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Abstract� The Watson Sparse Matrix Package� WSMP� is a high�
performance� robust� and easy to use software package for solving large
sparse systems of linear equations� It can be used as a serial package� or
in a shared�memory multiprocessor environment� or as a scalable parallel
solver in a message�passing environment� where each node can either be
a uniprocessor or a shared�memory multiprocessor� A unique aspect of
WSMP is that it exploits both SMP and MPP parallelism using Pthreads
and MPI� respectively� while mostly shielding the user from the details
of the architecture� Sparse symmetric factorization in WSMP has been
clocked at up to ��� Giga�ops on RS���� workstations with two ��� MHz
Power	 CPUs and in excess of 
� Giga�ops on ����node ����processor�
SP with two�way SMP ��� MHz Power	 nodes� This paper gives an
overview of the algorithms� implementation aspects� performance results�
and the user interface of WSMP for solving symmetric sparse systems of
linear equations�

Keywords� Parallel software� Scienti
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matrix factorization� High�performance computing�

� Introduction

Solving large sparse systems of linear equations is at the core of many prob�
lems in science� engineering� and optimization� A direct method for solving a
sparse linear system of the form Ax � b involves explicit factorization of the
sparse coecient matrix A into the product of lower and upper triangular ma�
trices L and U � This is a highly time and memory consuming step� nevertheless�
direct methods are important because of their generality and robustness and
are used extensively in many application areas� Direct methods also provide
an e�ective means for solving multiple systems with the same coecient ma�
trix and di�erent right�hand side vectors because the factorizations needs to be
performed only once� A wide class of sparse linear systems arising in practical



applications have symmetric coecient matrices� whose factorization is numer�
ically stable with any symmetric permutation� This paper gives an overview of
the algorithms� implementation aspects� performance results� and the user inter�
face of WSMP ��	� ��� for solving symmetric sparse systems of linear equations�
WSMP can be used as a serial package� or in a shared�memory multiprocessor
environment with threads� or as a scalable parallel solver in a message�passing
environment� where each node can either be a uniprocessor or a shared�memory
multiprocessor� It uses a modi
ed multifrontal algorithm and scalable parallel
algorithms for sparse symmetric factorization and triangular solves� The order�
ing�permutation of matrices is also parallelized� Sparse symmetric factorization
in WSMP has been clocked at up to ��� Giga�ops on RS���� workstations with
two ��� MHz ��� �Power�� CPUs and in excess of �� Giga�ops on a ����node
�����processor� SP with two�way SMP ��� MHz ��� nodes� This paper gives an
overview of the algorithms� implementation aspects� performance results� and
the user interface of WSMP�

��� Related Work

Parallelization of sparse Cholesky factorization has been an area of active re�
search over the past decade ��� �� 	� �� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����
A few parallel software packages for solving large sparse symmetric systems
have emerged recently as a result of this research� MUMPS ���� SPOOLES ����
MP SOLVE ���� PSPASES ���� and WSMP ����� Of these� WSMP and PSPASES
employ the theoretically most scalable algorithms for Cholesky factorization �����
These are also the only two packages that perform parallel ordering� The main
di�erences between the two are that WSMP supports both LLT and LDLT

factorizations and is available in object�code for IBM RS���� and SP hardware
platforms only� In addition to Cholesky factorization� MUMPS� MP SOLVE�
and SPOOLES support LU factorization� which the current versions of WSMP
and PSPASES don�t� From results published until the time of writing this paper�
WSMP holds the record for achieving the highest performance and speedup in
sparse Cholesky factorization�
As discussed in ����� both the subtree�to�subcube mapping of the elimination

tree among processors and a two�dimensional distribution of frontal and update
matrices among subgroups of processors are crucial to obtaining the highest
scalability� MP SOLVE employs none of these techniques� SPOOLES employs
subtree�to�subcube mapping but uses a one�dimensional distribution� MUMPS
uses a two�dimensional distribution of data at only the topmost supernode of
the elimination tree�

��� Overview

The organization of this paper is as follows� Section � describes the distributed�
memory parallel algorithms used by WSMP for the four major phases of com�
putation of the direct solution of a sparse symmetric system� Section � discusses
the shared�memory variations of these parallel algorithms� Section 	 gives an



overview of the organization and the user�interface of the software� Performance
results are presented in Section �� Section � contains concluding remarks�
In this paper� the term node refers to a uniprocessor or a multiprocessor com�

puting unit with shared memory� A node may consist of one or more processors
or CPUs� Nodes communicate with other nodes only via message�passing over
the SP high�speed switch� InWSMP� parallelism within a multiprocessor node is
exploited by threads� In order to keep the de
nition of a node unique� we would
refer to a meeting point of edges of a graph or a tree as a vertex� Accordingly�
the term supervertex is used to describe a set consecutive columns of the sparse
matrix with identical sparsity pattern� which is more commonly referred to as a
supernode in literature�

� Distributed�Memory Algorithms

The process of obtaining a direct solution of a sparse symmetric system of linear
equations of the form Ax � b consists of the following four phases� Ordering�
which determines a symmetric permutation of the coecient matrix A such
that the factorization incurs low 
ll�in� Symbolic Factorization� which determines
the structure of the triangular matrices that would result from factoring the
coecient matrix� Numerical Factorization� which is the actual factorization
step that performs arithmetic operations on the coecient matrix A to produce
a lower triangular matrix L such that A � LLT or A � LDLT � and Solution of

Triangular Systems� which produces the solution vector x by performing forward
and backward eliminations on the triangular matrices resulting from numerical
factorization� In this section� we give an overview of the algorithms used in these
four phases�
Recall that WSMP parallelizes the tasks among processes that communicate

using MPI and each process itself uses multiple threads to utilize multiple CPU�s
on an SMP node� The algorithms described in this section are used in the dis�
tributed memory mode and an MPI process is assumed to be the smallest unit
of computation� The SMP algorithms are described in Section ��

��� Ordering

Finding an optimal ordering is an NP�hard problem and heuristics must be
used to obtain an acceptable non�optimal solution� Two main classes of success�
ful heuristics have evolved over the years� ��� Local greedy heuristics� and ���
Global graph�partitioning based heuristics� In ����� we presented an optimally
scalable parallel algorithm for factoring a large class of sparse symmetric matri�
ces� This algorithm works eciently only with graph�partitioning based ordering�
Although� traditionally� local ordering heuristics have been preferred� recent re�
search ��	� �� ��� ��� has shown the graph�partitioning based ordering heuristics
can match and often exceed the 
ll�reduction of local heuristics�
The serial ordering heuristics that WSMP uses have been described in detail

in ����� Basically� the sparse matrix is regarded as the adjacency matrix of an



undirected graph and a divide�and�conquer strategy �also known as nested dis�
section� is applied recursively to label the vertices of the graph by partitioning
it into smaller subgraphs� At each stage� the algorithm attempts to 
nd a small
vertex�separator that partitions the graph into two disconnected subgraphs sat�
isfying some balance criterion� The vertices of the separator are numbered after
the vertices in the subgraphs are numbered by following the same strategy re�
cursively�

There are two main approaches to parallelizing this algorithm� In the 
rst
approach ���� ���� the process of 
nding the separators is performed in parallel�
The advantages of this approach are that a reasonably good speedup on ordering
can be obtained and the graphs �both original and the subsequent subgraphs� are
stored on multiple nodes� thereby avoiding excessive memory use on any single
node in a distributed�memory environment� A disadvantage of this approach� as
the results in ���� show� is that the re
nement of partitions becomes less e�ective
as the number of nodes in the parallel computer increases� As a result� the quality
of ordering for a given sparse matrix gradually degrades as the number of nodes
increases�

The second approach is more conservative and exploits only the natural par�
allelism of nested�dissection ordering� A single node 
nds the 
rst separator�
then two di�erent nodes independently work on the two subgraphs� and so on�
An advantage of this approach is that the quality of ordering does not deteri�
orate with as the number of nodes in the parallel computer increases� In fact�
in WSMP� the quality of ordering actually improves as the number of nodes in�
creases� The reason is that we employ the nodes that would otherwise be idle to
compute redundant instances of separators of the same subgraphs at practically
no extra cost� Among the multiple separators� we then chose the best one� For
example� all the nodes of an SP would compute a separator of the original graph
and the best one would be chosen� In the next step� half of the nodes compute
a separator of each of the two subgraphs resulting from the 
rst partition� The
disadvantage of this approach is that� at least theoretically� it is not scalable
with respect to memory use and speedup�

After performing some analysis and studying practical problems� we decided
to implement the second approach in parallel WSMP� In a majority of applica�
tions� ordering is performed only once for several factorizations of matrices with
identical structure� but di�erent numerical values� Therefore� the speed of order�
ing is often unimportant relative to the quality of ordering� which determines the
speed of factorization� The inability of this approach to scale in terms of speedup
is not a serious handicap given the fact that it can yield good quality orderings
even for a large number of nodes� The memory requirement of ordering is also
not a major practical concern because usually the amount of memory required
for ordering does not exceed the amount of memory required for subsequent
factorization� For instance� we were able to order a linear system of a million
equations derived from a ��� � ��� � ��� 
nite�di�erence discretization on a
single RS�������� node with � Gigabytes of RAM� but it took a ���node SP
with � Gigabytes of RAM on each node to actually solve the system� In addition�



in many 
nite�element applications� each vertex of the discretized domain has
multiple degrees of freedom and the graph corresponding to the original system
can be compressed into a much smaller graph with identical properties� The
ordering algorithm works on the smaller compressed graph and uses much less
time and memory than ordering the original graph�

��� Symbolic Factorization

The phase of processing between ordering and numerical factorization inWSMP

does much more than the traditional symbolic factorization task of computing
the nonzero pattern of the triangular factor matrix and allocating data�structures
for it� Since this phase takes a very small amount of time and� like ordering� is
usually performed only once for several numerical factorization steps� it is per�
formed serially in WSMP� In this phase� we 
rst compute the elimination tree�
then perform a quick symbolic step to predict the amount of potential numerical
computation associated with each part of the elimination tree� and then adjust
the elimination tree �as described in ����� in order to balance the distribution of
numerical factorization work among nodes� The elimination tree is also manip�
ulated to reduce amount of stack memory required for factorization ����� If the
parallel machine has heterogeneous nodes in terms of processing power or the
amount of memory� the symbolic phase takes that into account while assigning
tasks to nodes� Finally� the vertices of the modi
ed elimination tree are renum�
bered in a post�ordered sequence� the actual symbolic factorization is performed�
respective information on the structure of the portion of the factor matrix to
reside on each node is conveyed to all nodes� which� upon receipt of this infor�
mation� allocate the data�structures for storing their portion of the factor�

��� Numerical Factorization

WSMP can perform either Cholesky �LLT � or LDLT factorization on symmetric
sparse matrices� We use a highly scalable parallel algorithm for this step� the
detailed description and analysis of which can be found in �����
The parallel symmetric factorization in WSMP is based on the multifrontal

algorithm ����� Given a sparse matrix and the associated elimination tree� the
multifrontal algorithm can be recursively formulated as follows� Consider an
N�N matrix A� The algorithm performs a postorder traversal of the elimination
tree associated with A� There is a frontal matrix F k and an update matrix Uk

associated with any vertex k� The row and column indices of F k correspond to
the indices of row and column k of L� the lower triangular Cholesky factor� in
increasing order� In the beginning� F k is initialized to an �s���� �s��� matrix�
where s�� is the number of non�zeros in the lower triangular part of column k
of A� The 
rst row and column of this initial F k is simply the upper triangular
part of row k and the lower triangular part of column k of A� The remainder of
F k is initialized to all zeros� After the algorithm has traversed all the subtrees
rooted at a vertex k� it ends up with a �t���� �t��� frontal matrix F k� where
t is the number of non�zeros in the strictly lower triangular part of column k in
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Fig� �� �a�� An example symmetric sparse matrix� The non�zeros of A are shown with
symbol ��� in the upper triangular part and non�zeros of L are shown in the lower
triangular part with �ll�ins denoted by the symbol ���� �b�� The process of parallel mul�
tifrontal factorization using � nodes� At each supervertex� the factored frontal matrix�
consisting of columns of L �thick columns� and update matrix �remaining columns�� is
shown�



L� The row and column indices of the 
nal assembled F k correspond to t � �
�possibly� noncontiguous indices of row and column k of L in increasing order� If
k is a leaf in the elimination tree of A� then the 
nal F k is the same as the initial
F k� Otherwise� the 
nal F k for eliminating vertex k is obtained by merging the
initial F k with the update matrices obtained from all the subtrees rooted at k
via an extend�add operation� The extend�add is an associative and commutative
operator on two update matrices such the index set of the result is the union of
the index sets of the original update matrices� After F k has been assembled� a
single step of the standard dense Cholesky factorization is performed with vertex
k as the pivot� At the end of the elimination step� the column with index k is
removed from F k and forms the column k of L� The remaining t � t matrix is
called the update matrix Uk and is passed on to the parent of k in the elimination
tree�
We assume that the supernodal tree is binary in the top log p levels� The

portions of this binary supernodal tree are assigned to the nodes using a subtree�
to�subcube strategy illustrated in Figure ��b�� where eight nodes are used to
factor the example matrix of Figure ��a�� The subgroup of nodes working on
various subtrees are shown in the form of a logical mesh labeled with P� The
frontal matrix of each supervertex is distributed among this logical mesh using
a bit�mask based block�cyclic scheme ����� Figure ��b� shows such a distribution
for unit block size� This distribution ensures that the extend�add operations
required by the multifrontal algorithm can be performed in parallel with each
node exchanging roughly half of its data only with its partner from the other
subcube� Figure ��b� shows the parallel extend�add process by showing the pairs
of nodes that communicate with each other� Each node sends out the shaded
portions of the update matrix to its partner� The parallel factor operation at
each supervertex is a pipelined implementation of the dense block Cholesky
factorization algorithm�

��� Triangular Solves

The solution of triangular systems involves a forward elimination y � L��b

followed by a backward substitution x � �LT ���y to determine the solution
x � A��b� Our parallel algorithms for this phase are guided by the supernodal
elimination tree� They use the same subtree�to�subcube mapping and the same
two�dimensional distribution of the factor matrix L as used in the numerical
factorization�
Figure ��a� illustrates the parallel formulation of the forward elimination

process� The right hand side vector b� is distributed to the nodes that own the
corresponding diagonal blocks of the L matrix as shown in the shaded blocks in
Figure ��a�� The computation proceeds in a bottom�up fashion� Initially� for each
leaf vertex k� the solution yk is computed and is used to form the update vector
flikykg �denoted by �U� in Figure ��a��� The elements of this update vector need
to be subtracted from the corresponding elements of b� in particular likyk will
need to be subtracted from bi� However� our algorithm uses the structure of the
supernodal tree to accumulate these updates upwards in the tree and subtract
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flow

update flow

and the computed solution for index k
processor p is assigned to the right-hand side

Update vector accumulated upwards in the tree

Fig� �� Parallel triangular solve� �a�� Entire process of parallel forward elimination
for the example matrix� �b�� Processing within a hypothetical supernodal matrix for
forward elimination�

them only when the appropriate vertex is being processed� For example consider
the computation involved while processing the supervertex f�����g� First the
algorithm merges the update vectors from the children supervertex to obtain
the combined update vector for indices f��������g� Note that the updates to the
same b entries are added up� Then it performs forward elimination to compute
y�� y� and y�� This computation is performed using a two dimensional pipelined
dense forward elimination algorithm� At the end of the computation� the update
vector on node � contains the updates for for b�

��
due to y�� y� and y� as well

as the updates received from supervertex f�g� In general� at the end of the
computation at each supervertex� the accumulated update vector resides on the
column of nodes that store the last column of the L matrix of that supervertex�
This update vector needs to be sent to the nodes that store the 
rst column of
the L matrix of the parent supervertex� Because of the bit�mask based block�
cyclic distribution� this can be done by using at most two communication steps
�����

The details of the two�dimensional pipelined dense forward elimination algo�
rithm are illustrated in Figure ��b� for a hypothetical supervertex� The solutions
are computed by the nodes owning diagonal elements of L matrix and �ow down
along a column� The accumulated updates �ow along the row starting from the

rst column and ending at the last column of the supervertex� The processing is
pipelined in the shaded regions and in other regions the updates are accumulated
using a reduction operation along the direction of the �ow of update vector�



The algorithm for parallel backward substitution is similar except for two
di�erences� First� the computation proceeds from the top supernode of the tree
down to the leaf� Second� the computed solution that gets communicated across
the levels of the supernodal tree instead of accumulated updates and this is
achieved with at most one communication per processor� The reader is referred
to ���� for further details�

� Shared�Memory Algorithms

The key components of the WSMP library are multithreaded and automati�
cally exploit SMP parallelism while running on a workstation or SP nodes with
multiple CPU�s� This section describes the SMP algorithms used in WSMP�

��� The Symbolic Steps

Among the two symbolic steps� namely� ordering and symbolic factorization� only
the former is parallelized� The SMP parallelization scheme for ordering closely
follows that for message�passing parallelization� After a graph or a subgraph is
assigned to a node for independent processing� a single thread 
nds the 
rst sep�
arator� then two di�erent threads independently work on the two subgraphs� and
so on until as many threads as the number of CPU�s are working on independent
subgraphs�

��� The Numerical Steps

The multithreaded algorithms for numerical factorization and triangular solves
are similar to their message�passing counterparts described in Section � in overall
strategy� However� there are signi
cant di�erences in implementation� Just like
the message�passing algorithms� tasks at each subroot of the elimination tree
are assigned to independent groups of processors until each processor ends up
with its own subtree� The most important di�erence is that a mapping of rows
and columns to processors based on the binary representation of the indices is
not used in the SMP implementation because all processors can access all rows
and columns with the same overhead� This lifts the restriction that the subtree
assigned to a group of P processors be binary in its top log� P levels� Therefore�
in the portion of the elimination tree that is executed upon in the SMP mode�
the number of threads assigned to work on a subtree at a branching point is
roughly proportional to the amount of work associated with that subtree� This
ensures a high degree of load�balance� Moreover� since the relative ratio of work
in a subtree with respect to its siblings in the factorization and solve phases
is di�erent� the mapping of subtrees to subgroups of processors in these two
phases can be di�erent�a �exibility that is not available in the message�passing
portion of the code where the same subtree�to�subcube mapping is used in both
factorization and triangular solves�
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Fig� �� A mapping of a hypothetical elimination tree on a ��node SP with ��way SMP
nodes�

Figure � shows one hypothetical mapping of an elimination tree among the
�� CPU�s of a 	�node SP with 	�way SMP nodes� The symbolic computation
preceding the numerical phase ensures that the tree is binary at the top log

�
P

levels� where P is the number of distributed�memory nodes� At each of these
levels multithreaded BLAS are used to utilize all the CPU�s on each node� Below
the top log

�
P levels� subtrees are assigned to groups of threads until they are

mapped on to single threads� Multithreaded BLAS is used in any portion of the
tree in this region that is assigned to multiple threads�

� The Software

The WSMP software is organized into two libraries �see Figure 	�� The user�s
program needs to be linked with theWSMP library on a serial or an SMP work�
station� This is a multi�threaded library and uses Pthreads to exploit parallelism
on a multiprocessor workstation� On an SP� the user�s program needs to be linked
with both WSMP and PWSMP libraries� The latter contains all the message�
passing code and exploits parallelism across the nodes via the MPI library� If
the SP has multiprocessor nodes� the WSMP library exploits SMP parallelism
on each node�
In this section� we give a brief description of the main routines of the package�

The details of the user interface can be found in ����� WSMP accepts as input a
triangular portion of the sparse coecient matrix�WSMP supports two popular
formats for the coecient matrix� Compressed Sparse Row�Column �CSR�CSC�
and Modi
ed Sparse Rows�Column �MSR�MSC�� which are described in detail
in ��� ���� Figure ��a� illustrates the serial CSC input format�
All major functions of the package for solving symmetric sparse systems can

be performed by calling a single subroutine WSSMP� Its calling sequence is as



PTHREADS

CPU CPU

CPU CPU

PWSSMP

(message-passing parallel)

(multithreaded parallel)
WSSMP

I

switch

hi perf
SP Node SP Node

SP Node

SP Node

MPI MPI

RS6000 SP

SP node/
RS6000 Workstation

M

M
P

P
I

Fig� �� The two�tier organization of the WSMP software for solving symmetric sparse
systems� The message�passing layer works on top of the multithreaded layer�

follows�

SUBROUTINE WSSMP �N� IA� JA� AVALS� DIAG� PERM� INVP� B�

� LDB� NRHS� AUX� NAUX� MRP� IPARM� DPARM�

INTEGER�� N� IA�N���� JA���� PERM�N�� INVP�N�� LDB� NRHS�

� NAUX� MRP�N�� IPARM����

REAL�	 AVALS���� DIAG�N�� B�LDB�NRHS�� AUX�NAUX��

� DPARM����

N is the number of equations in the system� In CSR�CSC format� IA� JA�
and AVALS contain the coecient matrix� in MSR�MSC format� the coe�
cient matrix is contained in IA� JA� AVALS� and DIAG� IA contains pointers
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Fig� �� Illustration of the serial�multithreaded and distributed�memory parallel
CSC�LT input formats for the WSSMP routine�



to row�column indices in JA� which contains the actual indices� and AVALS

contains the values corresponding to the indices in JA� In MSR�MSC format�
the diagonal entries are stored separately in DIAG� PERM and INVP contain
the permutation and inverse permutation vectors� respectively� to reorder the
matrix for reducing 
ll�in� This permutation can either be supplied by the user�
or generated by WSMP� B is the LDB � NRHS right�hand side matrix �vector�
if NRHS � ��� which is overwritten by the solution matrix�vector by WSMP�
AUX is optional working storage that the user may supply toWSMP and NAUX
is the size of AUX� MRP is an integer vector in which the user can request out�
put information about the pivots� IPARM and DPARM are integer and double
precision arrays that contain the various input�output numerical parameters
that direct program �ow �input parameters� and convey useful information to
the user �output parameters�� The most important of these parameters control
which task�s�WSMP will be performing in a given call�WSMP can perform any
set of consecutive tasks from the following list�

Task � �� Ordering
Task � �� Symbolic Factorization
Task � �� Cholesky or LDLT Factorization
Task � 	� Forward and Backward Elimination
Task � �� Iterative Re
nement

The user speci
es a starting task and an ending task and WSMP performs
these tasks and all the tasks between them� The user can obtain the entire
solution in one call or perform multiple factorizations for di�erent matrices with
identical structure by performing ordering and symbolic factorization only once�
or solve for multiple RHS vectors with a given factorization� or perform multiple
steps of iterative re
nement for a given solution�
The input format and the calling sequence of the distribute memory parallel

subroutine PWSMP are almost identical to those of WSMP� The distributed
input format is illustrated in Figure ��b� and the calling sequence is as follows�

SUBROUTINE PWSMP �N
i� IA
i� JA
i� AVALS
i� DIAG
i� PERM�

� INVP� B
i� LDB
i� NRHS� AUX
i� NAUX
i�

� MRP
i� IPARM� DPARM�

INTEGER�� N
i� IA
i�N
i���� JA
i���� PERM���� INVP����

� LDB
i� NRHS� NAUX
i� MRP
i�N
i�� IPARM����

REAL�	 AVALS
i���� DIAG
i�N
i�� B
i�LDB
i�NRHS��

� AUX
i�NAUX
i�� DPARM����

In the distributed version� an argument can be either local or global� A global
array or variable must have the same size and contents on all nodes� The size
and contents of a local variable or array vary among the nodes� In the context
of PWSMP� global does not mean globally shared� but refers to data that is
replicated on all nodes� In the above calling sequence� all arguments with a
subscript are local�



Ni is the number of columns�rows of the matrix A and the number of rows
of the right�hand side B residing on node Pi� The total size N of system of
equations is �p��

i�� Ni� where p is the number of nodes being used� The columns of
the coecient matrix can be distributed among the nodes in any fashion �see ����
for details�� N� � N and Ni � � for i � � is also an acceptable distribution�
Thus� it is rather easy to migrate from using WSMP on a single node to using
it in the distributed�memory environment of an SP�

� Performance Results

The performance of WSMP on a given number of processors for a problem de�
pends on several factors� such as 
ll�in� load�imbalance� size of supernodes� etc�
Many of these factors depend on ordering and the structure of the sparse matrix
being factored� Therefore� the performance on the same number of processors
can vary widely for di�erent problems of the same size �in terms of the total
amount of computation required�� In Tables � and �� we present some perfor�
mance results of WSMP on two practical classes of symmetric sparse matrices
on up to ��� nodes of an SP �each node of the SP is a ��way SMP with ��� MHz
Power� processors with one�two Gigabytes of RAM�� We feel that a reader may

nd these results more interpretive than those for a large number of unrelated
problems� The 
rst column of the tables gives some relevant information about
the matrices� including the number of nonzeros� nnz L� in the triangular factor
�in millions�� the number of �oating point operations� F opc� required for factor�
izations �in billions�� and the number of equations� N� in the system� The number
of factor nonseros and the factorization op�count values are only averages� the
actual values vary depending on the number of nodes used because the ordering
is di�erent on di�erent number of nodes�
Table � shows the performance of factorization and triangular solves for

sparse matrices arising from three�dimensional 
nite�di�erence grids discretized
using a ��point stencil� The grid dimension n is increased in such steps as to
increase the factorization work by approximately a factor of two� For this� we
have used the fact that with an optimal ordering �
nding which is an NP�hard
problem�� the number of �oating point operations required to factor a sparse
matrix derived from an n� n� n grid is ��n���
Table � shows the performance of factorization and triangular solves for some

sparse matrices arising from 
nite�element meshes in a sheet metal forming ap�
plication� some matrices from CFD applications� and one from a linear pro�
gramming model� In the 
rst 
ve problems� the same surface is discretized with
di�erent degrees of 
neness �and thus� with di�erent number of elements� to
control the problem size�

� Concluding Remarks

In this paper� we have described a scalable parallel solver� WSMP� for sparse
symmetric systems of linear equations� which works on serial� message�passing



Problem Number of ��way SMP Nodes
Description � � � � �� 	� �� ���

Cube	�
 ���� 		�
 �
�� ���� ��� ���� ���� ���� F time
F opc � �� B ��� ��� 	
�� 
�
 
��� ����� ����� 	���� F M�ops
nnz L � �� M ���� ���	 ��� ���� ���� ��
� ��
� ��
� S time
N � ������
 ��
 	
� �
� ���� �� ���� ���
 ���� S M�ops

Cube	�� ���� ���� 	��� ���� �	�� ��
	 ���	 	�� F time
F opc � ��
 B ���� ���� ��	� ���� ��	�� ����� 	���	 ���� F M�ops
nnz L � �� M ���� ��
 ���	 ���� ���� ��	� ���
 ���� S time
N � ����	� ��� ��� ��	 ��� ��
� ��� �	� �� S M�ops

Cube	�� ��
� �	�� ���� ��� ���� ���� ���� ���� F time
F opc � � B ���	 �	�� ���� �
�� ���	� �
		� 	��� ����� F M�ops
nnz L � 

 M ���� ���� ��� ��� ���� ���� ��� ���
 S time
N � �	��	�� ��� �	� ��	 ���� ���
 �	�� ���� ��
 S M�ops

Cube	� �
�� ��� ���� ��� �
�	 ��� ��� F time
F opc � ��
 B �	�	 ���� ��� ����� ���
� 	
�� ���� F M�ops
nnz L � �
� M ���� �
�� �� �	�� ��� ��� ��� S time
N � 	�	���� �� �	� ��� ���
 	��
 	��� 	��� S M�ops

Cube	�
 	�	� ���� 
	�� ��	 	��� ���� F time
F opc � �	�� B �� ���� ���
� ��	
� ����	 ���� F M�ops
nnz L � 	�
 M ��
 ��
� ��� �	�� ���� ���� S time
N � �
	��	
 �� ��� ���� 	� ���
 ���
 S M�ops

Cube	�
 	�� ��� 
��� 	��� ���� F time
F opc � ��� B ��
� ���� �	��� ���� ����� F M�ops
nnz L � ��� M ��	� �
 ��� �	�� �	�� S time
N � ����
�
 ���� ���� 	��� ��� ��� S M�ops

Cube	� ���� ��	� ���� ���� F time
F opc � �			 B ��	� ���	� �		
� ����	 F M�ops
nnz L � ��� M ���	 ���� ��
� ��� S time
N � ��������� �
� ���� 	
� ���� S M�ops

Cube	��� �	� �	� ���� F time
F opc � ���� B ����� ���� ���	� F M�ops
nnz L � ���� M ���� ���� ���� S time
N � ������
�� 		
� ���	 �
�	 S M�ops

Cube	�� 		� ���� F time
F opc � ���	 B �		� 
�
�� F M�ops
nnz L � ��	� M ���� ���� S time
N � ��������� �	�� ����� S M�ops

Table �� WSMP performance on for sparse matrices arising from �nite�di�erence dis�
cretization of 	�D domains� A matrix Cube�n is obtained from an n�n�n 	�D mesh�
F time is factorization time in seconds� F M�ops is factorization Mega�ops� S time is
solution time� S M�ops is solution Mega�ops� F opc is number of factorization �oating
point operations in billions� and nnz L is the number of nonseros in the triangular
factor in millions�



Problem Number of ��way SMP Nodes
Description � � � � �� 	� �� ���
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�� 	��
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 F M�ops
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�
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 S time
N � ��	��
 ��� ��� ��� ���� �
	 ���� ��� ���� S M�ops
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�� ��� ���� ���� ���� ���� ���� ��� F time
F opc � ��� B ���� �
�� 	��	 ��� ����� ��	�
 ��	�� 	
�	 F M�ops
nnz L � �� M ���� ���
 ��� �	� ��� ���� ���	 ���� S time
N � 	�	��

 ��� �	� ��� �	�� ��
 ���� 		�� 		� S M�ops

Sheet	� ���� �	�� ���� �
� �	�� ��� ��� 	��	 F time
F opc � �� B ��	� �
�� 	��� 	�� ����
 ����� ����� ���	
 F M�ops
nnz L � �� M 	�� ���� ��	
 ���� ���
 ��

 ���� ���� S time
N � ����
 ��� �	� ��� �	�� ���� 	�� 	��	 	��� S M�ops

Gismondi ���� ��	 		� ���� 
��� ���� 	��� ��� F time
F opc � ��� B ���	 �
� 			� ��� ���
� ���� ���	� ����� F M�ops
nnz L � 	� M ��
� �	�� ��
� ��	� ���� ���� ���� ��
� S time
N � ������ �
 	
� ��
 
		 ���� ��� �	� �	�� S M�ops

Torso �	�� �	�� ���� ���	 ���� ���� �		 ���	 F time
F opc � �		 B ��	� ��
	 		�	 �� ���� ���� ����� 	�	
 F M�ops
nnz L � �� M ���� ���� ��� �	� ���� ��� ���� ��	� S time
N � ����
 ��� �	� ��� ���� ���� ���� ��	� ��	 S M�ops

Aorta ��� �� 	�� ���� �	�� ���� ��	 	��� F time
F opc � �� B ��� �
 ��� ��� ���� ����� ���� ����� F M�ops
nnz L � �� M ���� ��
� ���� �
�
 �
 ���� ���� ���	 S time
N � ����
 �	
 ��� ��� 	� �� ��� ��
� ���� S M�ops

Mdual� ���� ��	� ���
 ��� ��� ���	 
��
 ��� F time
F opc � ��� B 
�� ���	 		�� ��� 
��� ����� ����� 	
��� F M�ops
nnz L � ��
 M ���� ��	� ��	� ���� ��� �	�	 ���� ��	
 S time
N � ����
 �� 	�� � 
� ���� ���� ��	� �
�� S M�ops

Table �� WSMP performance on some sparse matrices generated by a ��D ��
nite�element model �Sheet�n matrices�� CFD applications �Torso� Aorta� and Mdual���
and linear programming �Gismondi�� F time is factorization time in seconds� F M�ops
is factorization Mega�ops� S time is solution time� S M�ops is solution Mega�ops�
F opc is number of factorization �oating point operations in billions� and nnz L is the
number of nonseros in the triangular factor in millions�



parallel� and shared�memory parallel machines� or any combination of these�
Our experimental performance results show that the solver scales well on up to
hundreds of processors� On large enough problems� the factorization performance
exceeds �� Giga�ops on ��� nodes ���� processors�� thereby obtaining about 	� 
of the peak theoretical performance of each processor and about �� eciency
with respect to the serial performance of the solver on similar problems� Even
on a relatively small problem like Sheet������� that can 
t in the memory of
a single node and requires only ��� seconds for factorization on ��� nodes� the
����processor ensemble operates at more than one�
fth of the peak theoretical
performance of each processor and at more than one�third the eciency of a
single node �a speedup of 		 on ��� nodes�� As a result� WSMP is being used
in several academic� research� and commercial applications� in many of which�
it is solving problems that were too large to be solved with a direct solver until
recently�
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