
RC22027 (97006) 11 June 1999                                                                                     Computer Science

IBM Research Report

DAISY/390:  Full System Binary Translation 
of IBM System/390

 
  Michael Gschwind, Kemal Ebcioglu, Erik Altman, Sumedh Sathaye

 IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY  10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research Report
for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



Abstract

We describe the design issues in an implementation of the ESA/390 archi-
tecture based on binary translation to a very long instruction word (VLIW)
processor. During binary translation, complex ESA/390 instructions are
decomposed into instruction \primitives" which are then scheduled onto a
wide-issue machine. The aim is to achieve high instruction level parallelism
due to the increased scheduling and optimization opportunities which can
be exploited by binary translation software, combined with the e�ciency of
long instruction word architectures. A further aim is to study the feasibility
of a common execution platform for di�erent instruction set architectures,
such as ESA/390, RS/6000, AS/400 and the Java Virtual Machine, so that
multiple systems can be built around a common execution platform.



Contents

1 Introduction 4

2 Binary translation approach 7
2.1 Resolving branch target addresses . . . . . . . . . . . . . . . . 10
2.2 Execute instructions . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Constant pool . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Hardware Support 17
3.1 Condition code 
ags . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Instruction atomicity . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Memory access semantics . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 PowerPC compatible operation . . . . . . . . . . . . . 24
3.3.2 ESA/390 compatible operation . . . . . . . . . . . . . 24
3.3.3 Compatibility with other architectures . . . . . . . . . 25

4 Performance of a Binary Translation Platform 26
4.1 Components of Performance . . . . . . . . . . . . . . . . . . . 26
4.2 Evaluation Tool Chain . . . . . . . . . . . . . . . . . . . . . . 29

5 Results and Discussion 32

6 Related Work 37

7 Conclusion 40

1



List of Figures

2.1 Impact of group extension policies on dynamic path length . . 9
2.2 Impact of group extension policies on code page expansion . . 9
2.3 DAISY branch conversion . . . . . . . . . . . . . . . . . . . . 11
2.4 Mimic and DAISY/390 branch conversion . . . . . . . . . . . 12
2.5 Control 
ow joins with incremental data 
ow analysis . . . . . 13

3.1 MMU architecture supporting emulation of multiple address-
ing mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1 Group extension policy impact on achievable CPI . . . . . . . 33

2



List of Tables

5.1 Cache and TLB Parameters. . . . . . . . . . . . . . . . . . . . 33
5.2 Preliminary CPI results are reported as cycles per ESA/390

instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3



Chapter 1

Introduction

We describe the implementation of the IBM System/390 architecture based
on dynamic binary translation to dynamically architect instruction sets on
a simple, high performance VLIW architecture. This approach is based on
DAISY (Dynamically Architected Instruction Set from Yorktown) from IBM
Yorktown [1]. Like DAISY, our work represents a dynamic compilation al-
gorithm which can respond to changing program pro�les and adapt the code
to workload-speci�c conditions.

In the course of this architecture study, we have addressed a number of
System/390 design aspects required to implement a compliant high-performance
implementation of this CISC architecture. These problems include self-
modifying code, atomicity of complex CISC instructions in the presence of
precise interrupts, re-ordering memory operations to achieve high perfor-
mance while maintaining MP memory consistency, access registers used to
increase the range of addressable memory, the pervasive use of register indi-
rect branches and its impact on the predictability of program control 
ow,
a single condition code 
ag which is set by almost all operations, and the
existence of an execute instruction which composes new instruction words
and executes them on the 
y.

Dealing with such unusual architecture features is quite important in
practice, but often ignored by novel architecture researchers. Dealing ef-
fectively with these features is of particular importance when dealing with
architectural transitions, i.e., if the semantics of an existing program are
to be preserved on a new architecture, either in the course of architectural
transition (e.g., binary translation from legacy architectures such as VAX
or x86 to more modern processors such as Alpha or IA-64) or architectural

4



convergence using a binary translation layer.
We use the DAISY approach to implement multiple di�erent architecture

such as IBM System/390, RS/6000 and AS/400 on a common target VLIW
processor to achieve architectural convergence. Previous work [1][2][3] has
shown the prospect of using a common processor core for implementing mul-
tiple ISAs, and thereby reduce the number of cores which have to be imple-
mented to execute code for the di�erent architectures. This report presents
a �rst evaluation of such a convergence system.

In fact, the VLIW convergence processor core becomes a new open ar-
chitecture, where other \computer architectures" are software layers on a
single, generic engine. By identifying a common set of execution primitives
for a simple VLIW architecture, the e�cient execution of several di�erent
instruction set architectures on a single processor core becomes possible. A
convergence platform o�ers added 
exibility, because architectures are im-
plemented through software as opposed to hardware, and cost advantages
because fewer processor cores need to be designed, validated, tested and
manufactured.

We have performed a detailed trace-based analysis to determine system
performance, including cache and TLB e�ects, translation cost and interpre-
tative overheads. The performance potential is encouraging.

Dynamic optimization and response to changing program pro�les is par-
ticularly important for wide issue platforms to identify which instructions
should be executed speculatively. Dynamic response as inherent in this de-
scribed approach o�ers signi�cant advantages over a purely static compilation
approach as exempli�ed by Intel's IA-64 architecture. From what has been
disclosed, IA-64 relies purely on static pro�ling which makes it impossible to
adapt to program usage.

With the dynamic compilation approach which is included in our plat-
form, software can pro�le code and schedule in response to changing pro-
gram pro�les, as well as adapt optimization and scheduling to the particular
generation of the microprocessor at the core of a binary translation-based
system. The internal system architecture is unexposed, i.e., much like micro-
program code, it will change with di�erent generations of this system and is
not accessible to programmers. The re-optimization capability is particularly
important for a platform such as ESA/390, for which a large body of legacy
code exists.

We �rst give an overview of the binary translation system in chapter 2.
An overview of the architectural features of the target architecture to sup-

5



port the convergence of heterogenous instruction architectures under binary
translation is given in chapter 3. The performance modeling aspects of bi-
nary translation architectures are explored in chapter 4 and our tool chain
is described in chapter 4.2. We discuss preliminary performance results in
chapter 5. We compare our approach with related work in chapter 6 and
draw our conclusions in chapter 7.

6



Chapter 2

Binary translation approach

In this chapter, we describe the execution based dynamic compilation algo-
rithm. In what follows, the \base architecture" [4][5] refers to the architecture
with which we are trying to achieve compatibility, e.g., PowerPC or ESA/390.

While previous binary translation e�orts have concentrated on achiev-
ing an acceptable fraction of the performance of the base architecture, a
DAISY-style approach is more ambitious. DAISY aims to implement the
emulated architecture with performance signi�cantly better than 1 cycle per
instruction. Several strategies are combined to achieve this goal:

� Translation of code to a wide issue machine to achieve high instruc-
tion level parallelism. By targeting a wide issue machine, execution
bandwidth is increased. Since instructions are scheduled statically, no
complex issue and dispatch logic is required.

� Ability to optimize code in the translator. Code can be optimized
and tuned based on usage patterns. This is especially important for
exploiting the performance potential of new processors when workloads
have been compiled using instruction selection and scheduling rules for
a di�erent model.

� Dynamic code adaptation through the use of instrumentation and run-
time feedback. Frequently executed code can be optimized more ag-
gressively to boost performance based on statistics gathered through
hardware based instrumentation. Dynamic code adaptation balances
the in
exibilities imposed by static schedules.

7



Binary translation of ESA/390 code is based on our experience with the
translation of PowerPC code to VLIW architectures. Translation occurs
incrementally, into acyclic tree-like groups with a single entry point, multiple
exits and no joins within a group.

The dynamic translation algorithm interprets code when a fragment of
base architecture code is executed for the �rst time. As base architecture
instructions are interpreted, the instructions are also converted to execu-
tion primitives (these are very simple RISC-style operations and conditional
branches). These execution primitives are then scheduled and packed into
VLIW tree regions which are saved in a memory area which is not visible
to the base architecture. Any untaken branches, i.e., branches o� the cur-
rently interpreted and translated trace, are translated into calls to the binary
translator. Interpretation and translation stops when a stopping condition
has been detected. The last VLIW of an instruction group is ended by a
branch to the next tree region.

As each VLIW tree region is translated, a number of optimizations are
performed to enhance the available instruction parallelism. These include
expansion of register-indirect branches into a series of conditional branches to
increase scheduling opportunities [7], copy propagation, combining, load/store
telescoping, and uni�cation [8]. Speculation is used aggressively within a
translation group, although results are committed in-order to the architected
processor state to maintain precise exception behavior.

Then, the next code fragment is interpreted and compiled into VLIWs,
until a stopping condition is detected, and then next code fragment, and so
on. If and when a program transfers control to an entry point of a code
fragment for which VLIW code already exists, it branches to the already
compiled VLIW code. Recompilation is not required in this case.

The compilation of the tree region is not necessarily ever complete. It
may have \loose ends" that may call the translator at any time. These calls
guard the transition to previously untranslated entry points. When control
passes from previously executed code section into new base architecture code
the translator starts translation at that point. Thus, dynamic compilation is
potentially a never-ending task.

The translator is also invoked when a particular code segment is executed
frequently. Identi�cation of hot program regions is based on hardware pro�l-
ing support in the form of a counter array cache. When pro�ling identi�es a
hot program region, the translator restarts group formation and translation,
this time forming larger groups with more aggressive optimizations.

8



0

50

100

150

200

250

300

ag
gr

es
si

ve

m
od

er
at

e

ag
gr

es
si

ve

m
od

er
at

e

ag
gr

es
si

ve

m
od

er
at

e

ag
gr

es
si

ve

m
od

er
at

e

ag
gr

es
si

ve

m
od

er
at

e

ag
gr

es
si

ve

m
od

er
at

e

c c1 c om pres s go li m 88ks im perl

pr
im

iti
ve

s

Figure 2.1: Impact of group extension policies on dynamic path length

0

5

10

15

20

25

30

ag
gr

es
si

ve

m
od

er
at

e

ag
gr

es
si

ve

m
od

er
at

e

ag
gr

es
si

ve

m
od

er
at

e

ag
gr

es
si

ve

m
od

er
at

e

ag
gr

es
si

ve

m
od

er
at

e

ag
gr

es
si

ve

m
od

er
at

e

cc1 compress go li m88ksim perl

co
d

e 
pa

ge
 e

xp
an

s
io

n 
ra

ti
o

Figure 2.2: Impact of group extension policies on code page expansion

9



Increasing the size of groups extends scheduling and optimization possi-
bilities, thereby increasing performance potential. At the same time, it also
increases code size by duplicating frequently executed instructions multiple
times. This expansion has to be carefully controlled to avoid instruction
cache thrashing, or else performance will su�er.

Thus, a delicate balance has to be struck between expanding group size
to increase instruction level parallelism and reducing code duplication to
achieve good instruction cache performance. Figures 2.1 and 2.2 details the
achievable dynamic group length and resulting code page expansion ratio for
several SPECint95 benchmark using group formation strategies of varying
aggressiveness, as will be described in chapter 5. Unlike static compilation
techniques, the dynamic framework is more 
exible in making code duplica-
tion decisions and performance trade-o�s, since the amount of duplication
can be calibrated depending on the workload characteristics.

Having thus described the general framework of our binary translation
e�ort, we turn our attention to issues speci�c to the translation of CISC
architectures, and ESA/390 in particular. Unlike simpler RISC architectures,
some CISC instructions can result in long instruction execution times, and
represent veritable subprograms. To increase scheduling freedom, we expand
CISC instructions into RISC-like operation primitives, as they are interpreted
for the �rst time. Group formation, scheduling, and optimization then occurs
on those simpler primitives.

2.1 Resolving branch target addresses

Historically, implementations of the ESA/390 architecture (and its predeces-
sors) have supported only a register-indirect addressing mode for branches.1

In [7], we have previously described our mechanism for dealing with register
indirect branches when translating code from the PowerPC architecture: each
register indirect branch is converted into a sequence of conditional branches,
testing for previously seen target addresses. This approach allows specula-
tive execution over the multiple targets of indirect branches, and allows code
generation to include the (typically few) branch targets when forming groups
during translation.

1A PC-relative branching mode is now supported in the architecture, but many work-
loads still use the traditional register-indirect branching.

10



A

B

DC

E

F

A

B

C

E

B

C

F

transl ator t ransl ator

testbase reg.

testbase reg.

testbase reg.

testbase reg.

Figure 2.3: DAISY branch conversion: A 
ow graph (left) is translated into
a sequence of code fragments (right). To resolve register-indirect branches
without requiring serialization, these branches are translated into a sequence
of tests for known base register values.

While this approach is appropriate for handling register-indirect branch-
es on the PowerPC architecture, it is inappropriate for ESA/390. This is
due to the di�erent usage patterns of register-indirect branch. On PowerPC,
register-indirect branches are used for dispatching switch statements, or to
call subroutines. As a result, each indirect branch will have its own set of
probable register-values.

On the other hand, typical ESA/390 code, particularly that generated by
compilers, uses these register-indirect branches by loading a known address
(typically the beginning of the current function) into a base register and then
using the displacement to specify an o�set relative to that known location
(beginning of function block) to address branch targets. Thus, the base
register for register-indirect branches virtually always has the same value
within any given function. When using register-indirect branch optimization
as described in [7], each register indirect branch is expanded into a sequence
consisting of testing the base register, and conditionally branching to the
translator if it has changed, before control is passed to the target address
(see �gure 2.3).

Since these instructions may be placed in the critical path (just before a
basic-block ending branch), this can lead to signi�cant performance penalties.
Since the base register value is not expected to change, branching is really
independent of the value in the base register. Thus, to achieve optimal
performance, tests for the contents of base registers should be eliminated for
maximum performance. Unfortunately, theoretically the value of the base
register could change during the execution, so this assumption cannot be

11



A

B

C

E

B

C

F

transl ator t ransl ator

prologue:
testbase r eg

prologue:
testbase r eg

A

B

C

E

B

C

F

transl ator transl ator

testbase reg.

Figure 2.4: Mimic and DAISY/390 branch conversion: Mimic guards each
code fragment with a prolog to check for compile-time assumptions and trans-
fer to the translator if they are violated. In DAISY/390, incremental data
ow
information is used to eliminate base register tests.

made without determining that it is safe.
In [9], May describes the problems associated with translating branches

on S/370 and its solution in the context of a problem-state binary translator
called Mimic. In Mimic, this is solved by basic 
ow analysis within a code
block. When a code block is entered, a prolog checks the value of the base
register just once upon entry into the code block. If the base register has
changed, then the translator is invoked to retranslate the code block, other-
wise the code block is executed without further checks (see �gure 2.4). This
approach allows elimination of a signi�cant number of tests, but still requires
tests on every group entry. This penalty can still be quite signi�cant.

DAISY/390 uses an alternative approach: instead of adding a guarding
test to each translation unit, we use incremental data
ow analysis between
blocks to minimize the need for code which checks compilation assumptions
about the contents of base registers.

When a block is translated, data
ow information for the current code
block is generated for code optimization techniques performed at the code
block level [8]. This includes information such as the constant propagation.
This information can then be used when compiling the next code block to
perform better optimization. Such optimization includes the elimination of
base register compares which would guard conditional branches, or the opti-
mization of other code, such as constant expressions, and so forth.

If such information is used across translation units, special care has to be
taken to deal with control 
ow joins. Since at compilation time, cross-group
information is only available for one edge in a control 
ow join, di�erent

12



Figure 2.5: Control 
ow joins with incremental data 
ow analysis

information may pass along the new edge. This situation must be detected.
When a control 
ow join at the entry of a translation group occurs, several
combinations can occur for data
ow information passing along a newly added
edge and the information used to compile the group:

As shown in �gure 2.5, each data
ow information item can either have a
determined value (denoted as X or Y) or be unknown (denoted as ?). If an
edge is added to the entry of an existing translation unit, and the information
carried by the new edge is compatible with optimizations based on previous
data
ow information, a direct jump from the end of one translation unit to
the beginning of the existing translation unit can be used to pass control.

When a con
ict between edge-carried data
ow information and previ-
ously used data
ow information is detected, a translation group with the
same entry address is cloned. The new group can then use di�erent data
ow
information to translate the new group. The new group can be compiled
using weaker or no data
ow information to reduce the danger of code explo-
sion. Consider an example where constant propagation is used to propagate
a value X for some register across a translation group boundary. If at a later
time another entry to the same group carries a value Y in the same regis-
ter, an incorrect result would be produced. To resolve this situation, a new
group is generated using either the new value of Y, or without any data
ow
information.

If information has been used for optimization of a translation group, and
an edge does not carry any data
ow information for an item used in generat-
ing the target translation unit, a test may be inserted to query if a particular
value matches the value used for code generation of the target group. If
the test succeeds, then control can be passed directly to the existing code
block. Otherwise, this case is handled as a join with incompatible data
ow

13



information.
The approach outlined here works best for information which rarely car-

ries con
icting information along di�erent edges at a join point. This is the
case for base registers in register-indirect branches as used in ESA/390. If
frequent, incompatible joins are encountered, code explosion may cause more
harm than gain due to excessive translation cloning.

The compatibility checks are easy to perform during binary translation.
Each group entry can be associated with a list of assumptions which were
used in optimizing the group. Each group exit (tip) also contains a list of
relevant control 
ow information reaching that point. A simple check can
then determine compatibility of data
ow at a group exit with information
used at the following group entry.

The propagation of base register addresses for register indirect branch
resolution is an example of using incremental data
ow analysis to perform
constant propagation at runtime. This approach is suitable for all informa-
tion which is propagated forward along the control 
ow. Control 
ow joins
with contradictory information are resolved by cloning parts of the control

ow graph or retranslation.2

2.2 Execute instructions

ESA/390 supports execute instructions, wherein a subject instruction at a
speci�ed address is read from memory, is modi�ed by inserting �elds from a
register speci�ed in the EX instruction, and then executed by the processor
as part of the instruction stream.

A �rst pass implementation of the execute instruction capability consists
of emitting code to

1. load the target instruction,

2. compose the instruction,

3. test for a particular bit pattern, and if successful,

4. execute translated code corresponding to that source operation, or,

2If code is interpreted several times before attempting translation, more information
about data and control 
ow may be used to reduce such con
icts.

14



5. if no match is found, invoke the translator to add a further test for the
newly discovered bit pattern and its translation.

Several tests can be chained in a tree-shaped translation block, yielding an
implementation similar to Mimic, where several EX-only blocks are compiled,
and the respective assumption checks in several EX-only blocks are chained,
until a valid translation is found.

While the described translation strategy o�ers a correct implementation
for all possible cases of EX subject instruction evaluation, optimized code
can be generated for a number of cases.

These cases correspond to a few idioms commonly found in ESA/390
code:

� EX is used to implement variable-length storage-to-storage operations
by �lling in the length �eld of a memory-to-memory (SS) operation
subject instruction.

� EX is used to synthesize register-to-memory operations from immediate-
to-memory (SI) operations by inserting the value stored in a general
purpose register into the immediate �eld of an SI subject operation.

In these cases, the subject instruction is often included in the read-only
constant pool of the function, and the combination of EX instruction and its
subject SS or SI instruction can be translated directly into a variable length
storage-to-storage operation, or a register-to-memory operation, respectively.
Similar to the handling of self-modifying code, store operations into the EX
subject instruction location would invalidate all translations which reference
this location as EX subject.

2.3 Constant pool

The original System/370 architecture did not supply immediate-to-register
operations. Instead, constants were stored in a per-function constant pool
(similar to the Java Virtual Machine) and accessed with storage-to-register
operations.

Immediate-to-register operations (RI) have only been recently introduced,
and are not present in several important workloads. To optimize performance

15



and facilitate optimization, references to read-only constant pools can be re-
placed by inline constants. However, to preserve 100% architectural com-
patibility (i.e., for setting reference bits and accurate page fault behavior),
probing references need to be inserted into a translation group if data accesses
are eliminated for data on pages other than the one holding the instruction
stream for the current translation group(s).

16



Chapter 3

Hardware Support

The DAISY VLIW processor core supports the execution of di�erent in-
struction set architectures, such as PowerPC, ESA/390 and the Java Vir-
tual Machine. Instruction prefetching provides the required instruction fetch
bandwidth, and instrumentation support hardware is used to adapt to dy-
namically changing path pro�les.

The DAISY long instruction word processor includes features such as con-
trol and data speculation, static out-of-order execution, and delayed excep-
tion handling. DAISY is based on a high-performance branch architecture
which provides multiway branching capabilities in every cycle, to achieve
good performance even on integer workloads with frequent control 
ow in-
structions.

The instruction format of the VLIW instructions is based on a limited
variable length encoding, which was designed to reduce the complexity of
the instruction alignment logic. In the encoding used for these experiments,
VLIW instructions have a multiple of 4 operations and can either branch to
the sequential VLIW instruction or perform a multiway branch.

Java data types and operations are very similar to those of PowerPC as-
suming a JIT compiler �rst compiles JAVA byte codes into RISC primitives
and then parallelizes the primitives into VLIW instructions [2][10]. In the fol-
lowing sections we will focus on the issues involved in achieving commonality
between S/390 and PowerPC.

The PowerPC 32, 16 and 8 bit integer data types are a superset of those
of ESA/390. S/390 addresses can be 31 or 24 bits and their implementa-
tion will be discussed in section 3.3. A DAISY VLIW processor supporting
multiple system binary translation will have support for both IBM and IEEE

17




oating point formats, allowing it to implement both ESA/390 and PowerPC
arithmetic operations. This does not introduce any major complications in
the design of the 
oating point unit, since IEEE 
oating point subsumes
the capabilities of IBM 
oating point formats. Execution primitives also in-
clude support for decimal excess-six arithmetic, which is important for some
business-oriented ESA/390 applications.

3.1 Condition code 
ags

Most ESA/390 instructions set the condition code as the by-product of an
arithmetic operation. Previous binary translation work has been mostly con-
cerned with reducing the cost of materializing condition codes of one architec-
ture on another architecture with dissimilar condition code semantics [9][11].
This is not a problem for a processor core speci�cally designed for binary
translation of ESA/390, since condition codes can be architected to work
with similar semantics.

A more serious problem associated with condition codes for this work
is the introduction of an output and anti-dependency chain by the perva-
sive setting of the condition code. This serializes all instructions in a given
ESA/390 program and limits the performance which can be obtained on a
wide issue architecture through increased instruction level parallelism. To
address this issue, the condition code computations must be eliminated, or
the condition code must be renamed.

While most condition code results are never used, their computation is
hard to eliminate in the context of 100% accurate architectural emulation
because the accuracy of liveness analysis is limited in full emulation. Any in-
struction which can raise a synchronous exception represents a potential con-
trol 
ow to the exception handler. This includes all operations with memory
operands, which can experience a page fault. As a result, traditional liveness
analysis cannot eliminate many computations. In [12], we present a method
for the deferred materialization of condition codes with zero execution time
overhead.

Our deferred materialization approach is based on recording su�cient in-
formation to recreate the condition code value in the case of an exception
being raised. However, unlike previous approaches, the recording is not done
dynamically by copying parameters and the computing operation into a tem-
porary space. Instead, the live ranges of the input parameters are extended

18



to the end of the liveness range of the condition code computed from them. In
addition, the operation used to compute the condition code value is recorded
at compile time in a structure associated with the translation group.

These operations can be performed at compile time, so no execution time
overhead is involved. However, since the information is static, this informa-
tion cannot be carried across join points. Because in the DAISY translation
approach, control 
ow joins occur only at the translation group boundaries (a
translation unit is characterized by a single entry, multiple exits, and no join
points inside the translation group), condition codes are fully materialized
at group exits. Typically, groups are terminated by conditional branches, so
condition code materialization at this point should not incur any additional
cost.

Condition code renaming can occur using one of two approaches. In the
results presented here, operation primitives to compute the condition codes
according to the semantics of any given instruction are introduced. Each
ESA/390 instruction is then \cracked" into multiple execution primitives
which can be renamed and scheduled independently. To reduce code expan-
sion, this can be combined with deferred materialization of condition codes
based on static information [12]. Performance bene�ts which can be obtained
from this deferred materialization are currently not modeled.

An alternative approach may rename condition codes in concert with
ESA/390 general purpose registers, and compute the condition code in tan-
dem with the integer result. The integer result and the condition code can
then be committed to the processor state separately, or in a single operation.
This treatment is similar to the treatment of the carry and over
ow 
ags of
the PowerPC XER register in the DAISY architecture [1].

3.2 Instruction atomicity

ESA/390 instructions are to be executed as atomic units, i.e., exceptions and
interrupts are either recognized before or after the instruction appears to
have executed. While atomicity is simple to achieve for RISC-style register-
to-register operations as implemented by the convergence platform, instruc-
tions involving multiple memory operands pose several challenges. These are
speci�cally related to the implementation of virtual memory, storage protec-
tion and asynchronous interrupts.

Atomicity rules are a particularly hard requirement for storage-to-stor-

19



age (SS) operations, where all possible error conditions, e.g., page faults and
protection faults in any part of the operands, must be detected before any
architected state is altered.

To achieve the semblance of atomic behavior, DAISY/390 uses two ap-
proaches to deal with synchronous and asynchronous interrupts. Asyn-
chronous interrupts are deferred until a later ESA/390 instruction bound-
ary. Typically, these boundaries correspond to group boundaries, or other
well de�ned points while the remaining code is executing with interrupts
disabled. Since translation units are acyclic and of bounded height, there
is an acceptable upper bound on the delay of such asynchronous interrupts
corresponding to the maximum distance from a group entry to its exit.

Unlike asynchronous interrupts which can be delayed, synchronous ex-
ceptions need to be detected and serviced before any architected processor
state, particularly memory, is altered. This is ensured by a combination of
the binary translation platform and the translation strategy.

To support software-based instruction reordering and speculation, the
DAISY register �le contains registers corresponding to the architected ma-
chine state of the base architecture and additional rename registers. In ad-
dition, the DAISY processor supports silent and deferred exceptions which
are propagated for speculative results [13], and ensures VLIW atomicity (i.e.,
either all or none of the results computed in a VLIW are committed to the
processor state).

The translation strategy renames all re-ordered and/or speculatively com-
puted results to a rename register, and commits them to the architected base
architecture machine state in-order. Operations (such as memory stores)
whose results cannot be renamed are executed in-order. Together with the
atomicity of VLIWs, this ensures that processing can never skip beyond the
precise exception point. When an exception is raised and the currently exe-
cuting VLIW is nulli�ed, an exception can be raised at a point corresponding
to an instruction address preceding the precise exception point. Interpreta-
tion is then used from that point to �nd the actual exception point.

Memory-to-memory (SS) operations which work on memory ranges pose
some additional requirements, since they generate multiple results which
must be atomically committed. To ensure this behavior, additional code is
inserted by the translator to probe all memory pages before actually chang-
ing any architected processor state. Consider the example of the MVC (move
character) storage-to-storage operation which probes the end of the memory
range (which could straddle a page boundary and raise an exception after

20



processing the �rst page) before attempting to transfer the �rst byte:

MVC L=256, 0(fp), 1024(fp)

=)

LPROBE 255(fp) // probe for reading

SPROBE 1279(fp) // probe for writing

for (i = 0...255) // copy loop

LBZ RTMP,i(fp)

STB RTMP,1024+i(fp)

The MVC instruction can move at most 256 bytes, while the ESA/390
page size is 4K, so two probe instructions to the ends of the source and
destination storage operands, respectively, are enough to rule out further
page faults during the execution of the MVC instruction.

A special optimization is applicable to short memory-to-memory opera-
tions where all changes to the architected state can be performed in a single
VLIW instruction. Since VLIW instructions exhibit the atomic execution
property, no pre-probing of the operands is necessary. If a synchronous ex-
ception occurs, then the state remains unchanged and control can be passed
to the exception handler. This execution property is important for the e�-
cient translation of SS operations such as MVC (move), NC (and), OC (in-
clusive or), and XC (exclusive or) which operate on short memory data and
which can be translated into very e�ective code without additional operand
probing overhead. The binary translator must ensure that such operations
are committed all together, which may entail skipping to the next VLIW if
there is not enough space to commit them all in the current VLIW being
�lled.

21



3.3 Memory access semantics

An architectural challenge in the design of a processor supporting both Pow-
erPC and ESA/390 execution is the correct and e�cient implementation of
the memory access model. These are quite di�erent for the PowerPC and
ESA/390 platforms.

The PowerPC architecture uses a segment-based addressing model. The
segments are selected based on the high-order 4 bits of the e�ective ad-
dress. In multiprocessor systems, PowerPC processors use a weak consistency
model.

Due to its long history, ESA/390 supports multiple addressing schemes.
Addresses can be either 24 or 31 bits wide, and are interpreted according
to several addressing modes. The most general of these modes uses access
registers. Access registers are segment registers which are selected by the
name of the base register used for address formation. (Thus if a memory
address is computed using base register r12, the access register ar12 is used
for resolving the e�ective to physical address mapping.) In multiprocessor
implementations, ESA/390 is \�rmly consistent".1

To support both PowerPC and ESA/390 adequately, a migrant architec-
ture must support both styles of address generation, memory addressing, and
consistency. At its simplest, address formation consists of three steps:

e�ective address computation According to an architectures instruction
set, an e�ective address is computed.

translation context selection The context used for a translation step is
selected. The context can consist of several di�erent aspects, such as
whether address translation is enabled, the processor is in problem or
system state, the segment referenced by a particular address, etc.

address resolution A CAM (content addressable memory) lookup is per-
formed using the e�ective operation and the translation context. If the
CAM lookup is successful, the physical address is returned. Otherwise,
an exceptional condition is indicated.

We have designed a common memory management unit to address the
issues posed by supporting segment register and access register based mem-
ory address translation by following the above analysis (see �gure 3.1). The

1In �rmly consistent memory, load operations on one processor may be moved above
logically preceding store operations on the same processor. [14]

22



Figure 3.1: Common memory management architecture for emulating mul-
tiple base architecture addressing schemes.

combined memory management unit implements the steps in a generic man-
ner so as to map di�erent base architectures onto this common MMU, such
as PowerPC, ESA/390, or Intel x86.

The address space identi�er register �le can be accessed with either the
high order e�ective address bits to support e�ective-address based segment
selection (e.g., as used in PowerPC), or by using an explicit segment speci�er
inside the VLIW load/store primitive (e.g., using the access register number
in ESA/390). The SR/AR selector can be speci�ed either using two distinct

avors of load operations, or a global mode bit in the processor state.

The address space identi�er �le does not necessarily hold the same values
as segment or access registers hold. Their only use is in providing address
bits which are used to match in the TLB CAM, i.e., there would typically
be a mapping between each address space and the contents of an address
speci�er register.

The TLB CAM used to perform the actual translation step can consist of a
multi-level cache-based structure to combine low latency operation with high
hit rates. The TLB CAM is reloaded by a software-based reload mechanism
to e�ciently support multiple base architectures. The software-based page
table reload handler is invoked on a TLB CAM miss and interprets the page
tables following the architecture speci�cations of the base architecture.

Strong memory consistency (sequential consistency) can be achieved us-
ing the load data veri�cation scheme described in [15]. This scheme performs

23



a load and verify operation at the in-order point for any load operation which
has been performed out-of-order with respect to other memory operations. If
a data di�erence is found, �xup code is invoked to re-execute the load oper-
ations and all dependent operations. Strong memory consistency subsumes
ESA/390's �rm consistency and the weaker PowerPC memory semantics.

3.3.1 PowerPC compatible operation

In PowerPC-compatible operation, the e�ective address is generated by adding
displacement and base registers. The address space identi�er �le is selected
using the high order 4 bits of the e�ective address. In addition, global context
information selects di�erent mappings according to whether address transla-
tion has been enabled or not.

If a TLB CAM miss occurs, a native VLIW exception occurs and the soft-
ware page fault handler interprets the page tables according to the PowerPC
page table format.

3.3.2 ESA/390 compatible operation

In ESA/390-compatible operation, the address generation step can include
the application of a 31 or 24 bit address mask to reduce the address width in
accordance to the selected ESA/390 addressing mode. This e�ective address
is then translated using address-space speci�c page tables according to sev-
eral di�erent address translation modes.2 The page tables are indicated as
translation context and the TLB CAM only contains fully resolved e�ective
to physical address mappings.

The access register number is used to access the address space identi-
�er �le which provides additional context information. The global address
context supplies further bits, such as the PSW storage key which is used to
implement the ESA/390 storage protection model.

The TLB CAM then tries to translate a triple consisting of e�ective
address, address space speci�er and global context to a physical address.
A miss in the translation can occur for a number of reasons. A miss can
indicate that the software page table reload function needs to be invoked
because no translation for the given e�ective address has been loaded for the

2For the sake of simplicity, we will explain operation only of the most complex, access
register based mode. All other memory translation modes can be reduced to the access
register mode.

24



speci�ed address space. Alternatively, a mismatch in the PSW storage key
section may have caused a tag mismatch, and the appropriate reaction is
then to invoke the base ESA/390 storage key protection mechanism.

Several performance improvements are possible to increase the perfor-
mance of the merged MMU (at the cost of generality). These include adding
a special mode bit to ignore a number of high order bits in the tag match of
the TLB CAM, thereby eliminating the need for address truncation in the
e�ective address generation phase. (Alternatively, multiple mappings could
be maintained in the TLB CAM which represent the same 24 bit address
with di�erent 8 bit pre�xes mapping to the same physical address.)

3.3.3 Compatibility with other architectures

The commonMMU facility can also be used to translate other memory trans-
lation models, such as Intel x86. In Intel x86 mode, the access address
speci�er register would be selected based on the instruction-speci�c segment
(or the segment override pre�x). Similarly, other addressing modes can be
reduced to the present MMU design.

25



Chapter 4

Performance of a Binary

Translation Platform

Binary translation performance is composed of several aspects, such as the
performance of the target architecture and the cost of performing the trans-
lation. Combining these di�erent performance aspects provides an overall
view of system performance. This approach is similar to the MACS ap-
proach of characterizing di�erent aspects of system performance [16]. Unlike
the MACS approach, these bounds are derived not by experimental means,
but by simulation and analytical modeling of a binary translation system.

To model the di�erent aspects of binary translation performance, we have
developed a trace-based tool chain coupled with some analytical modeling to
explore the performance potential. Trace-based analysis allows the evaluation
of arbitrary program sequences, including operating system code.

The results presented here were collected under the OpenMVS operating
system, which provides a hosted POSIX execution environment under MVS.
Results include not only the application code, but also operating system code.
Thus, this approach gives access to a more realistic workload model compared
to user-level application code which is often used in such experiments.

4.1 Components of Performance

A �rst cracking step decomposes the CISC instruction stream into RISC-like
primitive operations, which are then used by all further processing steps.
Using simple instruction primitives o�ers increased 
exibility in subsequent

26



scheduling and optimization steps.
The number of primitive operations generated for each source instruction

is a measure of both the architectural �t between the base and the target
platform, as well as the architectural complexity of the base architecture. The
expansion ratio from complex ESA/390 instructions to VLIW primitives is
shown in 5.2.

When translation groups (which take the form of tree regions) are �rst
formed, a measure we refer to as in�nite resource CPI is used to guide the
group formation. The in�nite resource CPI within a particular path of a
group, is equal to the critical dependence chain length in this path divided
by the number of ESA/390 instructions in the path. Such CPI could be theo-
retically obtained by an in�nite resource machine, and serves as a CPI lower
bound. By building larger translation groups, more scheduling opportunities
are discovered, resulting in a lower overall in�nite resource CPI, which in
turn can (if instruction cache penalties are managed) lead to lower overall
�nite resource CPI.

By scheduling the translation groups for a speci�c target machine, the
constrained machine CPI is obtained. This accounts for the limits imposed
by the machine architecture, such as the number of ALUs, FPUs, load/store
units, and communication costs between clusters of ALUs and register �les.
This adder also includes instructions added for system operation, such as
commit operations to the machine state, multiprocessor consistency, and
translation consistency (which must be checked when crossing instruction
pages).

A �nite instruction cache adder accounts for pipeline stall cycles due
to instruction cache misses. Instruction cache performance is impacted by
the translation strategy and the optimization performed. Instruction cache
performance is directly proportional to reuse and indirectly proportional to
code size. Code size is a function of VLIW encoding and of code duplication.
Thus, while more sophisticated translation schemes generate longer groups
with higher in�nite cache ILP, this is counterbalanced by instruction cache
penalties due to code duplication and lower re-use.

A number of hardware design decisions have been made particularly to
address this issue. To reduce the impact of code size, we use a variable length
instruction encoding. In addition, instruction cache prefetching for fetching
the two most recently used successor lines is employed to reduce the miss
rates.

Instruction cache performance is further impacted by the operation of the

27



binary translator. Every time the translator is invoked, it will displace the
translated code from the instruction cache. We model this by computing the
rate at which the translator is invoked, and periodically 
ushing the �rst-level
instruction cache.

The average rate of translation events is computed as follows

translation interval in VLIWs =
reuse rate � primitives

group formation events
�primitive CPI in�nite cache

The �nite data cache adder (and �nite data TLB adder) accounts for
pipeline stalls due to data cache misses (and data TLB misses). Compared
to in-order execution of memory operations, speculation and memory re-
ordering add burden to the memory hierarchy. For our current coherence
and disambiguation approach [15], experiments show an overhead of about
70%. We account for this overhead with a speculation factor 1.7, i.e., we
multiply by 1.7 the number of stall cycles reported by the (non-speculating)
memory simulator. Since the target architecture implements a stall-on-miss
policy, modeling data cache e�ects is purely additive.

Like the instruction cache, the data cache is impacted by the operation of
the translator. The translator accesses a number of data structures through
the data cache thereby displacing the data of the base system. Data accessed
by the binary translator includes: ESA/390 code, intermediate code repre-
sentation, generated native VLIW code, as well as meta data such as group
descriptors mapping groups to starting addresses and mapping memory areas
to groups.

The average rate of translation events is computed as follows

translation interval in data refs =
reuse rate �memory operations

group formation events

The actual cost of translating instructions is computed using an analytical
model based on the number of translations which have occurred. When
primitives are �rst included in a group, each translation of a primitive is
assumed to take 4000 cycles to account for decoding, optimization, etc. This
is a conservative estimate based on our experience with DAISY which yielded
about 4000 PowerPC operations to translate one PowerPC operation. When
a group is later extended, these instructions have already been translated,
so they only need to be decoded and rescheduled at a lower cost of 800

28



cycles. Our accounting of the cost per primitives re
ects the higher cost of
translating more complex instructions which expand into multiple primitives.

The CPI contribution of the translator is then

CPITR =
primary translations � 4000 + secondary translations � 800

reuse rate

A �nal CPI degradation is due to exception overhead. To reduce the
number of groups starting at arbitrary instruction addresses (i.e., at various
instruction addresses where an exception was received), interpretive execu-
tion is entered after executing a return from the exception handler until an
existing group is encountered.

This overhead is modeled as follows:

CPIEXC =
interpretion cost � unique primitives

exception rate � total groups � 2

4.2 Evaluation Tool Chain

System performance of a binary translation architecture is evaluated using
a tool chain of several modeling tools which model the various performance
aspects of a dynamic compilation system. The data generated by these tools
are combined with analytical models to derive overall system performance.

The system evaluation tool chain consists of the following modeling tools:

group former A tree-region former cracks complex ESA/390 instructions
into instruction primitives and forms tree-regions according to the execution-
based strategy described previously in [7].

The tree-region former models the initial group formation and group
extension and computes in�nite resource CPI information which is used
to guide the group formation process.

VLIW scheduling A VLIW scheduler schedules the VLIW primitives in
each tree region and generates VLIW code according to the clustering,
functional unit and register constraints. Tree-region based optimiza-
tions as well as speculation is performed during this phase.

The VLIW scheduler also determines the number of cycles for each
exit (tip) of a tree-region. When the entry to exit cycle count for the

29



various paths through a tree region is combined with program control

ow information gathered by the tree-region former (tip trace), a �nite
resource CPI can be computed.

VLIW memory layout A VLIW instruction memory layout tool lays out
VLIWs in memory according to architecture requirements.

I-cache simulation A multi-level instruction cache simulator performs in-
struction stream prefetching and hit/miss simulation and computes the
CPI contribution of instruction memory access.

D-cache/D-TLB simulation A multi-level data cache and data TLB sim-
ulator performs hit/miss simulation and computes the CPI contribution
of data memory accesses.

ILP measurement has to be adjusted for the di�erence in complexity
between typical RISC and CISC architectures. This adjustment cannot be
achieved by merely lowering the ILP goal. Due to the large variance in
complexity in CISC instructions, it is important to account for the non-
uniform distribution of instruction complexity. This can lead to high peak
of instruction issue demands to achieve the requested ILP.

Without some smoothing, even a moderate ILP goal may lead to massive
code explosion as groups containing a high complexity CISC instruction are
extended to compensate for the low S/390 CPI of complex instructions. This
can lead to massive code explosion without any signi�cant gains in instruction
level parallelism.

An example of such high-complexity regions are string and memory block
operations. On typical RISC architectures, such operations are represented
as loops consisting of primitive memory operations. On ESA/390, these op-
erations are often coded to use a single CISC memory-to-memory operation
such as MVC (move character string), CLC (compare character string), and
TRT (translate and test, used to locate a byte in a string by string opera-
tions such as strlen or index). An MVC instruction may require 512 RISC
primitives. Thus to attain ESA/390 ILP of 3, a machine which could issue
1536 primitives at once would be required.

We have addressed this problem by internally measuring ILP in primi-
tives as generated by the instruction cracking step. The primitive goal is
derived from the ESA/390 ISA ILP goal by multiplying the ESA/390 goal

30



with the dynamic instruction expansion factor. This dynamic expansion fac-
tor is derived as

expansion factor =
primitives per trace segment

ESA/390 instructions per trace segment

The expansion factor can be determined either dynamically, or as a �xed
constant based on typical workload characteristics.

31



Chapter 5

Results and Discussion

To establish the performance potential of the described approach, we mod-
eled several integer workloads from the SPECint95 benchmark suite. The
traces consist of several samples from the execution of the benchmark on the
reference data sets after an inital warm-up phase. Binary translation was
targeted at a DAISY VLIW architecture executing a tree-VLIW with up to
16 operations and a multiway branch per cycle.

Cache and TLB parameters are given in table 5.1. To achieve high
throughput and low latency for instruction fetch, DAISY uses a partitioned
instruction cache consisting of separate \mini I-caches" for each cluster of
two ALUs, which contain the instructions for that cluster as well as some
duplicated control information. This reduces the wire length during cache
access and allows to build faster memory arrays and large logical line sizes.
In addition, each VLIW encodes the next line address to further reduce fetch
latency.

Experiments were devised to speci�cally explore di�erent trade-o�s in
the system operation, such as group formation strategies or the impact of
ESA/390 speci�c optimization opportunities. A �rst set of experiments com-
pares two di�erent levels of eagerness in group formation. Both levels use the
same settings for initial code creation, based on a translation path length of
24 primitives and an initial in�nite resource primitive ILP goal of 9.

In the moderate group extension approach, a code segment has to account
for 5% of the execution to be eligible for group extension. The path length
limit on during group enlargement is 180 primitives. A more aggressive group
extension strategy extends code segments when they account for 0.1% of the
total execution, with a 250 primitive limit on path length.

32



Cache Size Linesize Assoc Latency

L1{I 32K 1K 8 1
L2{I 1.5M 2K 6 4
L1{D 32K 256 4 2
L1.5{D 512K 256 8 5
L2{D 2M 256 8 11
L3{U 1 50

DTLB1 128 Entries { 2 1
DTLB2 1K Entries { 8 5
DTLB3 1 { 50

Table 5.1: Cache and TLB Parameters.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ag
gr

es
si

ve

m
od

er
at

e

ag
gr

es
si

ve

m
od

er
at

e

ag
gr

es
si

ve

m
od

er
at

e

ag
gr

es
si

ve

m
od

er
at

e

ag
gr

es
si

ve

m
od

er
at

e

ag
gr

es
si

ve

m
od

er
at

e

cc1 compress go li m88ksim perl

S
39

0 
C

P
I

excCPI

interpCPI

trCPI

tlbCPI

dcacheCPI

icacheCPI

finRsrcCPI

infRsrcCPI

Figure 5.1: Group extension aggressiveness: more aggressive extension of
groups yields higher in�nite resource ILP. This is counterbalanced by �nite
resource constraints and instruction cache e�ects. To achieve optimal perfor-
mance, a more aggressive hardware design and good control over instruction
cache e�ects are necessary.

33



Figure 5.1 compares the two extension approaches. Aggressive group for-
mation shows signi�cant improvement in in�nite resource CPI. (This comes
at the expense of somewhat increased translation time since more group for-
mation events occur.) In�nite resource ILP appears to scale logarithmically
with path length, so signi�cant increases in pathlength are necessary to im-
prove performance noticeably.

However, much of the improvement in in�nite ILP is lost when the in-
structions are scheduled for a 16-way VLIW machine, making the case for an
even wider, more aggressive hardware platform. However, as previously men-
tioned, another aspect of binary translation performance is code expansion
control. In all cases, instruction cache performance is worse for aggressive
group formation.

This e�ect is most pronounced for the go benchmark. Since go has very
unpredictable branching behavior, group formation builds groups with low
reuse. Aggressive group extension further exacerbates this problem leading
to even higher code duplication and lower reuse numbers. Many early group
exits (as demonstrated by the low average dynamic path length spent in a
group), unpredictable cache prefetching, and low cache re-use are the result.
Thus, while other benchmarks compensate for higher code expansion by im-
proved in�nite cache ILP due to improved average dynamic group length,
go su�ers from code expansion without the bene�ts derived by other bench-
marks.

These results indicate that binary translation performance is very sus-
ceptible to the workload. Thus, an adaptive response to measured system
performance may be desirable. By using adaptive feedback from measured
system behavior, excessive instruction cache miss rates and/or early group
exits may call for a reduction in group formation aggressiveness while high
prediction rates and low instruction cache misses may indicate an opportu-
nity to extend groups and increase optimization increases.

We have computed the overhead translation and exception handling CPI
components directly due to the binary translation scheme with worst case
parameters of a low reuse rate (106) and high synchronous exception rate
(one exception every 20�103 instructions). While these parameters are more
conservative than actually observed program behavior, the CPI degradation
due these adders is still low.

Experiments further indicate that the conversion of register-indirect branches
to relative branches based on incremental data
ow analysis improved perfor-
mance up to 15% compared to a baseline using the previously described

34



optimizations for register-indirect branches [7].
Table 5.2 summarizes trace statistics and performance results for the se-

lected benchmarks. Trace statistics include the trace lengths for the workload
traces used in our experiments. Code page expansion is a�ected by a number
of parameters, which include the instruction encoding, the number of VLIW
primitives generated per CISC instruction, and the code duplication. This
is counterbalanced by improvement of code density which is due to the fact
that only those portions of a page which are actually executed are translated
and stored in the VLIW translation cache.

We also report average dynamic pathlength, i.e., the number of cycles
which execution actually spends in a typical code fragment. Dynamic average
pathlength is a function of the group size and the branch predictability.
As branch predictability erodes across successive branches, the likelihood of
taking a path which is not included in the group grows. Average dynamic
group length correlates highly to overall performance since optimizations,
speculation and instruction scheduling are performed at the group level.

The primitive expansion column lists the average number of VLIW prim-
itives generated for each CISC instruction.

35



tr
a
ce
st
a
ti
st
ic
s

C
P
I
co
m
p
o
n
en
ts

in
f.

�
n
.

B
en
ch
m
a
rk

G
ro
u
p

T
ra
ce

C
o
d
e

av
g
.

p
ri
m
.

in
f

�
n

in
sn

d
a
ta

T
L
B

tr
a
n
s-

ex
c

ca
ch
e

ca
ch
e

F
m
'n

L
en
g
th

E
x
p
.

P
th
le
n

ex
p
.

R
sr
c

R
sr
c

ca
ch
e

ca
ch
e

la
ti
o
n

C
P
I

C
P
I

cc
1

a
g
g

2
6
M

2
.9
3

8
8

1
.6
0

0
.2
6

0
.1
7

0
.1
2

0
.0
7

0
.0
1

0
.0
2

0
.0
1

0
.4
3

0
.6
6

cc
1

m
o
d

2
6
M

1
.5
1

4
3

1
.6
0

0
.4
5

0
.0
7

0
.0
5

0
.0
7

0
.0
1

0
.0
1

0
.0
1

0
.5
2

0
.6
7

co
m
p
re
ss

a
g
g

4
1
M

6
.3
1

1
3
8

1
.4
3

0
.3
1

0
.1
2

0
.1
8

0
.0
9

0
.0
1

0
.1
0

0
.0
1

0
.4
3

0
.8
0

co
m
p
re
ss

m
o
d

4
1
M

1
.4
6

4
0

1
.4
3

0
.5
0

0
.0
3

0
.0
1

0
.0
9

0
.0
0

0
.0
2

0
.0
1

0
.5
4

0
.6
6

g
o

a
g
g

6
0
M

2
5
.7
3

5
9

1
.3
6

0
.3
4

0
.0
8

0
.3
5

0
.0
5

0
.0
0

0
.0
6

0
.0
0

0
.4
2

0
.8
9

g
o

m
o
d

6
0
M

8
.9
8

3
3

1
.3
6

0
.4
9

0
.0
0

0
.1
0

0
.0
5

0
.0
0

0
.0
3

0
.0
0

0
.4
9

0
.6
8

li

a
g
g

4
3
M

3
.7
6

1
9
6

1
.5
9

0
.1
8

0
.1
8

0
.0
2

0
.0
2

0
.0
0

0
.0
5

0
.0
1

0
.3
6

0
.4
5

li

m
o
d

4
3
M

1
.3
1

3
3

1
.5
9

0
.4
7

0
.0
3

0
.0
1

0
.0
2

0
.0
0

0
.0
2

0
.0
1

0
.5
0

0
.5
6

m
8
8
k
si
m

a
g
g

3
3
M

2
.1
7

1
6
1

1
.5
5

0
.1
9

0
.1
4

0
.0
2

0
.0
3

0
.0
1

0
.0
2

0
.0
1

0
.3
3

0
.4
1

m
8
8
k
si
m

m
o
d

3
3
M

1
.4
7

6
2

1
.5
5

0
.3
0

0
.0
9

0
.0
1

0
.0
3

0
.0
1

0
.0
2

0
.0
1

0
.3
8

0
.4
5

p
er
l

a
g
g

6
3
M

2
.5
1

2
5
2

1
.5
6

0
.1
6

0
.1
7

0
.0
1

0
.1
0

0
.0
3

0
.0
3

0
.0
1

0
.3
3

0
.5
1

p
er
l

m
o
d

6
3
M

1
.3
1

5
6

1
.5
6

0
.3
4

0
.0
7

0
.0
1

0
.1
0

0
.0
3

0
.0
2

0
.0
1

0
.4
1

0
.5
8

T
ab
le
5.
2:
P
re
li
m
in
ar
y
C
P
I
re
su
lt
s
ar
e
re
p
or
te
d
as
cy
cl
es
p
er
E
S
A
/3
90
in
st
ru
ct
io
n
s.

36



Chapter 6

Related Work

Previous work in inter-systembinary translation has largely focused on easing
migration between platforms. As a result, performance goals are typically
more moderate, i.e., to achieve acceptable performance levels, not to exceed
native implementations.

Several systems attempt to emulate various portions of the Windows on
Intel x86 system to execute binaries on alternative platforms. The target
platforms are typically RISC platforms which were never designed for ei-
ther binary translation or ease of x86 compatibility. In fact, there is often
a signi�cant mismatch between the Intel x86 and the target platform. Typ-
ical problems consist of 
oating point formats (accurate emulation of x86
code requires an 80 bit 
oating point format), the provision of appropriate
primitives for computing the condition 
ags according to x86 semantics, etc.

Several techniques have been developed for coping with these issues, such
as determining when it is safe to use native condition code computation or the
(dynamically) deferred materialization of condition codes wherein condition
code setting operations and its operands are recorded in registers and only
materialize if they are used at a later point (a form of unspeculation [17]).
In the case of DAISY, we have resolved these issues by de�ning appropriate
primitives where a software solution seemed expensive. This is in keeping
with the goal of achieving better performance through binary translation
than through native implementation.

Another di�erence from previous approaches is how we deal with sys-
tem issues. Previous systems typically operate in user mode and use a host
operating system to provide services such as paging and device access. In
contrast, a system executing under DAISY natively manages such devices,

37



requiring exact access behavior for memory-mapped I/O accesses, reporting
of page faults, etc.

Several approaches exist to providing system services to programs running
under binary translation systems:

service identity The DEC/Compaq FX!32 x86 to Alpha translator [18] re-
lies on the identity between OS services o�ered by Microsoft Windows
NT on di�erent platforms, and dispatches each function to a corre-
sponding function on the native operating system.

ABI interface emulation Sun's WABI [11] intercepts calls to the Win-
dows ABI and implements similar functionality using native libraries.

execution of native OS Systems such as SoftWindows or SimOS [19] boot
the operating system and use virtual devices to access the services of
the host operating system.

Before the inception of the DAISY project, no machines have been de-
signed exclusively as target platforms for binary translation. The DEC/Compaq
Alpha was however designed to ease migration from the VAX architecture,
and o�ered a number of compatibility features. These include similar mem-
ory management capabilities to ease migration of the VAX/VMS operating
system, and support for for VAX 
oating point formats. DEC's original
transition strategy called for static binary translators to support program
migration. Two translators supported these migration strategy: VEST for
VAX/VMS migration to Alpha/OpenVMS and mx for migration from DEC
Ultrix on the MIPS architecture to to OSF1 on DEC Alpha [20]. Later, the
FX!32 dynamic binary translator was added to ease migration fromWindows
on x86 to Windows on Alpha.

Recently, Transmeta has announced an implementation of the Intel x86
processor based on binary translation to a VLIW processor [21]. The pro-
cessor described is based on a VLIW with hardware support for checkpoint-
ing architected processor state to implement precise exceptions using a roll-
back/commit strategy. Rollback of memory operations is supported using a
gated store bu�er [22].

Several hardware implementation schemes are related to the outlined soft-
ware scheme. The Pentium Pro and AMD K6 perform translation to RISC-
like execution primitives. This allows the exposure of parallelismwithin CISC
instructions similar to the approach taken in this work. However, the amount

38



of re-arranging of code which can be performed to achieve high instruction
level parallelism is limited due to hardware complexity.

The present approach is di�erent from the DIF approach of Nair and
Hopkins [23]. Our approach schedules operations on multiple paths to avoid
serializing due to mispredicted branches. Also, in the present approach, there
is virtually no limit to the length of a path within a tree region or the ILP
achieved. In DIF, the length of a (single-path) region is limited by machine
design constraints (e.g., 4-8 VLIWs). Our approach follows an all software
approach as opposed to DIF which uses a hardware translator. This all-
software technique allows aggressive software optimizations hard to do by
hardware alone. Also, the DIF approach involves almost three machines: the
sequential engine, the translator, and the VLIW engine. In our approach
there is only a relatively simple VLIW machine.

Trace processors [24] are similar to DIF except that the machine is out-
of-order as opposed to a VLIW. This has the advantage that di�erent trace
fragments do not need to serialize between transitions between one trace
cache entry and another. However, when the program takes a path other
than what was recorded in the trace cache, a serialization can occur. The
present approach solves this problem by incorporating an arbitrary number
of paths in a software trace cache entry, and by very e�cient zero overhead
multiway branching hardware [25].

39



Chapter 7

Conclusion

In this report we have attempted to address in detail the issues in implement-
ing a binary translation VLIW for a very complex legacy architecture. S/390
introduces many unusual problems that need to be solved while building an
aggressive wide issue processor, that are not common in newer RISC archi-
tectures. These problems include self modifying code, atomicity of complex
CISC instructions in the presence of precise interrupts, reordering memory
operations in the presence of MP memory consistency, access registers, per-
vasive use of indirect branches, execute instructions, single condition code
set by almost all operations, program event recording, and so on.

Our solutions in this report have included the use of incremental data
ow
information to determine the target addresses of register indirect branches
and maintaining precise exceptions at CISC instruction boundaries. We
achieve this by pretesting for exception situations before modifying archi-
tected state. Additional optimization possibilities are the elimination of
spurious condition code computations using a compilation scheme based on
deferred materialization. A VLIW exception handler materializes \dead"
condition codes which are visible to exception handlers only before trans-
ferring control to a translation of the native exception handler. Attacking
this package of unusual points allows us to deal with processor design issues
which are quite important in practice, although not typically considered by
research studies on novel processor architectures.

Next, we have taken steps toward designing common VLIW hardware to
support di�erent architectures such as PowerPC, S/390 and the Java Virtual
machine. Such a convergence architecture has the potential to become an
new kind of open system, where \computer architectures" are in fact soft-

40



ware layers on a single generic, simple wide issue engine, which can lead to
signi�cant cost savings and 
exibility. While previous work did state goals
of hardware commonality and convergence [1][3], this is the �rst work to
address binary-translation based hardware convergence issues of multiple ar-
chitectures in detail.

In addition to primitives supporting the multiple layered architectures,
our design includes a con�gurable memory management unit which can be
used to emulate di�erent memory addressing semantics, such as segmentation
and access register based models. This approach is based on a software-
managed TLB which translates e�ective to physical addresses under the
control of architecture-speci�c translation context bits which are managed
in software. The software TLB handlers are responsible for appropriately
selecting the address translation context and interpreting page tables.

Third, we have performed a detailed trace based preliminary study for
measuring the performance potential of such a convergence architecture, in-
cluding cache, TLB, translation, interpretation and exception CPI overheads.
While further study is required, the initial results are encouraging. The per-
formance potential is based the ability to decompose complex CISC opera-
tions into simpler operations primitives which can be scheduled in parallel.
Strategies used to boost performance are pro�le-directed feedback into the
group formation process to adapt to changing program behavior, collection
of data
ow information during the binary translation process, and ILP com-
pilation techniques to increase available instruction level parallelism.

41



Acknowledgments

The authors wish to thank Dave Luick for many valuable suggestions.

42



Bibliography

[1] K. Ebcio�glu and E. Altman. DAISY: dynamic compilation for 100% ar-
chitectural compatibility. Research Report RC20538, IBM T.J. Watson
Research Center, Yorktown Heights, NY, 1996.

[2] K. Ebcio�glu, E. R. Altman, and E. Hokenek. A JAVA ILP machine
based on fast dynamic compilation. In IEEE MASCOTS International
Workshop on Security and E�ciency Aspects of Java, January 1997.

[3] J. E. Smith, T. Heil, S. Sastry, and T. M. Bezenek. Achieving high per-
formance via co-designed virtual machines. In International Workshop
on Innovative Architecture for Future Generation High-Performance
Processors and Systems, pages 77{84, October 1998.

[4] G. M. Silberman and K. Ebcio�glu. An architectural framework for mi-
gration from CISC to higher performance platforms. In Proc of the 1992
International Conference on Supercomputing, pages 198{215, Washing-
ton, DC, July 1992. ACM Press.

[5] G. M. Silberman and K. Ebcio�glu. An architectural framework for sup-
porting heterogeneous instruction-set architectures. IEEE Computer,
26(6):39{56, June 1993.

[6] K. Ebcio�glu and E. Altman. DAISY: dynamic compilation for 100%
architectural compatibility. In Proc. of the 24th Annual International
Symposium on Computer Architecture, pages 26{37, Denver, CO, June
1997. ACM.

[7] K. Ebcio�glu, E. Altman, S. Sathaye, and M. Gschwind. Execution-based
scheduling for VLIW architectures. In Euro-Par '99 Parallel Process-
ing { 5th International Euro-Par Conference, number 1685 in Lecture

43



Notes in Computer Science, pages 1269{1280. Springer Verlag, Berlin,
Germany, August 1999.

[8] K. Ebcio�glu, E. Altman, S. Sathaye, and M. Gschwind. Optimizations
and oracle parallelism with dynamic translation. In Proc. of the 32nd
ACM/IEEE International Symposium on Microarchitecture, pages 284{
295, Haifa, Israel, November 1999. ACM, IEEE, ACM Press.

[9] C. May. Mimic: A fast S/370 simulator. In Proc. of the ACM SIGPLAN
1987 Symposium on Interpreters and Interpretive Techniques, volume 22
of SIGPLAN Notices, pages 1{13. ACM, June 1987.

[10] S. Kim, S.-M. Moon, K. Ebcio�glu, and E. Altman. VLaTTe: a Java just-
in-time compiler for VLIW with fast scheduling and register allocation.
To appear.

[11] P. Hohensee, M. Myszewski, and D. Reese. WABI CPU emulation. In
Hot Chips VIII, Palo Alto, CA, 1996.

[12] M. Gschwind. Method for the deferred materialization of condition code
information. Research Disclosures, 43(431):590, March 2000.

[13] K. Ebcio�glu. Some design ideas for a VLIW architecture for sequential-
natured software. In M. Cosnard et al., editor, Parallel Processing, pages
3{21. North-Holland, 1988. (Proc. of IFIP WG 10.3 Working Conference
on Parallel Processing).

[14] S. Adve and K. Gharachorloo. Shared memory consistency models: a
tutorial. IEEE Computer, 29(12):66{76, December 1996.

[15] J. Moreno and M. Moudgill. Method and apparatus for reordering of
memory operations in a processor. US Patent No. 5,758,051, May 1998.

[16] E. Boyd and E. Davidson. Hierarchical performance modeling with
MACS: a case study of the Convex C-240. In Proc. of the 20th Annual
International Symposium on Computer Architecture, pages 203{210, San
Diego, CA, May 1993. ACM.

[17] K. Ebcio�glu, R. Groves, K. Kim, and G. Silberman. VLIW compila-
tion techniques in a superscalar environment. In Proc. of the ACM

44



SIGPLAN 1994 Conference on Programming Language Design and Im-
plementation, volume 29 of SIGPLAN Notices, pages 36{48, Orlando,
FL, June 1994. ACM.

[18] A. Cherno�, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye,
S. B. Yadavalli, and J. Yates. FX!32{a pro�le-directed binary translator.
IEEE Micro, 18(2):56{64, March 1998.

[19] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Complete com-
puter simulation: The SimOS approach. IEEE Parallel and Distributed
Technology, 3(4):34{43, Winter 1995.

[20] R. Sites, A. Cherno�, M. Kirk, M. Marks, and S. Robinson. Binary
translation. Communications of the ACM, 36(2):69{81, February 1993.

[21] A. Klaiber. The technology behind Crusoe processors. Technical report,
Transmeta Corp., Santa Clara, CA, January 2000.

[22] E. Kelly, R. Cmelik, and M. Wing. Memory controller for a micropro-
cessor for detecting a failure of speculation on the physical nature of a
component being addressed. US Patent 5832205, November 1998.

[23] R. Nair and M. Hopkins. Exploiting instruction level parallelism in
processors by caching scheduled groups. In Proc of the 24th Annual In-
ternational Symposium on Computer Architecture, pages 13{25, Denver,
CO, June 1997. ACM.

[24] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace processors.
In Proc. of the 30th Annual International Symposium on Microarchitec-
ture, pages 138{148, Research Triangle Park, NC, December 1997. IEEE
Computer Society.

[25] K. Ebcio�glu, J. Fritts, S. Kosonocky, M. Gschwind, E. Altman,
K. Kailas, and T. Bright. An eight-issue tree-VLIW processor for dy-
namic binary translation. In Proc. of the 1998 International Conference
on Computer Design (ICCD '98) { VLSI in Computers and Processors,
pages 488{495, Austin, TX, October 1998. IEEE Computer Society.

45


