
RC 22044 (98938) 24 April 2001 Computer Science

IBM Research Report

Prototyping Data Warehouse Systems

 Thanh N. Huynh
Institute of Software Technology
Vienna University of Technology

Josef Schiefer
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Prototyping Data Warehouse Systems

Abstract. The process of developing and evolving complex data warehouse
systems is intrinsically exploratory in nature. Data warehouse projects are
notoriously difficult to manage and many of them end in failure. One
explanation for the high failure rate is the lack of understanding of the
requirements and missing proof-of-concepts for a decision support for the
knowledge workers of an organization. In this paper, we present a prototyping
approach for data warehouse environments. We show how prototyping can
support an incremental and iterative requirement development. We introduce
different types of prototypes and illustrate their applicability for data warehouse
systems. Finally, we show how to develop data warehouse prototypes with the
BEDAWA tool, which supports a rapid development of prototypes by
automatically generating the mass sample data for a data warehouse system.

1. Introduction

Prototypes can be used for data warehouse systems to explain and answer open
questions of stakeholders. The idea behind prototyping is to cut down on the
complexity of implementation by eliminating parts of the full system. It is a technique
to reduce the risks of failed data warehouse implementation or stakeholder
dissatisfaction. A prototype can be used as early feedback from the users ensuring that
the data warehouse team properly understands the requirements and knows how best
to implement them.

Even with extensive requirement elicitation, analysis, and documentation practices,
some portions of the data warehouse requirements might still be uncertain or unclear
to either the stakeholders or the data warehouse team. If these problems are not
corrected, an expectation gap between the stakeholders will result. Prototyping allows
the envisioned data warehouse system to become tangible, brings use cases to life,
and closes the gaps to the different understanding of requirements. Furthermore, users
are generally more willing to try out a prototype than to read the complete
requirements specification.
Any prototype is designed to focus on only certain aspects of the system,
compromising or ignoring other aspects. There are three major dimensions of
compromises system functionality, system attributes, and user interface [4].

Data warehouse prototypes can focus on one or more of these dimensions, while
ignoring the others. For instance, some prototypes focus purely on performance

Thanh N. Huynh

thanh@ifs.tuwien.ac.at
Institute of Software Technology
Vienna University of Technology

Josef Schiefer

josef.schiefer@us.ibm.com
Watson Research Center, IBM

(which represents a system attribute), ignoring user interface and functionality issues.
Other prototypes might be developed to discover an optimal user interface for
executives, approximating other aspects only to the degree needed to allow it to serve
as driver for sponsorship.
The remainder of this paper is organized as follows. In section 2, we discuss the
contribution of this paper and related work. In section 3, we present prototyping
activities for data warehouse environments and shows how they are interwoven with
the requirement process. In section 4, we discuss different types of prototypes. In
section 5, we introduce the BEDAWA prototyping tool and show, how it can be used
to generate representative sample data for data warehouse systems. Finally, in section
6 we present our conclusion.

2. Contribution and Related Work

Floyd provides in [3] a high-level characterization of prototyping approaches, tools
and techniques, and a discussion of problems and prospects of prototyping. Floyd's
high-level characterization includes the distinction between horizontal and vertical
prototyping. His characterization of prototyping approaches is based on a distinction
between exploratory, experimental and evolutionary prototyping.

In this paper, we discuss different type of prototypes for data warehouse systems
by using Floyd's prototyping characterization. Furthermore, we also introduce the idea
of using prototyping scenarios, which are a combination of horizontal and vertical
prototypes.

[17] argues that using measurable objectives (benchmarks) for user performance
and attitudes provide an objective way to assess the quality of the prototype. In [5],
Huynh proposes a tool, namely BEDAWA, which is able to generate statistical sound,
familiar, complete sample data for data warehouse and OLAP systems. The tool
allows building sample data for benchmarking applications or various types of
prototypes.

[1] introduces the DBGEN tool, which can be used to generate sample data for
AS3AP or TPC-D benchmark in flat files. [16] and [7] present an approach for
generating sample data to evaluate database systems. However, the presented
approach generates sample data manually, which makes it less useful for prototyping
purposes.

[10] introduces the easyREMOTEDWH approach, a comprehensive requirements
engineering framework for data warehouse systems. easyREMOTEDWH includes a
requirements process, which allows an iterative and incremental requirements
development. We use this model as foundation and show, how prototyping activities
are interwoven with other requirement activities.

To our knowledge, no approach for prototyping has been published yet, which
considers the characteristics of data warehouse systems (large, evolving system,
heterogeneous user community, complex data structures, large amount of data etc.). 2

 3

Traditional prototyping tools lack the ability to support the generation of complex
data schemas and large amounts of data, which is typical for data warehouse
environments.

3. Requirements Process and Prototyping Activities

In this section we discuss, how prototyping activities are interwoven with the
requirements process. Figure 1 shows an extract of the requirement activities in the
easyREMOTEDWH process [10], and how they are linked by their deliverables. The
deliverables are shown as moving from one activity to the next. In the “Requirements
Gathering, Elicitation” step data warehouse requirements are discovered, which are
made rigorous by writing them down in a prescribed manner. Afterwards, the
requirements are inspected in the “Requirements Refinement” to determine if they are
accurate enough to be added to the final requirement specification draft. Any rejects
are sent back to the originator, who probably takes the requirements back to the
requirements gathering and elicitation activity for clarification and further
explanation.

Requirements
Gathering,
ElicitationStakeholders

Requirements Analyst

Requirements
Documention

Potential
Requirements

Prototype the
Requirements

Requirement for
Prototyping

Potential
Requirements

Requirements
Refinement Coarse, vague

Requirements

"good"
Requirements

Requirements
Engineering

Skills,
Experience

Wants and
Needs

Use Cases

incomplete
Requirements

Requirements
Specification

Figure 1: Requirements Process for Data Warehouse Systems (adapted from [10])

If requirements are still uncertain or unclear to either the stakeholders or the data
warehouse implementation team, the development of prototypes can facilitate the
management of stakeholder expectations (e.g. by a proof-of-concept) or technical

concerns (e.g. by a proof-of-performance). One key point in Figure 1 is that the
requirements process is iterative and incremental rather than linear. The elicitation,
prototyping, refinement, and documentation activities are iterated a number of times.
During each iteration new information emerges which may necessitate the
modification of already acquired information.

Figure 2 shows the different stages of developing a prototype of a data warehouse
system. The input for the prototyping might be a single requirement or a complete use
case.

Analysis

Requirements for Prototyping

Design
and Build

Testing

Users

Potential Requirements

Needed
Modifications

Prototype

Results

Figure 2: Prototyping Activities

Design and Build. Designing is mapping the world of the user into the prototype.
Design is also the activity of deciding which data warehouse requirements should be
modeled and simulated with the prototype, and what should be achieved with the
prototype. Furthermore it is important to determine, which type of prototype should
be built. After the design stage the data warehouse implementation team builds the
modeled prototype.
Testing in the User Environment. Testing involves having the data warehouse users
use the prototype as a simulation of their tasks. Users will give feedback of the
prototype, where they describe their problems and experience during their work with
the prototype. The feedback should also include the results of usability tests.
Analyzing the Results. In this stage the feedback of the users is analyzed. The
analysis will uncover new potential requirements for the data warehouse system. If
the results are not satisfying, modifications of the prototype and running more tests
should be considered. 4

 5

4. Prototyping Types

4.1 Horizontal vs. Vertical Prototypes

Horizontal prototypes are prototypes where the user-interface is implemented, but the
functionality is missing, or simulated. Horizontal prototypes reduce the level of
functionality and result in a user interface surface layer, while vertical prototypes
reduce the number of features and implement the full functionality of those chosen
(see Figure 3) [3].
Horizontal Prototypes. Horizontal prototypes display the facades of user interface
screens from the data warehouse system, possibly allowing some navigation between
them, but they do not show real data or contain little or no real functionality. The
information that appears in response to a data warehouse query is faked or static, and
report contents are hard-coded. A horizontal prototype does not actually perform any
useful work, although it looks like it does.

Different Features and Services

Scenario Horizontal
Prototype

Vertical
Prototype Full Data Warehouse System

Fu
nc

tio
na

lit
y

Figure 3: Horizontal Prototypes, Vertical Prototypes, and Scenarios

The simulation is often enough to give the users a feeling for the data warehouse
system and lets them judge whether any functionality is missing, wrong, or
unnecessary. The prototype represents the concept to the data warehouse team of how
a specific requirement or use case might be implemented. The user’s evaluation of the
prototype can point out alternative courses for a use case, new missing process steps,
previously undetected exception conditions, or new ways to visualize information.
Vertical Prototypes. Vertical prototypes are also known as structural prototypes or
proof of concepts. They implement a slice of the data warehouse functionality.
Vertical prototypes are developed, when uncertainty exists whether a proposed
architectural approach is sound or when certain data warehouse policies should be
optimized (i.e. access policies, security policies, data quality policies), or the data

warehouse schema should be evaluated (i.e. performance evaluation), or critical
timing requirements (i.e. time for data warehouse queries) should be tested. Vertical
prototypes are used more to reduce risks during the data warehouse design and
implementation than for requirements development. They are generally constructed
with the proposed tools of the data warehouse system (database, data staging tools,
metadata management tools etc.) in the operating environment to make the results
meaningful. Prototype tools, like the BEDAWA tool, can help to construct realistic
vertical prototypes.
Scenarios. Scenarios can be seen as a combination of horizontal and vertical
prototyping by reducing both the level of functionality and the number of features and
services. Since scenarios are small and cheap, they can be applied and changed more
frequently. Therefore, scenarios are a way of getting quick and frequent feedback
from users. Scenarios can be implemented as paper mock-ups [11], [12] or in simple
prototyping environments that may be easier to learn than more advanced
programming environments. This is an additional savings compared to more complex
prototypes requiring the use of advanced software tools.

4.2 Throwaway vs. Evolutionary Prototypes

Before a prototype is built, the decision has to be made, whether the prototype will be
discarded after evaluation or will eventually evolve into a portion of the final data
warehouse system. This decision must be explicit and well communicated.
Throwaway Prototypes. The throwaway prototype is most appropriate when you
face uncertainty, ambiguity, incompleteness, or vagueness in the data warehouse
requirements [2]. These issues have to be resolved to reduce the risk of proceeding
with the data warehouse implementation. Because throwaway prototypes are
discarded after they have served their purpose, they should be built as quickly and
cheaply as possible. When throwaway prototypes are built, solid software
construction techniques can be ignored. The emphasis is on a quick implementation
and modification over robustness, reliability, performance, and long-term
maintainability. For this reason, you must not allow the code from a throwaway
prototype to migrate into a final data warehouse system. Development teams often
tend to recycle existing throwaway prototypes. A good way to avoid this problem is to
use different tools and a different programming language for the prototype
construction.
Evolutionary Prototypes. Evolutionary prototypes provide a solid architectural
foundation for building the data warehouse system incrementally as the requirements
become clearly defined over time. In contrast to the throwaway prototyping, an
evolutionary prototype must be built with robust, high-quality code from the
beginning. Therefore, an evolutionary prototype takes longer to build than a
throwaway prototype that addresses the same functionality. As evolutionary prototype
must be designed for easy growth and frequent enhancement, it is important to 6

emphasize the system architecture and solid design principles. For data warehouse
systems, evolutionary prototypes are particularly interesting for simulating data
models. If a tested data model fulfills the requirements for robustness, extensibility,
and performance, it can be used as the foundation for the final data warehouse
implementation.

5. BEDAWA - Prototyping Tool

When building a prototype for a data warehouse system, one major problem has to be
solved - the generation of data for the data warehouse. It can very difficult to use
production data for this purpose, since the data model of the data warehouse system
can be very different from the data model of production systems, and consequently,
data transformations would be necessary. Once a data basis is established, any
prototype can be built using this data.

The BEDAWA tool offers support for this problem. It allows developers of data
warehouse prototypes to produce sample data suitable for their prototype
implementation. By specifying the characteristics of the sample data and by testing
the sample data generation results, they are able to repeatedly develop sample data for
their needs. In this section we give an overview of the BEDAWA approach and show
how to generate mass sample data for prototyping purposes.

5.1 Introduction of the BEDAWA Approach

The lack of sample data for data warehouse or OLAP systems usually makes it
difficult for organizations to evaluate, demonstrate or build prototypes for their
systems. However, the generation of representative sample data for data warehouses
is a challenging and complex task. Difficulties often arise in producing familiar,
complete and consistent sample data on any scale. Producing sample data manually
often causes problems, which can be avoided by an automatic generation tool
producing consistent and statistical plausible data.

The sample data generation process is usually a complex, iterative process that
begins with a modeling step, and ends with the generation of the desired sample data.
To get representative sample data that is familiar, consistent, scalable, large amount
and that reflects various degrees of freedom, the BEDAWA tool is based on a
statistical model that will be introduced in the next sections. The statistical correctness
of the model provides a framework to define relationships between dimensions and
facts in the context of a star schema, the most popular schema for designing and
building a data warehouse [8]. The tool provides abilities to define and generate
sample data of any size in order to reflect a real world situation. Furthermore, the tool
is able to integrate existing external data sources for the sample data generation. 7

5.2 Statistical Model of BEDAWA

According to the statistical point of view, relationship between dimensions and a
fact can be presented as follows:

 y = f(δδδδ1,,,, δδδδ2,,,, ...,δ...,δ...,δ...,δx) + εεεε (1)
where:

y : a value of the fact
δ1, δ2, ...,δx : numbers presenting the effect of dimension members to the fact y
ε : error value

That means, based on relationship between facts and dimensions of a fact table, a

statistical model can be applied to present that relationship stated in formula (1).
Besides the calculation of fact values, the statistical model includes a distribution
process, which takes care of the task to distribute dimension members in the fact table
according a proper statistical distribution.

For example, a fact value can be created by using a linear model as follows [13]:

 yijk... = µµµµ + ciααααi + cjββββj + ckγγγγk + ... + εεεεijk... (3)

where:
α, β, γ, ... : fact effect value sets of dimensions Dα, Dβ, Dγ that have effect

on the fact y, the dimensions have numbers of elements in their
domains are n, m, p, ... respectively,

ci, cj, ck, … : scalar constants.
i, j, k, ... : index numbers that are in range [1..n], [1..m], [1..p], ...,

respectively,
µ : average mean of the fact,
αi, βj, γk,... : fact effect values of elements ith, jth, kth of dimension fact effect

value sets α, β, γ,..., respectively,
εijk... : error value.
yijk... : a value of the fact.

5.3 Sample Data Generation Process

Figure 4 shows the sample data generation process of BEDAWA. The first two
steps (grayed boxes) are considered as preparation steps. The major purpose of these
steps is getting statistical parameters for the sample data. The next steps cover the
modeling and the design of the sample data. In this stage all definitions for the sample
data are completed which are required to generate the sample data automatically. The
statistical parameters and data schemas of the data warehouse are used to model the 8

sample data architecture [5]. In the sample data generation step, the modeled sample
data are automatically generated.

D efinition of
Sam ple D ata

S pecifying Sam ple D ata
R equirem ents

S am ple D ata G eneration

Prototyping,
S im ulation T ools ,

Benchm arking

D ata W arehouse
with Sam ple D ata

Sam ple D ata
M odelling

Sam ple D ata
Produc tion

Interac tion w ith
U ser & Application
Tools

Sam pling R eal W orld
D ata (S)

Applying S tatis tics on
D ata S

Sam ple D ata
Preparation

Sam ple D ata
D efinitions

Figure 4: Process for Generating Sample Data for a Prototype

Users or applications are able to control the sample data generation. That means,
depending on the result of a run of a sample data generation, possible iterations of the
presented steps can be necessary. If for instance the result of the sample data
production does not fulfill the requirements for a prototype, the user will have to go
back to the sample data modeling stage to model the sample data correctly. The user
iterates between these steps until the produced sample data is satisfying. A further
explanation of the sample data generation process is beyond the scope of this paper. A
detailed description can be found in [6]. 9

5.4 Generating Sample Data for prototypes

Builders of horizontal prototypes for data warehouse systems need the complete data
structures of the data warehouse with or without data. On the other hand, for vertical
prototypes, only a part of data structures is needed, however with a realistic amount
and quality of data. By using the BEDAWA tool, both types of prototypes can be
built. The tool provides a rich set of functionality for modeling the data structures of a
data warehouse system and for describing the quality of the desired sample data.

Following we show how to built a prototype with the star schema shown in Figure
5. This star schema is the well-known grocery sample introduced in [8].

Figure 5: Star schema

The generation process of this star schema includes the following steps:

1) Definition of data sources. Data sources are used to identify any necessary data

for the sample data generation of the prototype.
2) Definition of dimensions. Dimension definitions describe the dimension

structures of the modelled sample data. For our example, we define the
dimensions ProductDimension, StoreDimension and TimeDimension. The
dimension data can be either automatically generated or manually copied from
available data sources.
Figure 6 shows the definition of the StoreDimension. A list of attributes is
defined, which is described by name, data type, size, and number of data items.
Furthermore, each dimension can be constructed based on various hierarchies,
e.g., for TimenDimension dimension we can define two hierarchies as follows:
day → month → year or dayOfWeek → Week → year.

3) Definition of statistical parameters for the dimensions. The statistical parameters
include distributive information, and fact effect values. Fact effect values 10

Product_ID
Time_ID
Store_ID
Quantity_Sold
Dollar_Revenue
Customer_Count

GroceryStoreFactProduct_ID
Productfamily
Productcategory
Productname
...

ProductDimension

Store_ID
Storename
Storecity
Storecountry
...

StoreDimension

Time_ID
Day
Month
Year
...

TimeDimension

quantify each relationship between a dimension and a fact. Distributive
information is used to specify the distribution of dimension members in the fact
tables for the sample data. The distribution can be statistical distribution or user-
defined distribution parameters.

Figure 6: Defining store dimension

4) Definition of the facts for the fact table. Each fact is presented by a statistical

model, which represents the relationship between fact values and members of
dimension components effecting to the fact. For our example, we defined
following three facts illustrated in Table 1.

Fact Name Fact Definition Error value

F(quatity_sold) 253 + FactEffect(time2_fe1) +

FactEffect(product_fe1) +

FactEffect(promotiondimension_fe1)

Random in

[-10,10]

F(dollar_revenue) 1453 + FactEffect(time2_fe2) +

FactEffect(product_fe2) +

FactEffect(promotiondimension_fe2) +

FactEffect(storedimension_fe1)

Normal

distribution

µ = 10

σ = 2

F(customer_count) 42 + FactEffect(time2_fe3) +

FactEffect(promotiondimension_fe3)

Random in

[-5, 7]

Table 1: Fact Definitions 11

5) Defining the fact table schema. A fact table consists of various facts defined in
the previously step and dimensions, which should be included in the fact table.
E.g., the Grocery_Store fact table of our example includes the 3 facts
quantity_sole, dollar_revenue, and customer_count and the 3 dimensions
ProductDimension, StoreDimension, and TimeDimension.

6) Generation of sample data. In this step the user specifies the amount of sample
data to be created and starts the generation process. Depending on the type of
prototype (horizontal vs. vertical), the users can decide how large the fact table
should get.

As in the previous steps shown the BEDAWA sample data generating process

supports a flexible specification of the data warehouse metadata (dimension attributes,
dimension hierarchies, fact, fact schema etc.) and business data. As result, such
sample data is a sound basis for building prototypes for a proof-of-concept or proof-
of-performance.

6. Conclusion

The expectation of organizations that more or better requirement and development
tools would be a remedy to all problems of building data warehouse systems cannot
be fulfilled. Case studies about prototyping in large industry projects show that the
central problem to be solved is the difference between application knowledge and
information processing knowledge [9]. This difference is clearly visible at the gap
between the expectation of stakeholders towards the envisioned system and the
resulting data warehouse system.

In this paper, we stressed the importance of building effective prototypes for
closing this gap. We have shown how prototyping activities are part of the
requirement process and how they facilitate iterative and incremental requirements
development. We discussed different types of prototypes, by using the high-level
characterization of Floyd. We introduced the BEDAWA tool as prototyping tool for
generating sample data for data warehouse systems. The BEDAWA provides a
statistical model for the specification of sample data and allows the generation of
sample data of various amount and type for prototyping and benchmarking purposes.

References

[1] Bitton, D.; Orji, C., Program Documentation for DBGEN, a test database
generator, University of Illinois at Chicago.

[2] Davis, Alan M., Software Requirements: Objects, Functions, and States,
PTR Prentice Hall 12

[3] Floyd, C. A, A Systematic Look at Prototyping.
In: Bude et al. (eds) approaches to Prototyping Springer Verlag, 1984

[4] Goldman, N.M.; Narayanaswamy, K., Software Evolution through Iterative
Prototyping 14th Int. Conf. on SW Eng., IEEE, 1992

[5] Huynh, T.; Nguyen, B.; Schiefer, J.; Tjoa, A M., BEDAWA - A Tool for
Generating Sample Data for Data Warehouses. Data Warehousing and
Knowledge Discovery, 2nd Int'l Conf., Dawak 2000, Greenwich, UK.,
Springer-Verlag.

[6] Huynh, T.; Nguyen, B.; Schiefer, J.; Tjoa, A M., Representative Sample
Data for Data Warehouse Environments ADVIS2000, Turkey

[7] Informix Redbrick Warehouse, TPC-D and its relevance, Informix
Corporation

[8] Kimball, R. (1996). The Data Warehouse Toolkit, John Wiley & Sons Inc.
[9] Lichter, H.; Schneider-Hufschmidt, M.; Zuellighoven, H. Prototyping in

Industrial software Projects - Bridging the Gap Between Theory and
Practice, IEEE Trans. on SE, Vol 20, No 11, pp 825-832, 1993

[10] List, B.; Schiefer, J.; Tjoa, A M., Use Case Driven Requirements Analysis
for Data Warehouse Systems, Data Warehousing 2000, Friedrichshafen

[11] Nielsen, J., Prototyping user interfaces using an object-oriented hypertext
programming system, Proc. NordDATA'89 Joint Scandinavian Computer
Conference Copenhagen, Denmark

[12] Nielsen, J., Paper versus computer implementations as mockup scenarios
for heuristic evaluation, Proc. INTERACT'90 3rd IFIP Conf. Human-
Computer Interaction Cambridge, UK

[13] Rao, C. R.; Toutenburg, H., Linear Models least Squares and Alternatives,
Springer-Verlag New York, Inc. 1995.

[14] Schach, S. R., Classical and Object-Oriented Software Engineering, 3rd,
IRWIN.

[15] Schiefer, J.; Tjoa, A M., Generating Sample Data for Mining and
Warehousing Proc. Int. Conference on Business Information System
Springer-Verlag, BIS 99, Poznan

[16] Turbyfill, C.; Bitton, D., AS3AP-An ANSI SQL Standard Scalable and
Portable Benchmark for Relational Database Systems. The Benchmark
Handbook. J. Gray, Morgan Kaufmann Publishers.

[17] Whiteside, J.; Bennett, J.; Holtzblatt, K., Usability Engineering: Our
experience and Evolution. In: Handbook of Human-Computer Interaction
Amsterdam, Elsevier, 1988 13

