioned to achieve small physical cache sizes to

achieve high clock frequency. Thus, each pair of execution units is connected
to a slice of the instruction cache (termed \mini-Icache") which provides 1/8
of a VLIW instruction supplying a pair of ALUs.

Thus, in table 2.1, the L2 mini-ICache size is conceptually 128K instead
of 1M, and the mini-ICache linesize is 256 bytes instead of 2K bytes. But
because each such mini-ICache has to have a redundant copy of the branch
�elds to reduce the wire delays, the physical size is larger than the logical
size. The instruction cache hierarchy supports history-based prefetching of
the two most probable successor lines of the current cache line to improve
instruction cache hit rate.

The DAISY VLIW also o�ers support for moving loads above stores op-
timistically, even when static disambiguation by the dynamic compiler is not
possible. [6, 17, 19, 14, 20, 18]. If the current processor or some other pro-
cessor alters the memory location referenced by a speculative load, between
the time the speculative load is executed and the time that load result is
committed, an exception is raised when the load result is committed. The
DAISY software component then takes corrective actions, and may also re-
translate the code which contained the mis-speculation. This allows both
the optimistic execution of loads on a single program, and also strong mul-
tiprocessor consistency (assuming the memory interface supports strongly
consistent shared memory).

To avoid spurious changes in attached I/O devices, I/O references should
not be executed out of order. While most such references can be detected
at dynamic compile time (by querying the system memory map) and sched-
uled non-speculatively, it is not always possible to identify all load operations
which refer to I/O space at dynamic compile time. To ensure correct sys-
tem operation, speculative load operations to memory-mapped I/O space are
treated as no-op by the hardware, and the exception tag of the result regis-
ter of the load operation is set. When the load is committed, an exception
will occur and the load will be re-executed | non-speculatively this time.
Frequent occurrence of mis-speculations due to previously undetected I/O
semantics of particular memory regions can be remedied by retranslating the
relevant code.

The DAISY VLIW supports a memory hierarchy which is very similar
to the emulated PowerPC architecture. This choice reduces the cost of im-

10

Cache Size / Line Assoc Lat-
Entries Size ency

L1{I 32K 1K 8 1
L2{I 1M 2K 8 3
L1{D 32K 256 4 2
L2{D 512K 256 8 4
L3 32M 2048 8 42
Memory { { { 150

DTLB1 128 entries { 2 2
DTLB2 1K entries { 8 4
DTLB3 8K entries { 8 10
Page Table { { { 90

Table 2.1: Cache and TLB Parameters.

plementing operations accessing the memory. Our experience indicates that
if memory operations have to be implemented using a sequence of opera-
tions to emulate the memory management structure of the base architecture,
severe performance degradation can result. If multiple platforms are to be
supported by a common core, then this core must provide an e�cient way of
emulating the memory management structure of all supported base architec-
tures appropriately. In particular, it is important to ensure that frequently
executed memory operations do not incur emulation burden, whereas updates
to the memory map (such as changes to the page tables, segment registers,
etc.) might require additional logic to update the DAISY VLIW core's na-
tive memorymanagement system. A more detailed description of supporting
multiple base architectures on a common core can be found in [15].

The DAISY VLIW processor contains hardware support for pro�ling in
the form of an 8K entry 8-way set associative (hardware) array of cached
counters indexed by the exit point id of a tree region. These counters are
automatically incremented upon exit from a tree region and can be inspected
to see which tips are consuming the most time. They o�er the additional
advantages of not disrupting the data cache and being reasonably accurate.
[21]

11

Chapter 3

Binary Translation Strategy

In this chapter, we describe the execution-based dynamic compilation al-
gorithm used in DAISY. Compared to hardware cracking schemes such as
employed by the Pentium Pro/II/III and POWER4 processors, software al-
lows more elaborate scheduling and optimization than hardware, yielding
higher performance. At the same time complex control hardware responsible
for operation decomposition is eliminated from the critical path. Thus, a
binary translation-based processor implementation is able to achieve maxi-
mumperformance by enabling high frequency processors while still exploiting
available parallelism in the code.

In looking forward to future high performance microprocessors, we have
adopted the dynamic binary translation approach as it promises a desirable
combination of (1) high frequency design, (2) greater degrees of parallelism,
and (3) low hardware cost. Unlike native VLIW architectures such as the In-
tel/HP IA-64, (1) the dynamic nature of the compilation algorithm presented
here allows the code to change in response to di�erent program pro�les and
(2) compatibility between VLIW generations is provided by using PowerPC
as the binary format for program distribution.

Dynamic optimization and response to changing program pro�les is par-
ticularly important for wide issue platforms to identify which operations
should be executed speculatively. Dynamic response as inherent in the
DAISY approach o�ers signi�cant advantages over a purely static compila-
tion approach as exempli�ed by Intel and HP's IA-64 architecture. Current
compilers for IA-64 rely purely on static pro�ling which makes it impossible
to adapt to program usage.

12

(Boot Code)

DAISY
(VMM Code)

Translations

VMM Code
VMM Data

Memory
PowerPC

RAM Memory

(Sizes not to scale)

ICache Hierarchy

Hierarchy
DCache

PowerPC
Boot ROM

Processor

DAISY ROM

Figure 3.1: Components of a DAISY System.

In addition to performance limitations and technical hurdles, the IA-64
static pro�ling approach requires that extensive pro�ling be performed on
products by Independent Software Vendors (ISVs), and that they generate
di�erently optimized executables corresponding to each generation of the
processor. Given the reluctance of ISVs to ship code with traditional compiler
optimizations enabled, it may be di�cult to induce ISVs to take the still more
radical step of pro�ling their code.

DAISY achieves hardware simplicity by bridging a semantic gap between
the PowerPC RISC instruction set and even simpler hardware primitives,
and by providing the ability to extract instruction-level parallelism by dy-
namically adapting the executed code to changing program characteristics in
response to online pro�ling.

From the actually executed portions of the base architecture binary pro-
gram, the dynamic compilation algorithm creates a VLIW program consisting
of tree regions, which have a single entry (root of the tree) and one or more
exits (terminal nodes of the tree). The choice of translation unit is described
below.

3.1 System Operation

In DAISY, binary translation is a transparent process: As depicted in Fig-
ure 3.1, when a system based on the DAISY architecture boots, control
transfers to the DAISY software system. We refer to the DAISY software
component as VMM (Virtual Machine Monitor), since the software is re-

13

sponsible for implementing a virtual PowerPC architecture on top of the
high-performance DAISY VLIW processor. The virtual machine monitor is
part of DAISY system �rmware, although it is not visible to the software
running on it, much like microcode is not visible in a microcoded machine.

After DAISY VMM initialization, the DAISY VMM interpreter initiates
the PowerPC boot sequence. In other words, a PowerPC system built on a
DAISY architecture executes the same steps as it would on a native PowerPC
implementation. Thus, the architected state of the virtualized PowerPC is
initialized, and then PowerPC execution starts at the bootstrap address of
the emulated PowerPC processor.

Similar to a native PowerPC system, a PowerPC boot ROM is located at
the standard �xed address (0x�f00100). The PowerPC code in the boot ROM
will be interpreted, translated and executed under control of the DAISY
VMM. When the boot ROM initialization has completed after loading a
kernel, and control passes to that kernel, the DAISY VMM in turn starts
the interpretation and translation of the kernel, and after that has been
initialized, of the user processes.

Actual instruction execution always remains under full control of the
DAISY VMM, although the locus of control does not necessarily have to be
within the VMM proper, i.e., the interpreter, translator, exception manager,
or memory manager. If the locus of control is not within the VMM nucleus,
it will be within VMM-generated translation tree groups. Tree groups are
translated carefully so as to only transfer control to each other, or back to
the VMM as part of a service request, such as translating previously untrans-
lated code, or handling an exception.

This determinism in control transfer guarantees system safety and stabil-
ity. No PowerPC code can ever access, modify or inject new code into the
translated code. In fact, no code can even determine that it is hosted upon
a layer of code implemented by the DAISY VMM.

3.2 Interpretation

When the DAISY VMM �rst sees a fragment of PowerPC code, it inter-
prets it to implement PowerPC semantics. During this interpretation, code
pro�le data is collected which will later be used for code generation. Each
code piece is interpreted several times, up to a given interpretation thresh-

14

old, before it is translated into DAISY machine code. As base architecture
instructions are interpreted, the instructions are also converted to execu-
tion primitives (these are very simple RISC-style operations and conditional
branches). These execution primitives are then scheduled and packed into
VLIW tree regions which are saved in a memory area which is not visible to
the base architecture.

Any untaken branches, i.e., branches o� the currently interpreted and
translated trace, are translated into calls to the binary translator. Interpre-
tation and translation stops when a stopping condition has been detected.
(Stopping conditions are elaborated in section 3.4.) The last VLIW of an
instruction group is ended by a branch to the next tree region.

Then, the next code fragment is interpreted and compiled into VLIWs,
until a stopping condition is detected, and then next code fragment, and so
on. If and when program decides to go back to the entry point of a code
fragment for which VLIW code already exists, it branches to the already
compiled VLIW code. Recompilation is not required in this case.

Interpretation serves multiple purposes: �rst, it serves as a �lter for rarely
executed code such as initialization code, which is executed only a few times
and has low code re-use. Thus, any cost expended on translating such code
would be wasted, since the translation cost can never be recuperated by the
faster execution time in subsequent executions.

Interpretation also allows for the collection of pro�ling data, which can be
used to guide optimization. Currently, we use this information to determine
tree group formation used by the DAISY VMM. Other uses are possible and
planned for the future, such as guiding optimization aggressiveness, control
and data speculation, and value prediction [22].

3.3 Translation Unit

The choice of translation unit is critical to achieving good performance since
scheduling and optimizations are performed only at the translation unit level.
Thus, a longer path within a translation unit usually achieves increased in-
struction level parallelism.

In this work, we use tree groups as translation unit. As their name
suggests, tree groups have a single entry point, and multiple exit points.
No control ow joins are allowed within a tree group, control ow joins can

15

only occur on group transitions. Tree groups can span multiple processor
pages, include register-indirect branches and can cross protection domain
boundaries (user/kernel space).1 We term the leaves of a tree \tip". Since
groups are trees, knowing by which tip the group exited, fully identi�es the
control path executed from the group entrance (or tree root).

Using tree groups simpli�es scheduling and many optimization algorithms,
since there is at most one reaching de�nition for any value. Since any prede-
cessor VLIW instruction dominates all its successors, scheduling instructions
for speculative issue is simpli�ed.

A downside of using tree groups is code space expansion due to tail du-
plication. This duplicated code beyond join points can result in VLIW code
that is many times larger than the code for the base architecture. To coun-
terbalance these e�ects, a number of design decisions have been made to
reduce code expansion.

In its original version, DAISY used processor pages as unit of translation.
When a page was �rst entered, a translation was performed for the entire code
page, following all paths reachable from the entry point. As additional entry
points were discovered, pages were retranslated to accommodate additional
page entries.

Thus if execution reached a previously unseen page P, at address X, then
all code on page P reachable from X | via paths entirely within page P |
was translated to VLIW code. Any paths within page P that went o�page or
that contained a register branch were terminated. At the termination point
was placed a special type of branch that would (1) determine if a transla-
tion existed for the o�page/register location speci�ed by the branch, and (2)
branch to that translation if it existed, and otherwise branch to the transla-
tor. Once this translation was completed for address X, the newly translated
code corresponding to the original code starting at X was executed.

This could lead to signi�cant code expansion when paths were translated

1Crossing protection boundaries involves either an explicit change to a machine state
register (e.g., move to machine state register operation in PowerPC), and or an implicit
change, which is usually accompanied by a direct or indirect branch (e.g., system call, re-
turn from interrupt, program exceptions in PowerPC). The translation of these operations
will need to set up a hardware global register representing the new memory protection
state. Whenever it is bene�cial, loads can be moved speculatively above logically preced-
ing protection domain changes, as long as there is a corresponding load-verify/commit [23]
executed in the original sequential order, using the new protection state.

16

which were rarely, if ever, executed. Thus, processor pages were appropriate
for the original VLIW targets of modest width and large instruction caches.
However, for very wide machines, page crossings and indirect branches lim-
ited ILP. [7, 8]

In contrast, tree groups are built incrementally to limit code expansion,
and can cross pages, indirect branches and protection domains to overcome
these ILP limitations and attack the code explosion problem. [24]

In related work about the BOA project, we have described the use of
straightline traces corresponding to a single path through the executed code
as translation units in the context of binary translation [25]. Unlike DAISY,
which primarily focuses on the extraction of instruction-level parallelism,
BOAwas primarily focused on achieving very high processor frequency [26][27].

The achievable branch predictability puts an inherent limit on the achiev-
able average dynamic group size, i.e., the number of instructions which will
actually be executed before control exits a translation unit through any side
exit. This limit is

P
n

i=0
prediction accuracy i

� basic block size, where n is a
limit on the static trace length (expressed in basic blocks) to restrict code
expansion. As a result, the dynamic window size for BOA was between 15
and 40 instructions for SPECint95 benchmarks, and 22 for TPC-C.

In comparison, DAISY achieves an average dynamic group size of about
100 instructions for SPECint95 benchmarks and 60 instructions for TPC-C.
The achievable dynamic group size in DAISY is only limited by the tolerated
code expansion, since a tree group can encompass an arbitrary number of
paths.

Managing code duplication is a high priority for DAISY, since uncon-
trolled code duplication results in large working sets with bad locality, hence
resulting in signi�cant instruction cache miss penalties. DAISY includes a
number of strategies to limit code size, such as (1) using initial interpretation
to reduce the number of tree groups with low reuse, (2) initial translation
with conservative code duplication limits, and (3) stopping points chosen
to represent natural control ow joins to reduce code expansion across such
points.

Looking at Figure 3.2(a), if the program originally took path A through
a given code fragment (where cr1.gt and cr0.eq are both false), and if the
same path A through the code fragment (tree region) is followed during the
second execution, the program executes at optimal speed within the code
fragment | assuming a big enough VLIW and cache hits.

17

goto TR1

TR0 Exit#1

TR0 Exit#2

TR0:

(Path A)

Call Translator

Call Translator
goto TR1 TR0 Exit#2

TR0:

Call Translator
(Path B)

TR0 Exit#1
Call Translator

(c)

goto TR1

TR0:

TR0 Exit#1
Call Translator

(Path A)

cr0.eq

Specul ops from A and B

Ops from Path B only

Ops from Path A only

Note: This is a tree region
 and may have several
 VLIW Instructions

(a) (b)

goto TR2
(Path B)

cr1.gt cr1.gt
True

cr0.eq
TrueFalse

False

cr0.eq
False True

TrueFalse

cr1.gt

TrueFalse

False True

Thick line is compiled trace.

Figure 3.2: Tree regions and where operations are scheduled from di�erent
paths.

If at a later time, when the same tree region labeled TR0 is executed again,
the program takes a di�erent path where cr1.gt is false, but cr0.eq is true
(labeled path B), it branches to the translator, as seen in Figure 3.2(b). The
translator may then start a new translation group at that point, or instead
extend the existing tree region by interpreting base architecture operations
along the second path B starting with the target of the conditional branch if

cr0.eq. The base architecture operations are translated into primitives and
scheduled into either the existing VLIWs of the region, or into newly created
VLIWs appended to the region, as illustrated in Figure 3.2(c).

Assuming a VLIW with a su�cient number of functional units and cache
hits, if the program takes path A or B, it will now execute at optimal speed
within this tree region TR0, regardless of the path. This approach makes
the executed code resilient to performance degradation due to unpredictable
branches.

The compilation of the tree region is necessarily never complete. It may
have \loose ends" that may call the translator at any time. For instance, as
seen in Figure 3.2(c), the �rst conditional branch if cr1.gt in tree region
TR0 is such a branch whose o�-trace target is not compiled. Thus, dynamic

18

compilation is potentially a never-ending task.
Tree groups can cross page boundaries and indirect branches, by mak-

ing use of run time information to convert each indirect branch to a set of
conditional branches. There is no limit on the number of pages a translated
code fragment may cross. Only interrupts and code modi�cation events are
serializers.

3.4 Stopping Points for Paths in Tree Re-

gions

Finding appropriate stopping points for a tree region is crucial for achieving
high ILP, as well as for limiting the size of the generated VLIW code and
translation time required for translation. Currently we consider ending a tree
region at two types of operations:

� The target of a backward branch, typically a loop starting point, or

� a subroutine entry or exit, as detected heuristically through Pow-
erPC branch and link or register-indirect branch operations.

Stopping (and hence starting) tree regions only at well-de�ned potential
stopping points is useful, since if there was no constraint on where to stop,
code fragments starting and ending at arbitrary base architecture operations
could result, leading to unnecessary code duplication and increasing code
expansion. Establishing well-de�ned starting points increases the probability
of �nding a group of compiled VLIW code when the translator completes
translation of a tree region.

We emphasize that encountering one of the stopping points above does not
automatically end a tree region. To actually end a tree region at a stopping
point, at least one of the following stopping conditions must previously have
been met:

� The desired ILP has been reached in scheduling operations, or

� the number of PowerPC operations on this path since the beginning of
the tree region entry has exceeded a maximum window size.

19

The purpose of the ILP goal is to attain the maximum possible perfor-
mance. The purpose of the window size limit is to limit code explosion | a
high ILP goal may be attainable only by scheduling an excessive number of
operations into a tree region. Both the ILP goal and the maximum window
size are adjusted dynamically in response to the frequency of execution of
particular code fragments.

This approach implicitly performs loop unrolling as execution follows the
control ow through the loop several times until a stopping condition has
been met.

3.5 Translation Cache Management

Translated tree regions are stored in the translation cache. The translation
cache is a memory area reserved for storing translations and not accessible
to the system which is hosted above the DAISY VMM.

Preliminary experiments on large multi-user systems indicate that a trans-
lation space of 2K-4K PowerPC pages is su�cient to cover the working set
for code. With a code expansion factor of 1:8�, such large multi-user sys-
tems would likely require a translation cache with 15 { 30 Mbytes to hold
dynamically generated VLIW code. In our implementation, the translation
cache is a memory area allocated from main memory, which will not be made
accessible to the system executing under the DAISY VMM.

When a translation is �rst generated, it is allocated memory from the
translation cache pool. A group can be ejected from the translation cache ei-
ther when the underlying page for which it contains a translation is modi�ed,
or when cache space is reclaimed to free space for new translations.

While using the same architecture facilities, a number of events can cause
a code page to change, e.g., when a program is terminated and a new program
is loaded into the same physical address space, a page is paged out and
replaced by some other page, or actual in situ code modi�cation. When such
events are detected, all translation groups which include modi�ed code are
detected and ejected from the translation cache. This does not require actual
removal of the group, but changing all control transfers to such a group into
control transfers to the translator, and ensuring that a new translation will
be generated when the modi�ed code is re-executed.

When the translation cache is full, a number of translation cache man-

20

agement strategies might be employed in a dynamic binary translation sys-
tem, e.g., space can be reclaimed either incrementally by garbage collecting
previously invalidated or little used translations. Alternatively, the whole
cache can be invalidated resulting in retranslation of all translation units.
In DAISY, we implement generational garbage collection which provides a
simple, low-overhead management technique [28].

Experiments in the context of other projects (such as DIF [29] and Dy-
namo [30]) indicate that there is some performance bene�t in invalidating the
entire cache as a means of performing translation cache garbage collection.
Invalidating the translation cache allows groups to adapt faster to changing
pro�les. This bene�t is mostly derived from preventing premature group
exits which are particularly costly for straightline trace groups as used in
BOA [31, 25, 32], DIF [29], or Dynamo [30]. We expect this to be of less
use in DAISY, since tree-groups are more resilient to such pro�le shifts as
additional paths can be included in a translation group, thereby eliminating
the cost of premature group exits.

21

Chapter 4

Group Formation and

Scheduling

The group formation strategy is an essential point in generating tree groups
which expose parallelism to be exploited by the target VLIW architecture.
Successive steps then perform parallelism-enhancing optimizations, and ex-
ploit the parallelism by generating appropriate schedules and performing
speculation.

As tree groups are formed, the VLIW operations are passed to the code
optimizer and scheduler to generate native VLIW code. Complex operations
are cracked at this point, and multiple simple VLIW operations are passed
to the optimization and scheduling step.

DAISY VLIW operations are scheduled to maximize ILP opportunities,
taking advantage of speculation possibilities supported by the underlying
architecture. The current scheduling approach is greedy, as described in
more detail in section 4.2. In determining the earliest possible time, DAISY
makes use of copy propagation, load-store telescoping, and other optimiza-
tions which are described in more detail in [33]. Thus scheduling, optimiza-
tion, and register allocation are all performed at once, i.e., operations are
dealt with only once.

Since this scheme can schedule operations out of order, and since we wish
to support precise exceptions for the underlying (PowerPC) architecture, we
need some way to generate the proper PowerPC register and memory val-
ues when an exception occurs. The architected register state is obtained
by renaming all speculative results and committing those values to the ar-

22

chitected register state in program order. Memory ordering is guaranteed
by scheduling stores in their original program order. An alternative mecha-
nism to implement precise exceptions which does not require all results to be
committed in-order is based on a state repair mechanism described in [34].

If special attention is not paid, page crossings | either by direct branch
or by falling through to the next page | can cause di�culties. When a group
contains base architecture code crossing a base architecture page boundary,
a check must be made to ensure that the new code page is still mapped in the
PowerPC page tables, and that its translation from e�ective to real address
has not changed since the translation was created. Unlike code modi�cation
events, page table changes do not cause the destruction of translations since
they usually occur when an operating system performs a task switch, and
are later restored when the task is scheduled again.

A probe operation like LOAD REAL ADDRESS AND VERIFY (LRAV) su�ces for
the task of testing for changes in the memory map. LRAV makes use of a
Virtual Page Address register (VPA), which is maintained in a non-PowerPC
register and indicates the e�ective address starting the current PowerPC code
page. LRAV <VPA>,<DISP>,<EXPECTED VAL> works as follows:

1. Computes the e�ective address of the new page as r36+<DISP>,

2. Translates the e�ective address to a real PowerPC address (if this fails,
a trap occurs to the VMM which passes control to the PowerPC in-
struction page fault handler),

3. Compares the real address to EXPECTED VAL,

4. If they are equal, r36 is updated with the value r36+<DISP>, and exe-
cution continues normally. This is the normal case with most operating
systems.

5. Otherwise a trap occurs, and the binary translation software makes the
proper �xup. This is a very unusual case.

4.1 Branch conversion

Register-indirect branches can cause frequent serializations in our approach
to dynamic binary translation (in which there is no operating system support

23

V50:

cmpl.indir cr15,PPC_LR,0x1000

b V51

cmpl.indir cr14,PPC_LR,0x2000

cmpl.indir cr13,PPC_LR,0x3000

V51:

beq cr15,V1000

beq cr14,V2000

beq cr13,V3000

V52:

b

V1000:

V2000:

V3000:

Translated Code from PowerPC 0x1000

Translated Code from PowerPC 0x2000

Translated Code from PowerPC 0x3000

<Translation w/Start Corresponding to PPC_LR>
OR

<Binary Translator if no translation exists>

b V52

Figure 4.1: Translation of Indirect Branch

for binary translation and all code from the original architecture is translated
including OS code and low-level exception handlers). Such serializations can
signi�cantly curtail performance, and hence it is important to avoid them.

This can be accomplished for indirect branches by converting them into
a series of conditional branches backstopped by an indirect branch. This is
similar to the approach employed in Embra [35]. However, Embra checked
only a single value for the indirect branch, whereas we check multiple values.

For example, consider a PowerPC indirect branch blr, (Branch to Link

Register) which, the �rst 100 times it is encountered, goes to 3 locations in
the original code, 0x1000, 0x2000, and 0x3000. Then the binary translated
code for this blr might be as depicted in Figure 4.1.

We make several points about Figure 4.1:

� The PPC LR value is kept in an integer register such as r33 that is not
architected in PowerPC.

24

� Translated operations from 0x1000, 0x2000, and 0x3000 can be spec-
ulatively executed prior to V1000, V2000, and V3000 respectively as
resource constraints permit. Such speculative execution can reduce
critical pathlengths and enable better performance.

� If additional return points such as 0x4000 are discovered in the future,
the translated code can be updated to account for them | up to some
reasonable limit on the number of immediate compares performed.

� A special form of compare, cmpl.indir is used because in PowerPC
and most architectures, the register used for the indirect branch (e.g.,
PPC LR) holds an e�ective (or virtual) address, whereas for reasons out-
lined in [7], it is important to reference translations by real address. The
cmpl.indir operations in V50 in Figure 4.1 translate the PPC LR value
to a real address before comparing it to the immediate (real address)
value speci�ed.

� It is also helpful if the cmpl.indir operation can specify a 32 or 64-bit
constant, so as to avoid a sequence of instructions to assemble such an
immediate value.

The use of the cmpl.indir is an optimization. Alternatively, a compari-
son of the e�ective address can be performed, followed by the code for page
transitions using an LRAV instruction if a page crossing occurs.

4.2 Scheduling

The goal in DAISY is to obtain signi�cant levels of ILP while keeping compi-
lation overhead to a minimum, to meet the severe time constraints of a vir-
tual machine implementation. Unlike traditional VLIW scheduling, DAISY
examines each operation in the order it occurs in the original binary code,
converting each into RISC primitives (for complex operations). As each
RISC primitive is generated, DAISY immediately �nds a VLIW instruction
in which it can be placed, while still performing VLIW global scheduling
on multiple paths and across loop iterations and while maintaining precise
exceptions.

25

For ease of understanding, we begin by providing a brief review of our
scheduling algorithm, which is described in more detail in [7, 8]. Our algo-
rithm maintains a ready time for each register and other resources in the
system. This ready time reects the earliest time at which the value in that
register may be used. For example if the instruction addi r3,r4,1 has la-
tency 1 and is scheduled at time 5, then the ready time for r3 is 5 + 1 = 6.
When an operation such as xor r5,r3,r9 is scheduled, our algorithm com-
putes its earliest possible time tearliest as the maximum of the ready times for
r3 and r9. Our algorithm is greedy, and so searches forward in time from
tearliest until a time slot with su�cient resources is available in which to place
the instruction.

Resources fall into two broad types. First the appropriate type of func-
tional unit (e.g., integer ALU) must be available on which to execute the
instruction. Second, a register must be available in which to place the result
of the operation. If the operation is scheduled in order (i.e., after predeces-
sor operations in the original code have written their results to their original
locations), then the result is just placed where it would have been in the
original code. For example if addi r3,r4,1 is scheduled in order, the result
is placed in r3. If the operation is executed speculatively (i.e., out of order)
then its result is �rst renamed into a register not visible to the base architec-
ture, and then copied into the original destination register of the operation,
in the original program order. For example, if addi r3,r4,1 is executed
speculatively, it might become addi r63,r4,1, with copy r3,r63 placed in
the original location of the addi. No side e�ects to architected resources
occur until the point in the original program at which they would occur.
Clearly the target architecture must have more registers than the original
base architecture under this scheme.

Figure 4.2 shows an example of PowerPC code and its conversion to
VLIW code. We begin with four major points:

� Operations 1{11 of the original PowerPC code are scheduled in se-
quence into VLIWs. It turns out that two VLIWs su�ce for these 11
instructions, yielding an ILP of 4, 4, and 3.5 on the three possible paths
through the code.

� Operations are always added to the end of the last VLIW on the current
path. If input data for an operation are available prior to the end of

26

add r1,r2,r3

add r1,r2,r3

4

5r4=r63

r4=r63

sli r12,r1,3

sli r12,r1,3

sli r12,r1,3

cntlz r11,r4

bc L1

VLIW1:

VLIW1:

add r1,r2,r3

b VLIW2VLIW2:

VLIW1:

bc L2

1

2

3

Translated VLIW Code

2)

bc L1xor r63,r5,r6

add r1,r2,r3

VLIW2:

VLIW1:

xor r63,r5,r6 bc L1

add r1,r2,r3

VLIW2:

VLIW1:

xor r63,r5,r6 bc L1

Original PowerPC Code

3)

r4=r63

L1:

L2:

4)
5)
6)
7)
8)
9)

11)
10)

6and r8,r63,r7

and r8,r63,r7

b VLIW2

b VLIW2

b NEXTGROUP

b NEXTGROUP

b NEXTGROUP

1) add r1,r2,r3
bc L1
sli r12,r1,3
xor r4,r5,r6
and r8,r4,r7
bc L2

sub r9,r10,r11

and r8,r63,r7

and r8,r63,r7

and r8,r63,r7

r4=r63

r4=r63

r4=r63

10

9
8

11
b NEXTGROUP

Translated VLIW Code

VLIW2:

add r1,r2,r3

VLIW2:

VLIW1:

xor r63,r5,r6 bc L1

VLIW2:

add r1,r2,r3

VLIW1:

b VLIW2

xor r63,r5,r6

bc L1

b VLIW2

bc L2

bc L2

bc L2

sli r12,r1,3

sli r12,r1,3

sli r12,r1,3

7

add r1,r2,r3

VLIW1:

b VLIW2

xor r63,r5,r6

bc L1

sub r9,r10,r11

sub r9,r10,r11

cntlz r11,r63

b NEXTGROUP

b NEXTGROUP

b NEXTGROUP

b NEXTGROUP

b NEXTGROUP

Figure 4.2: Example of conversion from PowerPC code to VLIW tree in-
structions.

27

the last VLIW, then the operation is performed as early as possible
with the result placed in a renamed register (that is not architected
in the original architecture). The renamed register is then copied to
the original (architected) register at the end of the last VLIW. This is
illustrated by the xor instruction in step 4, whose result is renamed to
r63 in VLIW1, then copied to the original destination r4 in VLIW2.
By having the result available early in r63, later instructions can be
moved up. For example, the cntlz in step 11 can use the result in r63

before it has been copied to r4. (Note that we use parallel semantics
here in which all operations in a VLIW read their inputs before any
outputs from the current VLIW are written.)

� The renaming scheme just described places results in the architected
registers of the base architecture in original program order. Stores and
other operations with non-renameable destinations are placed at the
end of the last VLIW on the current path, i.e., the in-order point. In
this way, precise exceptions can be maintained.

� As noted earlier, VLIW instructions are trees of operations with multi-
ple conditional branches allowed in each VLIW [6]. All the branch con-
ditions are evaluated prior to execution of the VLIW, and ALU/Memory
operations from the resulting path in the VLIW are executed in paral-
lel.

4.3 Adaptive Scheduling Principles

To obtain the best possible performance, group formation and scheduling are
adaptive and a function of execution frequency and execution behavior.

To conserve code space and reduce code duplication, tree groups are
formed initially with modest ILP and window size parameters. If this re-
gion eventually executes only a few times, this represents a good choice for
conserving code size and compile time.

The generated code is then pro�led as described in chapter 2. If it is
found that the time spent in a tree region tip is greater than a threshold
of the total cycles spent in the program, the group is extended. Group
extension forms translations using a signi�cantly higher ILP goal and larger
window size. Thus, if there are parts of the code which are executed more

28

frequently than others (implying high re-use on these parts), they will be
optimized very aggressively. If, on the other hand, the program pro�le is at
and many code fragments are executed with almost equal frequency, then
no such optimizations occur, which could be good strategy for preserving
instruction cache resources and translation time.

In addition to group formation, the actual schedule can also be adapted
in response to program behavior. When a tree group is �rst translated,
load instructions are speculated aggressively even if disambiguation is not
successful. Ambiguous load instructions are veri�ed at the in-order point,
and if speculation resulted in incorrect execution, a DAISY-level exception
is raised and corrective actions are performed to determine the in-order load
value and recompute all dependent operations. [23]

This behavior is pro�led by the DAISY VMM using counters which
determine the nature and frequency of misspeculations. If frequent mis-
speculation results in performance degradation, then the o�ending tree group
is rescheduled conservatively, and frequently mis-speculated load instructions
are performed in-order.

Other code generation issues can be treated similarly, to detect and
reschedule speculative load operations which have an inordinate number of
data cache misses. Since the DAISY architecture uses a stall-on-miss policy,
stalling on speculative loads which may not contribute to program progress
is prohibitive. The concept of adaptive code generation can also be applied
to other optimizations, for example in the context of value prediction to
recompile code with high misprediction rates.

4.4 Implementing Precise Exceptions

All exceptions are �elded by the VMM. When an exception occurs, the
VLIW branches to a �xed o�set (based on the type of exception) in the
VMM area. Exceptions such as TLB misses that hit in the original archi-
tecture's page table, simple storage operand misalignments, and code modi-
�cation events (discussed further in section 4.6) are handled directly by the
VMM. Another type of exception occurs when the translated code is execut-
ing, such as a page fault or external interrupt. In such cases, the VMM �rst
determines the base architecture instruction that was executing when the ex-
ception occurred, as described below. The VMM then performs interrupt

29

actions required by the base architecture, such as putting the address of the
interrupted base architecture instruction in a speci�c register. Finally the
VMM branches to the translation of the base operating system code that
would handle the exception.

For example, assume an external interrupt occurs immediately after VLIW1
of �gure 4.2 �nishes executing, and prior to the start of VLIW2. The inter-
rupt handler is just a dynamically compiled version of the standard PowerPC
interrupt handler. Hence it looks only at PowerPC architected registers.
These registers appear as if instruction 2, bc has just completed execution
and control is about to pass to instruction 3, sli.

When the base operating system is done processing the interrupt, it exe-
cutes a return-from-interrupt instruction which resumes execution of the
interrupted code at the translation of the interrupted instruction. Note that
since VLIW2 expects the value of the speculatively executed xor to be in
non-architected register r63, it is not a valid entry point for the interrupt
handler to return to: the value of r63 is not saved by the PowerPC inter-
rupt handler, and hence its value may be corrupted upon return from the
interrupt. Thus the VMM must either (1) interpret PowerPC instructions
starting from instruction 3, sli, until reaching a valid entry into VLIW code
(which depends only on values in PowerPC architected registers), or (2) it
must compile a new group of VLIWs starting from instruction 3, so as to
create a valid entry point.

When an exception occurs in VLIW code, the VMM should be able to
�nd the base architecture instruction responsible for the interrupt, and the
register and memory state just before executing that instruction.

A Virtual Page Address (VPA) register is maintained. The VPA
contains the address of the current page in the original code, and is updated in
the translated code whenever a group is entered or a page boundary is crossed
within a group. The simplest way to identify the original instruction that
caused an exception is to place the o�set of the base instruction corresponding
to the beginning of a VLIW as a no-op inside that VLIW, or as part of a
table that relates VLIW instructions and base instructions, associated with
the translation of a page. For example, the o�set within a page could be kept
in a 10-bit �eld in each VLIW instruction. (This assumes a 4096 byte page
with base architecture instructions being aligned on a 4-byte boundary.)

If the VLIW has atomic exception semantics where the entire VLIW
appears not to have executed, whenever an error condition is detected in any

30

of its parcels, then the o�set identi�es where to continue from in the base
code. Interpreting a few base instructions may be needed before identifying
the interrupting base instruction and the register and memory state just
before it.

If the VLIW has sequential exception semantics (like an in-order super-
scalar, where independently executable operations have been grouped to-
gether in \VLIWs" [36][2]) so that all parcels that logically preceded the
exception causing parcel have executed when an exception is detected, the
identi�cation of the original base instruction does not require interpretation.
Assuming the base architecture code page o�set corresponding to the begin-
ning of the VLIW is available, the original base instruction responsible for
the exception can be found by matching the assignments to architected re-
sources from the beginning of the VLIW instruction, to those assignments in
the base code, starting at the given base code o�set.

4.5 Communicating Exceptions and Interrupts

to the OS

As an example, consider a page fault on the PowerPC. The translated code
has been heavily re-ordered. But the VMM still successfully identi�es the
address of the PowerPC load or store instruction that caused the interrupt,
and the state of the architected PowerPC registers just before executing that
load or store. The VMM then (1) puts the load/store operand address in
the DAR register (a register indicating the o�ending virtual address that lead
to a page fault), (2) puts the address of the PowerPC load/store instruction
in the SRR0 register (a register indicating the address of the interrupting in-
struction) (3) puts the (current emulated) PowerPC MSR register (machine
state register) into the SRR1 register (another save-restore register used by
interrupts), (4) �lls appropriate bits in the DSISR register (a register indicat-
ing the cause for a storage exception), and (5) branches to the translation of
PowerPC real location 0x300, which contains the PowerPC kernel �rst level
interrupt handler for storage exceptions. If a translation does not exist for
the interrupt handler at real PowerPC address 0x300, it will be created.

Notice that the mechanism described here does not require any changes
to the base architecture operating system. The net result is that all existing

31

software for the base architecture, including both the operating system and
applications, runs unchanged, by dint of the VMM software.

4.6 Self-modifying and self-referential code

Another concern is self-referential code such as code that takes the checksum
of itself or code with oating point constants intermixed with real code or
even PC-relative branches. These are all transparently handled by the fact
that all registers architected in the base architecture | including the program
counter or instruction address register | contain the values they would con-
tain were the program running on the base architecture. The only means for
code to refer to itself is through these registers, hence self-referential code is
trivially handled.

A �nal major concern is self modifying code. Depending on the architec-
ture semantics, di�erent solutions are possible. Many recent architectures,
such as the PowerPC, require an instruction to synchronize data and in-
struction caches by invalidating the instruction cache. In such architectures,
it is su�cient to translate such instruction cache invalidation instructions
to invalidate all translation groups containing the respective address in the
translation cache.

However, some older architectures, e.g., Intel x86 require automatic syn-
chronization between data and instruction caches. E�cient implementation
of such architecture requires some hardware support. To solve this, we add a
new read-only bit to each \unit" of base architecture physical memory, which
is not accessible to the base architecture. (The unit size is � 2 bytes for S/390
and � 1 byte for x86, but it could also be chosen at a coarser granularity,
e.g., a cache line.) Whenever the VMM translates any code in a memory
unit, it sets its read only bit. Whenever a store occurs to a memory unit that
is marked as read-only (by this or another processor, or I/O) an interrupt
occurs to the VMM, which invalidates the translation group(s) containing
the unit. The exception is precise, so the base architecture machine state
at the time of the interrupt corresponds to the point just after completing
the base architecture instruction that modi�ed the code (in case the code
modi�cation was done by the program). After invalidating the appropriate
translation, the program is restarted by resuming interpretation-translation-
execution at the base architecture instruction immediately following the one

32

that modi�ed the code.

33

Chapter 5

Performance Evaluation

To demonstrate the feasibility of the presented approach, we have imple-
mented a prototype which translates PowerPC code to a VLIW representa-
tion, and then uses a compiled simulation approach to emulate the VLIW
architecture on a PowerPC-based system. The prototype was able to boot
the unmodi�ed AIX 4.1.5 operating system. A detailed description of this
translator and its simulation methodology may be found in [28, 37].

To achieve a more detailed understanding of the contribution of each com-
ponent in a binary translation system, we have used a trace-based evaluation
methodology. We use this approach in conjunction with an analytic model
to report results for SPECint95 and TPC-C. The traces for these bench-
marks were collected on RS/6000 PowerPC machines. Each SPECint95
trace consists of 50 samples containing 2 million PowerPC operations, uni-
formly sampled over a run of the benchmark. The TPC-C trace was obtained
similarly, but contains 170 million operations.

The performance evaluation tools implement the dynamic compilation
strategy using a number of tools:

� A tree-region former reads a PowerPC operation trace and forms tree-
regions according to the strategy described in this paper. The initial
region formation parameters were: an in�nite resource ILP goal of 3
instructions per cycle and a window size limit of 24 operations. When
1% of the time is spent on a given tree region tip, the tip is aggres-
sively extended with an in�nte resource ILP goal of 10 and a window
size limit of 180. An 8K entry, 8-way associative array of counters

34

were simulated, to detect the frequently executed tree region tips, as
described in section 4.3.

� A VLIW scheduler schedules the PowerPC operations in each tree re-
gion and generates VLIW code according to the clustering, functional
unit and register constraints, and determines the cycles taken by each
tree region tip.

� A VLIW instruction memory layout tool lays out VLIWs in memory
according to architecture requirements.

� A multi-level instruction cache simulator determines the instruction
cache CPI penalty using a history-based prefetch mechanism.

� A multi-level data cache and data TLB simulator. The data references
in the original trace are run through these simulators for hit/miss sim-
ulation. To account for the e�ects of speculation and joint cache e�ects
on the o�-chip L3, we multiplied the data TLB and data cache CPI
penalties by a factor of 1.7 when calculating the �nal CPI. This factor
is based on speculation penalties we have previously observed in an
execution-based model [7]. To account for disruptions due to execu-
tion of translator code, we ush on-chip caches periodically based on a
statistical model of translation events.

From the number of VLIWs on the path from the root of a tree region
to a tip, and the number of times the tip is executed, we can calculate the
total number of VLIW cycles. Empty VLIWs are inserted for long latency
operations, so each VLIW takes one cycle. The total number of VLIWs
executed, divided by the original number of PowerPC operations in the trace,
yields the in�nite cache, but �nite resource CPI.

Stall cycles due to caches and TLBs, are tabulated using a simple stall-on-
missmodel for each cache or TLB miss. In the stall-on-miss model everything
in the processor stops when a cache miss occurs, or data from a prior prefetch
is not yet available.

To model translation overhead, we �rst de�ne re-use rate as the ratio
between the number of PowerPC instructions executed over a program run
and the number of unique instruction addresses referenced at least once.
Reuse rates are shown in the last column of Table 5.2, and are in millions.

35

SPECint95 rates were measured through an interpreter based on the reference
inputs although operations in library routines were not counted. The TPC-C
rate was obtained from the number of code page faults in a benchmark run.

Re-use rates may be used to estimate translation overhead (in terms
of CPI) as follows:

� #P = number of Times an Operation undergoes Primary Translation

� #S = number of Times an Operation undergoes Secondary Translation

� CP = cycles per Primary Translation of an Operation

� CS = cycles per Secondary Translation of an Operation

Then

Overhead =
#P� CP+#S� CS

Re-use Rate

The translation (or primary translation) of a PowerPC operation occurs
when it is being added to a tree region for the �rst time. A secondary
translation of an operation occurs when it is already in a tree region while
new operations are being added to the tree region. In this study we have
used an estimate of 4000 cycles for a primary translation and 800 cycles for
a secondary translation. Our experience with DAISY indicates about 4000
PowerPC operations to translate one PowerPC operation [8]. Secondary
translation merely requires disassembling VLIW code and reassembling it,
something we estimate to take about 800 cycles.

The translation event can have an additional e�ect on the translated code
in terms of ushing the caches, so when the translated code is executed after
a translation, it is almost a cold-start of the caches. To simulate this e�ect,
the instruction and data caches are partially ushed (corresponding to the
translator's memory footprint) to simulate interference from the translator.

A �rst study was conducted to measure the performance improvements
possible from various system design options. The issues studied covered a
wide range:

� The impact of terminating groups at page boundaries and register-
indirect branches, as was the case in the original DAISY design [8, 7].
Note that these numbers are not actually using page-based translation,

36

but instead terminate trace-based groups at page boundaries. Amongst
other things, this reports a lower translation cost than a truly page-
based translation system, since only the cost for the actually executed
code is charged.

� The impact of variable-width and �xed-width VLIW instruction set
design points on the instruction cache performance.

� The impact of using an interpreter to �lter groups which are executed
fewer than 30 times. This has the overall impact of reducing the trans-
lation cost and the size of the translation cache.

� Using some metrics to limit code duplication and expansion by capping
the expansion ratio for any given page of original PowerPC code.

� The impact of prefetching from the instruction stream to improve per-
formance of the instruction cache hierarchy.

Figure 5.1 gives an overview of the CPI achieved when adding these dif-
ferent options to the VLIW system. The components of performance are
broken down (bottom to top) as in�nite resource CPI, �nite resource adder,
instruction cache adder, data cache adder, TLB adder, translation cost adder,
interpreter adder and exception handling adder.

For each benchmark, we simulated the following con�gurations based on
the preferred machine con�guration and a 1% threshold:

page �xed Encode VLIW instructions using a �xed width format and ter-
minate translation groups at page boundaries.

page base Encode VLIW instructions using a variable width format and
terminate translation groups at page boundaries.

trace �xed Encode VLIW instructions using a �xed width format.

trace base Encode VLIW instructions using a variable width format.

trace pre Adds pre-interpretation as a �lter to avoid translating infrequently
executed code to trace base.

trace expl Limits group formation when excessive code expansion is de-
tected for trace pre.

37

trace pf Adds hardware instruction prefetching capability to trace expl.

The In�nite Resource CPI column of Table 5.2 describes the CPI of a
machine with in�nite registers and resources, constrained only by serializa-
tions between tree regions, and and PowerPC 604-like operation latencies.
The Finite Resource CPI Adder describes the extra CPI due to �nite regis-
ters and function units, as well as clustering e�ects, and possibly compiler
immaturities. In�nite Cache CPI is the sum of the �rst two columns. The
ICache, DCache and DTLB CPI describe the additional CPI penalties in-
curred due to instruction cache, data cache, and data TLB misses, assuming
the stall-on-miss machine model described above. Translation Overhead is
determined using the formulas and values above.

We have also measured the dynamic group length which is a measure of
the code quality achieved by the translator and determines the amount of
usable ILP (see �gure 5.2). We have also studied the impact of these di�erent
options on code expansion as depicted in Figure 5.3, which gives the ratio of
actually referenced DAISY code pages to the actually referenced PowerPC
code pages.

We found that depending on the benchmark, terminating groups at page
crossings and register-indirect branches can have a signi�cant impact on the
achievable dynamic pathlength with a signi�cant reduction in several cases.
Dynamic pathlength (average dynamic number of PowerPC instructions be-
tween group-to-group transitions) corresponds strongly to achievable in�nite
resource CPI, since longer groups give the translator more possibility to spec-
ulatively issue instructions. However, these speculative instructions are only
useful if they lie on the taken path, hence if groups are frequently exited
prematurely, there is less bene�t from speculative execution.

While tree groups can reduce the cost of branch misprediction by in-
corporating multiple paths which can be scheduled and optimized as a unit,
excessive mispredictions reduce the dynamic group pathlength as the number
of paths exceeds what can be reasonably covered by tree-structured groups.
An example of this is the go SPECint95 benchmark, which is known for its
low branch predictability which translates directly into short dynamic group
length and high in�nite resource CPI. Experiments with varying thresholds
reported below show that lowering the group extension threshold does result
in more paths being covered to lower in�nite resource CPI, but at the cost
of signi�cant code expansion to cover all possible paths. This leads directly

38

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf

com
press

gcc
go

ijpeg
li

m
88ksim

perl
vortex

tpcc

PowerPC CPI

excC
P

I

interpC
P

I

trC
P

I

tlbC
P

I

dcacheC
P

I

icacheC
P

I

finR
srcC

P
I

infR
srcC

P
I

F
igu

re
5.1:

C
P
I
for

sy
stem

d
esign

p
oin

ts
of

a
D
A
IS
Y
sy
stem

.

39

0 20 40 60 80

100

120

page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf

com
press

gcc
go

ijpeg
li

m
88ksim

perl
vortex

tpcc

dynamic pathlength (PowerPC instructions)

F
igu

re
5.2:

D
y
n
am

ic
grou

p
p
ath

len
gth

for
sy
stem

d
esign

p
oin

ts
of
a
D
A
IS
Y

sy
stem

.

40

0 5 10 15 20 25

page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf
page_fixed
page_base
trace_fixed
trace_base

trace_pre
trace_expl

trace_pf

com
press

gcc
go

ijpeg
li

m
88ksim

perl
vortex

tpcc

code page expansion ratio

F
igu

re
5.3:

C
od
e
p
age

ex
p
an
sion

ratio
for

sy
stem

d
esign

p
oin

ts
of

a
D
A
IS
Y

sy
stem

.

41

to a signi�cant instruction cache penalty o�setting all gains in in�nite cache
CPI.

Code expansion numbers are presented in �gure 5.3 and are important
for two reasons. First, they indicate the amount of memory which must be
set aside for holding translation (Tcache), and it also serves as indicator of
the pressure on the instruction cache. Thus, higher code expansion usually
entails higher instruction cache penalty. To reduce the code expansion, we
experimented with using initial interpretation as a �lter to reduce the amount
of code being translated.1

Preinterpretation resulted in a minor increase of pathlength, since the
elimination of preinterpreted groups from the group formation process re-
sulted in lowering the overall bar to extend groups. Preinterpretation had
bene�cial impact on the code expansion by removing signi�cant portions of
infrequently executed code from the translation cache. Consequently, the
code expansion declined with preinterpretation. This did however not result
in better instruction cache performance, since the code in hot regions now got
extended more easily and hot regions were clearly not a�ected by preinterpre-
tation. Thus, the working set for those regions actually increased, resulting
in a larger instruction cache performance component than in experiments
without preinterpretation.

The impact of group extension and reoptimization policies was another
interesting issue. To see what an appropriate threshold fraction of overall
execution timewould be appropriate for triggering group extension to achieve
best performance, we experimented with threshold values from 0.1% to 5%
for the preferred DAISY con�guration (see �gure 5.4).

As expected, lowering the threshold for group reoptimization results in
improved dynamic group path length (see �gure 5.5 and in�nite cache CPI.
However, this also lead to signi�cant code expansion of the translated code
(see �gure 5.6) and instruction cache penalty. In addition, frequent group
extension lead to increases in the translation cost overhead.

Another experiment explored the impact and mix of execution units on
performance. We experimented with a set of clustered machines having 4
execution units up to 16 units. The machine con�gurations are reported in
table 5.1. All machines are clustered with 4 execution units per cluster. All

1Unlike our work reported in [25], preinterpretation served solely as a �lter and was
not used to collect statistics used to guide group formation.

42

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

com
press

gcc
go

ijpeg
li

m
88ksim

perl
vortex

tpcc

PowerPC CPI

excC
P

I

interpC
P

I

trC
P

I

tlbC
P

I

dcacheC
P

I

icacheC
P

I

finR
srcC

P
I

infR
srcC

P
I

F
igu

re
5.4:

C
P
I
for

d
i�
eren

t
th
resh

old
valu

es
for

th
e
p
referred

D
A
IS
Y
con

-
�
gu
ration

.

43

0 20 40 60 80

100

120

140

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

com
press

gcc
go

ijpeg
li

m
88ksim

perl
vortex

tpcc

dynamic pathlength (PowerPC instructions)

F
igu

re
5.5:

D
y
n
am

ic
grou

p
p
ath

len
gth

for
d
i�
eren

t
th
resh

old
valu

es
for

th
e

p
referred

D
A
IS
Y
con

�
gu
ration

.

44

0 2 4 6 8 10 12 14

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

0.001

0.005

0.01

0.05

com
press

gcc
go

ijpeg
li

m
88ksim

perl
vortex

tpcc

code page expansion

F
igu

re
5.6:

C
od
e
p
age

ex
p
an
sion

ratio
for

d
i�
eren

t
th
resh

old
valu

es
for

th
e

p
referred

D
A
IS
Y
con

�
gu
ration

.

45

Con�guration 4.1 4.2 8.2 8.4 16.4 16.8
No. clusters 1 1 2 2 4 4
No. ALU/cluster 4 4 4 4 4 4
No. LS/cluster 1 2 1 2 1 2
No. branches 1 1 2 2 3 3
I-cache 8K 8K 16K 16K 32K 32K

Table 5.1: This table lists the resources available in the machine con�gura-
tions explored in this article.

execution units can perform arithmetic and logic operations, and depending
on the con�guration, either one or two units per cluster can perform memory
operations. A cross-cluster dependency incurs a delay of one additional cycle.

Depending on the machine width, each VLIW can contain up to three
branch instructions. The memory hierarchy was similar, but the instruction
line size was reduced for narrower machines due to the mini-ICache con�gu-
ration requirements. Because the critical paths cannot accommodate driving
larger arrays, this resulted in reduced �rst level instruction cache sizes.

Figure 5.7 shows the machine CPI for di�erent cluster con�gurations as
shown in table 5.1. Even narrow machines o�er good performance since trans-
lation overhead is low and thus the resulting machines o�er very good CPI
compared to today's superscalar machines. Their hardware simplicity should
also result in very high frequency implementations. Wider machines o�er a
very signi�cant improvement over current architectures and high frequency.

We have also explored the impact of register �le size on performance.
Since register set pressure may prevent additional bene�cial speculation, it
may throttle performance. To test if 64 registers were su�cient for preventing
unnecessary performance bottlenecks, we explored register �le sizes from 64
to 256 registers for the preferred machine con�guration 16.8 using a 1%
threshold. Figure 5.8 shows the impact of using more registers. These do
not in general improve performance although some benchmarks may derive
small gains. Also, in some cases, more registers actually resulted in slightly
worse performance since register pressure prevented performance-degrading
overspeculation.

Table 5.2 reports the �nal performance for the preferred hardware and
software con�gurations.

Final CPI is then the sum of the In�nite Cache CPI, ICache, DCache,

46

0

0.2

0.4

0.6

0.8 1

1.2

1.4

4.1
4.2
8.2
8.4

16.4
16.8
4.1
4.2
8.2
8.4

16.4
16.8
4.1
4.2
8.2
8.4

16.4
16.8
4.1
4.2
8.2
8.4

16.4
16.8
4.1
4.2
8.2
8.4

16.4
16.8
4.1
4.2
8.2
8.4

16.4
16.8
4.1
4.2
8.2
8.4

16.4
16.8
4.1
4.2
8.2
8.4

16.4
16.8
4.1
4.2
8.2
8.4

16.4
16.8

com
press

gcc
go

ijpeg
li

m
88ksim

perl
vortex

tpcc

PowerPC CPI

excC
P

I

interpC
P

I

trC
P

I

tlbC
P

I

dcacheC
P

I

icacheC
P

I

finR
srcC

P
I

infR
srcC

P
I

F
igu

re
5.7:

C
P
I
for

d
i�
eren

t
m
ach

in
e
con

�
gu
ration

s
for

th
e
p
referred

D
A
IS
Y

con
�
gu
ration

.

47

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

64
96

128
192
256
64
96

128
192
256
64
96

128
192
256
64
96

128
192
256
64
96

128
192
256
64
96

128
192
256
64
96

128
192
256
64
96

128
192
256
64
96

128
192
256

com
press

gcc
go

ijpeg
li

m
88ksim

perl
vortex

tpcc

PowerPC CPI

excC
P

I

interpC
P

I

trC
P

I

tlbC
P

I

dcacheC
P

I

icacheC
P

I

finR
srcC

P
I

infR
srcC

P
I

F
igu

re
5.8:

C
P
I
for

vary
in
g
register

�
le
size

for
th
e
p
referred

D
A
IS
Y
con

�
g-

u
ration

.

48

CPI Adders
Program Inf Resrc Inf ICache Xlate Final Code Avg.

Resrc CPI Cache DCache Overhd CPI Expn Path
CPI Adder CPI TLB (CPI) pPg len

compress 0.27 0.07 0.34 0.01 0.14 0.01 0.00 0.50 1.41 41.85
gcc 0.32 0.09 0.41 0.04 0.02 0.00 0.01 0.49 2.82 20.42
go 0.54 0.02 0.55 0.06 0.06 0.00 0.00 0.68 7.95 16.59
ijpeg 0.13 0.16 0.29 0.00 0.02 0.00 0.00 0.31 1.67 75.68
li 0.19 0.11 0.30 0.01 0.01 0.00 0.00 0.33 1.52 38.27
m88ksim 0.15 0.11 0.26 0.02 0.00 0.00 0.00 0.29 1.27 48.45
perl 0.14 0.16 0.30 0.00 0.00 0.00 0.00 0.31 2.21 108.57
vortex 0.14 0.12 0.27 0.01 0.13 0.02 0.00 0.43 1.27 59.02
tpcc 0.23 0.15 0.38 0.04 0.21 0.03 0.00 0.66 0.82 31.56

Table 5.2: Performance on SPECint95 and TPC-C for a clustered DAISY
system with 16 execution units arranged in 4 clusters.

D-TLB, and Overhead columns. The initial and exception recovery interpre-
tation overhead are insigni�cant. Also, there are no branch stalls, due to our
zero-cycle branching technique [6, 38].

Unlike previous in�nite cache VLIW studies, our model takes into account
all the major CPI components. However, while we did examine the critical
paths in detail, we have not built hardware for this particular VLIW machine.
The hardware design process is likely to involve some design trade-o�s that
may be hard to foresee. Hence performance could fall short of the numbers
presented here. However, our model also omits some potential performance
enhancers, such as software value prediction, software pipelining, tree-height
reduction, and data cache latency tolerance techniques.

The Average Window Size in Table 5.2 indicates the average dynamic
number of PowerPC operations between tree region crossings. The Code
Explosion indicates the ratio of translated VLIW code pages to PowerPC
code pages. Our mean code expansion of 1.8 is more than 2� better than
the previous page-based version of DAISY. This improvement has come about
largely because of our use of adaptive scheduling techniques and the fact that

49

only executed code is translated.

50

Chapter 6

Related Work

Before the inception of the DAISY project, no machines have been designed
exclusively as target platforms for binary translation. The DEC/Compaq Al-
pha was however designed to ease migration from the VAX architecture, and
o�ered a number of compatibility features. These include similar memory
management capabilities to ease migration of the VAX/VMS operating sys-
tem, and support for VAX oating point formats. DEC's original transition
strategy called for static binary translators to support program migration.
Two translators supported these migration strategy: VEST for VAX/VMS
migration to Alpha/OpenVMS and mx for migration from DEC Ultrix on
the MIPS architecture to OSF1 on DEC Alpha [39]. Later, the FX!32 dy-
namic binary translator was added to ease migration from Windows on x86
to Windows on Alpha.

Recently, Transmeta has announced an implementation of the Intel x86
processor based on binary translation to a VLIW processor [40]. The pro-
cessor described is based on a VLIW with hardware support for checkpoint-
ing architected processor state to implement precise exceptions using a roll-
back/commit strategy. Rollback of memory operations is supported using a
gated store bu�er [41].

Previous work in inter-system binary translation has largely focused on
easing migration between platforms. To this end, problem state executables
were translated from a legacy instruction set architecture to a new archi-
tecture. By restricting the problem domain to a single process, a number
of simplifying assumptions can be made about execution behavior and the
memory map of a process. Andrews and Sand [42] and Sites et al. [39] re-

51

port the use of static binary translation for migrating user programs from
CISC-based legacy platforms to newer RISC-based platforms.

Andrews reports that many users of the Tandem Himalaya series use code
generated by the Accelerator translator, and that many customers have never
migrated to native RISC-based code and prefer to use CNS-based infrastruc-
ture such as debuggers. This demonstrates the viability of using binary
translation for providing commercial solutions, provided the infrastructure
and user interfaces continue to operate unchanged.

The �rst dynamic binary translator reported in the literature is Mimic,
which emulates user-level System/370 code on the RT/PC, a predecessor of
the IBM PowerPC family. May [43] describes the foundations of further work
in the area of dynamic binary translation, such as dynamic code discovery
and the use of optimistic translations which are later recompiled if the as-
sumptions are not satis�ed. The use of dynamic binary translation tools for
performance analysis is explored in [44].

Dynamic binary translation of programs as a translation strategy is exem-
pli�ed by caching emulators such as FX!32 [45]. Traditional caching emula-
tors may spend under 100 instructions to translate a typical base architecture
instruction (depending on the architectural mismatch and complexity of the
emulated machine). FX!32 emulates only the user program space and de-
pends on support from the OS (Microsoft Windows NT) to provide a native
interface identical to that of the original migrant system.

The presented approach is more comparable to full system emulation,
which has been used for performance analysis (e.g., SimOS [46], [35]) and
for migration from other legacy platforms as exempli�ed by Virtual PC,
SoftPC/SoftWindows and to a lesser extent WABI, which intercepts Win-
dows calls and executes them natively. Full system simulators execute as user
processes on top of another operating system, using special device drivers
for virtualized software devices. This is fundamentally di�erent from our
approach which uses dynamic binary translation to implement a processor
architecture. Any operating system running on the emulated architecture
can be booted using our approach.

For an in-depth comparison of several binary translation and dynamic
optimization systems, in particular the Transmeta Crusoe processor, the HP
Dynamo dynamic optimization system, and the Latte JavaVM just-in-time
compilation system, we refer the reader to [47].

The present approach is di�erent from the DIF approach of Nair and

52

Hopkins [29]. DAISY schedules operations on multiple paths to avoid seri-
alizing due to mispredicted branches. Also, in the present approach, there
is virtually no limit to the length of a path within a tree region or the ILP
achieved. In DIF, the length of a (single-path) region is limited by machine
design constraints (e.g., 4-8 VLIWs). Our approach follows an all software
approach as opposed to DIF which uses a hardware translator. This all-
software technique allows aggressive software optimizations hard to do by
hardware alone. Also, the DIF approach involves almost three machines: the
sequential engine, the translator, and the VLIW engine. In our approach
there is only a relatively simple VLIW machine.

Trace processors [48] are similar to DIF except that the machine is out-
of-order as opposed to a VLIW. This has the advantage that di�erent trace
fragments do not need to serialize between transitions between one trace
cache entry and another. However, when the program takes a path other
than what was recorded in the trace cache, a serialization can occur. The
present approach solves this problem by incorporating an arbitrary number
of paths in a software trace cache entry, and by very e�cient zero overhead
multiway branching hardware [38]. The dynamic window size (trace length)
achieved by the present approach can be signi�cantly larger than that of
trace processors, which should allow better exploitation of ILP.

53

Chapter 7

Conclusion

The DAISY architecture is a binary-translation based system which achieves
high performance by dynamically scheduling base architecture code (such as
PowerPC, System/390 or x86 code) to a VLIW architecture optimized for
high frequency and ILP. DAISY addresses compatibility with legacy systems
and intergenerational compatibility by using object code in legacy format as
distribution format.

The key to DAISY's success is ILP extraction at execution time, which al-
lows to achieve high performance through the dynamic adaptability of code.
Unlike traditional, static compilers for VLIW architectures, DAISY can use
execution-pro�le data to drive the aggressiveness of optimizations. This dy-
namic adaptability to pro�le changes is a major advantage over static VLIW
compilers which have to make tradeo�s based on heuristics or possibly un-
representative pro�les collected during pro�le runs.

We have conducted a range of experiments to determine the impact of var-
ious system design considerations on the performance of a binary-translation-
based system. We have also explored the stability of this approach as a result
to changes in workload and its behavior.

ILP extraction based on the dynamic binary translation and optimization
exposes signi�cant ILP by using runtime information to guide program op-
timization, with values reaching almost 2.5 instructions per cycle even after
accounting for cache e�ects.

54

Bibliography

[1] MPR. TI's new 'C6x DSP screams at 1600 MIPS. Microprocessor Re-
port, 7(2):February, 1997.

[2] Intel. IA-64 Application Developer's Architecture Guide. Intel Corp.,
Santa Clara, CA, May 1999.

[3] R. P. Colwell, R.P. Nix, J. J. O'Donnel, D. P. Papworth, and P. K.
Rodman. A VLIW architecture for a trace scheduling compiler. IEEE
Transactions on Computers, 37(8):318{328, August 1988.

[4] B. R. Rau, D. W. L. Yen, W. Yen, and R. A. Towle. The Cydra 5
departmental supercomputer: design philosophies, decisions, and trade-
o�s. IEEE Computer, 22(1):12{35, January 1989.

[5] B. R. Rau and J. A. Fisher, editors. Instruction-level parallelism. Kluwer
Academic Publishers, 1993. Reprint of The Journal of Supercomputing,
7(1/2).

[6] K. Ebcio�glu. Some design ideas for a VLIW architecture for sequential-
natured software. In M. Cosnard et al., editor, Parallel Processing, pages
3{21. North-Holland, 1988. (Proc. of IFIP WG 10.3 Working Conference
on Parallel Processing).

[7] K. Ebcio�glu and E. Altman. DAISY: dynamic compilation for 100% ar-
chitectural compatibility. Research Report RC20538, IBM T.J. Watson
Research Center, Yorktown Heights, NY, 1996.

[8] K. Ebcio�glu and E. Altman. DAISY: dynamic compilation for 100%
architectural compatibility. In Proc. of the 24th Annual International

55

Symposium on Computer Architecture, pages 26{37, Denver, CO, June
1997. ACM.

[9] Intel. IA-64 Application Developer's Architecture Guide. Intel Corp.,
Santa Clara, CA, May 1999.

[10] B. R. Rau. Dynamically scheduled VLIW processors. In Proc. of the
26th Annual International Symposium on Microarchitecture, pages 80{
92, Austin, TX, December 1993. ACM.

[11] J. Moreno, M. Moudgill, K. Ebcio�glu, E. Altman, C. B. Hall, R. Mi-
randa, S.-K. Chen, and A. Polyak. Simulation/evaluation environment
for a VLIW processor architecture. IBM Journal of Research and De-
velopment, 41(3):287{302, May 1997.

[12] T. Conte and S. Sathaye. Dynamic rescheduling: A technqiue for ob-
ject code compatibility in VLIW architectures. In Proc. of the 28th
Annual International Symposium on Microarchitecture, pages 208{217,
Ann Arbor, MI, November 1995. ACM.

[13] G. M. Silberman and K. Ebcio�glu. An architectural framework for mi-
gration from CISC to higher performance platforms. In Proc of the 1992
International Conference on Supercomputing, pages 198{215, Washing-
ton, DC, July 1992. ACM Press.

[14] G. M. Silberman and K. Ebcio�glu. An architectural framework for sup-
porting heterogeneous instruction-set architectures. IEEE Computer,
26(6):39{56, June 1993.

[15] M. Gschwind, K. Ebcio�glu, E. Altman, and S. Sathaye. Binary transla-
tion and architecture convergence issues for IBM System/390. In Proc.
of the International Conference on Supercomputing 2000, Santa Fe, NM,
May 2000. ACM.

[16] K. Ebcio�glu, E. R. Altman, and E. Hokenek. A JAVA ILP machine
based on fast dynamic compilation. In IEEE MASCOTS International
Workshop on Security and E�ciency Aspects of Java, January 1997.

56

[17] K. Ebcio�glu and R. Groves. Some global compiler optimizations and ar-
chitectural features for improving the performance of superscalars. Re-
search Report RC16145, IBM T.J. Watson Research Center, Yorktown
Heights, NY, 1990.

[18] K. Ebcioglu and G. Silberman. Handling of exceptions in speculative
instructions. US Patent 5799179, August 1998.

[19] S. A. Mahlke, W. Y. Chen, W.-m. Hwu, B. R. Rau, and M. S. Schlansker.
Sentinel scheduling for VLIW and superscalar processors. In Proc. of the
5th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 238{247, Boston, MA, October
1992.

[20] V. Kathail, M. Schlansker, and B.R. Rau. HPL PlayDoh architecture
speci�cation: Version 1. Technical Report 93-80, HP Laboratories, Palo
Alto, CA, March 1994.

[21] E. Altman, K. Ebcio�glu, M. Gschwind, and S. Sathaye. Method and ap-
paratus for pro�ling computer program execution. Filed for US Patent,
August 2000.

[22] H. Chung, S.-M. Moon, and K. Ebcio�glu. Using value locality on VLIW
machines through dynamic compilation. In Proc. of the 1999 Workshop
on Binary Translation, IEEE Computer Society Technical Committee
on Computer Architecture Newsletter, pages 69{76, December 1999.

[23] M. Moudgill and J. Moreno. Run-time detection and recovery from
incorrectly ordered memory operations. Research Report RC20857, IBM
T.J. Watson Research Center, Yorktown Heights, NY, 1997.

[24] K. Ebcio�glu, E. Altman, S. Sathaye, and M. Gschwind. Execution-based
scheduling for VLIW architectures. In Euro-Par '99 Parallel Process-
ing { 5th International Euro-Par Conference, number 1685 in Lecture
Notes in Computer Science, pages 1269{1280. Springer Verlag, Berlin,
Germany, August 1999.

[25] M. Gschwind, E. Altman, S. Sathaye, P. Ledak, and D. Appenzeller.
Dynamic and transparent binary translation. IEEE Computer, 33(3):54{
59, March 2000.

57

[26] M. Gschwind. Pipeline control mechanism for high-frequency pipelined
designs. US Patent 6192466, February 2001.

[27] M. Gschwind, S. Kosonocky, and E. Altman. High frequency pipeline
architecture using the recirculation bu�er. in preparation, 2001.

[28] E. Altman and K. Ebcio�glu. Full system binary translation: RISC to
VLIW. in preparation.

[29] R. Nair and M. Hopkins. Exploiting instruction level parallelism in
processors by caching scheduled groups. In Proc of the 24th Annual In-
ternational Symposium on Computer Architecture, pages 13{25, Denver,
CO, June 1997. ACM.

[30] V. Bala, E. Duesterwald, and S. Banerjia. Transparent dynamic opti-
mization: The design and implementation of Dynamo. Technical Report
99-78, HP Laboratories, Cambridge, MA, June 1999.

[31] S. Sathaye, P. Ledak, J. LeBlanc, S. Kosonocky, M. Gschwind, J. Fritts,
Z. Filan, A. Bright, D. Appenzeller, E. Altman, and C. Agricola. BOA:
Targeting multi-gigahertz with binary translation. In Proc. of the 1999
Workshop on Binary Translation, IEEE Computer Society Technical
Committee on Computer Architecture Newsletter, pages 2{11, Decem-
ber 1999.

[32] E. Altman, M. Gschwind, and S. Sathaye. BOA: the architecture of
a binary translation processor. Research Report RC21665, IBM T.J.
Watson Research Center, Yorktown Heights, NY, March 2000.

[33] K. Ebcio�glu, E. Altman, S. Sathaye, and M. Gschwind. Optimizations
and oracle parallelism with dynamic translation. In Proc. of the 32nd
ACM/IEEE International Symposium on Microarchitecture, pages 284{
295, Haifa, Israel, November 1999. ACM, IEEE, ACM Press.

[34] M. Gschwind and E. Altman. Optimization and precise exceptions in
dynamic compilation. In Proc. of the 2000 Workshop on Binary Trans-
lation, Philadelphia, PA, October 2000. also in: Computer Architecture
News, December 2000.

58

[35] E. Witchel and M. Rosenblum. Embra: Fast and exible machine simu-
lation. In Proc. of the 1996 ACM SIGMETRICS International Confer-
ence on Measurement and Modeling of Computer Systems, pages 68{79,
Philadelphia, PA, May 1996. ACM.

[36] J. Moreno, K. EBcio�glu, M. Moudgill, and D. Luick. ForestaPC user in-
struction set architecture. Research Report RC20733, IBM T.J. Watson
Research Center, Yorktown Heights, NY, February 1997.

[37] E. Altman and K. Ebcio�glu. Simulation and debugging of full system
binary translation. In Proc. of the 13th International Conference on
Parallel and Distributed Computing Systems, pages 446{453, Las Vegas,
NV, August 2000.

[38] K. Ebcio�glu, J. Fritts, S. Kosonocky, M. Gschwind, E. Altman,
K. Kailas, and T. Bright. An eight-issue tree-VLIW processor for dy-
namic binary translation. In Proc. of the 1998 International Conference
on Computer Design (ICCD '98) { VLSI in Computers and Processors,
pages 488{495, Austin, TX, October 1998. IEEE Computer Society.

[39] R. Sites, A. Cherno�, M. Kirk, M. Marks, and S. Robinson. Binary
translation. Communications of the ACM, 36(2):69{81, February 1993.

[40] A. Klaiber. The technology behind Crusoe processors. Technical report,
Transmeta Corp., Santa Clara, CA, January 2000.

[41] E. Kelly, R. Cmelik, and M. Wing. Memory controller for a micropro-
cessor for detecting a failure of speculation on the physical nature of a
component being addressed. US Patent 5832205, November 1998.

[42] K. Andrews and D. Sand. Migrating a CISC computer family onto
RISC via object code translation. In Proc. of the 5th International
Symposium on Architectural Support for Programming Languages and
Operating Systems, pages 213{222, 1992.

[43] C. May. Mimic: A fast S/370 simulator. In Proc. of the ACM SIGPLAN
1987 Symposium on Interpreters and Interpretive Techniques, volume 22
of SIGPLAN Notices, pages 1{13. ACM, June 1987.

59

[44] R. Cmelik and D. Keppel. Shade: a fast instruction-set simulatore for
execution pro�ling. In Proc. of the 1994 Conference on Measurement
and Modeling of Computer Systems, pages 128{137, Nashville, TN, May
1994. ACM.

[45] A. Cherno�, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye,
S. B. Yadavalli, and J. Yates. FX!32{a pro�le-directed binary translator.
IEEE Micro, 18(2):56{64, March 1998.

[46] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Complete com-
puter simulation: The SimOS approach. IEEE Parallel and Distributed
Technology, 3(4):34{43, Winter 1995.

[47] E. Altman, K. Ebcio�glu, M. Gschwind, and S. Sathaye. Advances and
future challenges in binary translation and optimization. Proc. of the
IEEE, 2001. submitted.

[48] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace processors.
In Proc. of the 30th Annual International Symposium on Microarchitec-
ture, pages 138{148, Research Triangle Park, NC, December 1997. IEEE
Computer Society.

60

