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Abstract

Multiple regression has found applications in chemistry, pharma-
cology, and biochemistry as a tool for understanding molecular activ-
ity in quantitative structure activity relationship (QSAR) studies, in
such diverse areas as near-infrared spectroscopy, mutational enzyme
activity studies, and the analysis of gene expression data from chip
arrays. Error analysis of principal component regression is dominated
by the selection of an optimal subset of principal components, whose
quality is measured by their contribution to the prediction of the in-
dependent variables and by their well conditioned behavior. Principal
components are dependent on the scaling and units of measurement
of the independent variables, which implies that the space spanned
by some subset of principal components is not invariant to scaling
transformations, yielding an arbitrary character. This paper presents
a solution to the scaling problem in which a scale transformation is
constructed which produces a set of equally well conditioned com-
ponents, of which one contains all the predictive information of the
regression. This scale transformation is independent of the initial scal-
ing of the independent variables. This implies that the problems of
conditioning and subset selection is an artifact of the initial scaling of

the independent variables.



1 Introduction

Linear regression|[1] has found application in chemistry, biology, and medicine,
for of recognizing structural features important to the determination of chem-
ical activity over a group of reactants in a poorly understood interaction.
This is achieved by forming a linear relationship between variables (descrip-
tors) describing the structural variation within the group of reactants, and the
activities of the reactants. This relationship is called a quantitative structure
activity relationship (QSAR). QSAR techniques have therefore found wide
application in combinatorial chemistry studies in which variations in activ-
ities caused by the systematic modifications of structures can yield insight
into the reaction activity mechanism.

A particularly interesting example of such a QSAR is comparative molec-
ular field analysis (CoMFA),[2] in which reactants with common structural
backbones varying by residue substitutions may be aligned with one another,
and physical characteristics such as electrostatic potential and steric energies
may be measured at each of thousands of oints on a common grid for each re-
actant. This is doubly interesting because it explicitly uses descriptors that
describe the 3D character of a molecule rather than any description of its
underlying topology, making it a pure 3D QSAR.

CoMFA QSAR regression systems are grossly underdetermined. Yet, it
should be expected that the variations at the various field points should be
correlated well enough (because of the relatively small number of residue

substitutions as well as the discrete character of residue substitution in com-



binatoric studies) so that a meaningful relationship between those residue
substitutions and the activities may be determined. Then those grid points
around the residue sites that are important to the determination of the ac-
tivity will make large contributions to the regression.

One procedure that treats such a grossly underdetermined system is the
partial least squares (PLS) analysis,[3] which was popularized in the CoMFA
program of TRIPOS’s SYBYL package.[4] PLS has, since this popularization,
emerged as a standard of analysis in numerous research publications.[5] The
first applications of CoMFA have also emerged as benchmarks by which other
3D QSARs are measured.[2][6][7][8][9][10][11][12][13][14][15][16][17][18][19]

One aspect of electrostatic fields is that most of the volume of space
surrounding a charge distribution is dominated by a relatively low number
of parameters. The unique characterization of those parameters has led to
the development of a 3D QSAR, called CoMMA, that does not depend on
alignment of common backbones.[18][20] While loosing the detailed resolution
of CoMFA, it has the advantage of codifying the longer-range characteristics
of the molecular charge distribution in a small number of parameters and in
a self-consistent manner.

The application of QSARs to spectral descriptors has a character sim-
ilar to that of CoMFA. In this case, the spectra are sampled on a one-
dimensional lattice of wavelengths. The amplitudes become structure vari-
ables for QSAR computations. The application of QSARs to spectroscopy,
including near-infrared spectroscopy, shares the overdetermined character of

CoMFA studies,[21] with a good review by Faber and Kowalski.[22]



QSARs have been applied to gene expression analysis in determining lev-
els of gene expression as a function of descriptors of pharmacological sub-
strates or treatment levels. [23] One particular application of regression of
particular interest to gene expression studies in general involves the explo-
ration of the relationship between transcriptional and translational control
of gene expression.[24] One future application may be predicting survival of
alleles, such as cancer survival rates [25], or perhaps of fermentation by yeast
alleles [26] as a function of the levels of expression measured by gene array
chips.

Yet another area of increasing interest is that of quantitative structure—
property relationships (QSPRs). This is the prediction of physical charac-
teristics such as boiling points, vapor pressure, critical temperature, critical
micelle concentrations, polymer-glass transitions, for instance.[27] A possi-
ble candidate for application could be the phenomenological exploration of
protein folding times. Enzyme mechanism is often elucidated by the exami-
nation of mutation activities, just as in combinatoric chemistry studies. Such
studies have also been performed on protein folding rates.[28][29] This form
of study is very consistent with standard combinatoric QSAR studies, and
represents an opportunity for exploration by QSAR techniques.

Principal component regression (PCR) procedures [30][31] emerge natu-
rally from the quadratic structure of the least-squares problem. The expres-
sion for the sum of the squares of the error between predicted and expected
values may be expressed as a quadratic form in the regression coefficients.

The principal components are orthogonal combinations of the data that di-



agonalize the coefficient quadratic form. Error propagation in PCR is simple
and well understood.[30][31] Further, a least-squares x? statistic providing a
measure the goodness of fit based on a probability model is also commonly
used. [31][32][33] The probability model in minimum x? estimation assumes
that the random deviations of the data from the linear regression model are
Gaussian. Then the contributions of each component to the prediction of
the dependent variables (defining their predictive power), as well as their
contribution to the uncertainty in the regression coefficients (a measure of
how well conditioned the component is). The problem of component subset
selection has therefore become a dominating problem in studies of principal
component linear regression and its application,[30][34][35] as well as other
techniques of regression such as PLS,[3] where the quality of estimation as a
function of the number of PLS components retained as well as the variation
in regression coefficients is estimated via a cross-validation.[36] Other similar
numerically intensive techniques include the bootstrap.[37]

This study emerged from consideration of the fact that the set of princi-
pal components are dependent on the scale and units of measurement of the
various descriptor variables. This implies that component construction and
subset selection is essentially arbitrary.[38] It was therefore desirable to try
to construct an optimal scale matrix in which the selection of components
would not be arbitrary, in which the conditioning would be much more uni-
formly well behaved, and in which a minimum number of components could
be selected. The scaling transformation presented in this paper renders all

components to be equally well conditioned, and permits the selection of a



single principal component which contains all of the predictive information.

Section 2 presents an analysis of the component subset selection prob-
lem, highlighting the problems of predictivity and well conditioning for re-
view, and establishes notation. Section 3 presents a solution to the scaling
problem and its implications to the number of predictive components as well
as components that carry information about statistical uncertainty. Section
4 considers a simple application to the prediction of corticosteroid binding
globulin activities[2] by CoMMA descriptors.[18] Section 5 presents conclu-

sions.

2 Principal Component Subset Selection in
Principal Component Regression

This section develops principal component regression, with particular con-
sideration of the issues surrounding principal component subset selection.
The regression model predicts N sampled dependent variables y; from
independent N sampled D variables z;; through model coefficients a;, with
uncontrolled variables accounting for a prediction error e;, in the equation

Yi = Zmijaj + €. (1)
J

Many regression studies use Greek letters to represent estimated regression
parameters, but this usage is not universal.[31][33] The expected values of e;

are described as

E(e:) = 0, (2)

E(eie;) = Aydy;. (3)

i



If each of the errors e; is normally distributed, then the statistic

2
e? 1

% %

is x? distributed with N degrees of freedom. [30](31][32][33] This may be

expressed in terms of matrices as
£ = (Xa—y)'C(Xa—y) (5)

where C' is the diagonal matrix with elements (C);; = d;;/Ay?, or more

generally,
™' = cov(y,y). (6)

This may be expressed alternatively as
E? = (a—ag)"XTCX(a — ag) +y"Cy — af XTC Xay, (7)

where

ap = ygé(XTCX +e)T'XTCy. (8)

The limit lim,_o(X7CX + eI)"' XTC"/? is called a “generalized inverse” of
C'2X. The limit lim._,o(XT"CX + eI)~! is undefined unless the matrix
first operates on another matrix or vector which has no projections along
eigenvectors of X7 C X that correspond to eigenvalues equal to zero. However,
if u is an eigenvector of X7 C' X with a zero eigenvalue (Xu)"C(Xwu), it follows
that any projection Xu of X along u will be zero since X7CXu = 0 implies
that uT XTCXu = (Xu)TC(Xu) = 0. Since C is diagonal, this implies that

each (Xu); = 0. Further, this implies that u”ag = 0. Note that this solution
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is not unique. Any aj, = ag+0da, where XTCXda = 0, produces an equivalent
&2

Since £? is a x? statistic, it follows that ag and XTCX are essential
statistics.[39] Any changes in @ may be accounted for by the contribution to

the error £2? by the coefficients
géoef =(a—ag)"X"CX(a— ap), 9)
with the remainder accounted for by the residual

so that

The total number of degrees of freedom in £ is N. The number of degrees of
freedom in 5(2:oef is equal to the number D of eigenvectors with correspond-
ing nonzero eigenvalues of XTCX. This leaves N — Dy degrees of freedom
for Efeg. This partition is very reminiscent of Bayesian treatments of lin-
ear regression,[39] but the presentation here follows “frequentist” notions of
sampling theory.

The expectation value of aq is
E(a) =ag = liné(XTCX +el) I XTCy. (12)
€—>
The covariance is predicted by

cov(a,a) = E[(a — ag)(a — ag)T] = liE)%(XTCX +el)! (13)
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determined by the inverse of the quadratic coefficients in géoef' As pointed
out before, this limit does not exist if there are eigenvalues of X7CX equal to
zero. This means that any contribution to a of any magnitude in a direction
corresponding to a null eigenvector of X7 C X will not contribute anything to
£?. This implies that the coefficients essentially have an infinite uncertainty
and are completely undetermined in any underdetermined system. This is
simply a reflection of the ambiguity in underdetermined systems.

A meaningful alternative measure of covariance is the amount by which
the estimate of a will vary given the variations in y. This is essentially
equivalent to the effect of allowing y to vary according to the variation in e.

This implies

COVsubspace(a’a) = E{aole]aole]’}
= lim E{(XTCX +e)"'XTCee CX(XTCOX + el)™*}
= li_r)%(XTCX +el)T'XTCE(ee" ) CX(XTCX + el)™!
= li_r)%(XTCX +el) ' XTCC'CX(XTCX +el)

or

COVgubspace (@ @) = Im(X"CX +el) " XTCX(X'CX +el)™". (14)
This limit does exist because
Py = lir%(XTCX +e)T'XTOX (15)
€E—

is a projection operator that picks out only those eigenvectors with nonzero
eigenvalues. This expression compares favorably with the variation in the co-

efficients observed between the various regressions produced by cross-validation.
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Such a result constitutes an explicit measure of the stability of the coefficients
to variations in the dependant variables.

It is important to realize that while some consistency may be expected
within a dataset, and it is possible to ask whether a model is consistent
with a dataset in a statistical sense, that underdetermined systems do not
yield definitive measurements of all the coefficients. Comparison with other
datasets that could ultimately produce a complete model if the data were
combined would not produce coefficients consistent with one another.

Not only is it possible for a regression to be underdetermined in the sense
of having zero valued eigenvalues, but some of the eigenvalues of X7CX
may be very small. Such a system is called “poorly conditioned.” This cor-
responds to some var(a;) being very large. Such terms can add spurious and
large contributions to ay without significantly affecting £2. This suggests that
it is desirable to exclude contributions from various subsets of components
that may not correspond to zero valued eigenvalues.

The systematic consideration of the character of individual principal com-
ponents in the analysis of the £2 quadratic form is perhaps the best definition
for principal component regression. Consider a projection operator P that

is a projection onto a subset K of eigenvectors u; of XTCX. As such, P

satisfies
P = Y wuyg, (16)
keK
P> = P, (17)

[P, XTCX] = o (18)
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The effect of excluding components that project orthogonally to P is to

require that any component of a projecting along
Q=FP—-P (19)

are zero so that

Qa=0 (20)
leaving
E?[P] = (Pa — ag)" XTCX (Pa — ag) + y"Cy — a X" C X ay.

It is desireable to repartition the contributions 5(2: oef and Elag to reflect this

projection:

(Pa—ag)"X"CX(Pa—ay) = (Pa— Pag)"X"CX(Pa— Pay)

+ (Qap)" XTCX(Qay),
and that
(a0)" XTCX (ag) = (Pag)' XTCX (Pagy) + (Qao)" XTCX (Qay),

it follows that
EXP) = %, ol Pl + Efes [P, (21)

where

ErveflP] = (Pa— Pag)" PX"CXP(Pa— Pay), (22)

EreslP] = y'Cy—al PXTCX Pay. (23)
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This is a very suggestive partition of the degrees of freedom. The operator
P removes degrees of freedom from 5(2: oefl '] and essentially transfers them
to Efes|P]- Since the total number of degrees of freedom in £2[P] remains
N, and the number of degrees of freedom in ggoef[P] is now Dp, the total
number of degrees of freedom in EZug[P] is now N — Dp. Further, while the
degrees of freedom in EZeg[P] increases when poorly conditioned eigenvectors
are excluded, so does the total value of Efag[P]. The relationship between
the goodness of fit error and the exclusion of particular components is well
understood. [30]

The partitioning of the error according to contributions by projections
of components suggests an immediate application. It becomes possible to
compare the goodness of fit for different subsets of components. In particular,
for a subset of components projected by P, the probability that a x? larger
than this might be observed is P(x%_p, > Efes[P]). Those with larger
probabilities better represent the fit. Note that if N = Dp, which happens
when all of the non-null components are used in an underdetermined system,
then P(x3_p, > Efes[P]) is undefined. There is essentially no statistical
information about the quality of the fit if all of the principal components are
included.

Further, the contributions of each individual component may also be de-
termined. The contribution to Efag[P] may be determined for any particular
component k. For any component £ with eigenvector uy, the projection oper-

ator is Py = ujul. This implies that the effect of any particular eigenvector
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is to subtract a variation

E = apupul XTCXuguy ag

= yICX(XTCX + eI)  upui XTC X upui (XTCX +el)tXTCy

or
£ _ yTC(Xuk)(Xuk)TCy
k (Xup)TC(Xuy)

where Ay = (Xuy)"C(Xuy) is the eigenvalue of X”CX corresponding to

(24)

eigenvector u;. The contribution of the kth component to cov(a, a) varies as
1/Ay. This is a reflection of how well conditioned the contribution is from this
component. Small A; components contain little discriminating information
compared to the uncertainty they contribute to the regression coefficients.
Exclusion of the smallest A contributions therefore improves the stability of
the coefficients and reduces the size of the uncertainty in those parameters.

However, the largest £ contribute the most towards improving the good-
ness of fit since they reduce Efeg[P] the most. Therefore, the value of £2 rep-
resents the predictive power of the kth component. It is possible therefore to
rank the components by predictive power. Then, it is possible to construct a
list of subsets with the largest predictive power, then the next list containing
the largest together with the second largest, and then the third list contain-
ing the top three predictive components, etc. This reduces the computation
from all 2V possible subsets of components to a simple list of subsets N
long. Once this is done, it is possible to compute P(x%_p, > Efes[P]) for

each of the subsets. This probability generally goes through some extremum,
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which represents the optimal subset of components. Since the questions of
the information in a component, as measured by A; and the contribution
the component makes to the goodness of fit are distinct, exclusion of low
information components may be achieved by applying a cutoff to A;. A se-
lection of the most important contributors to the goodness of fit may then
be applied.

This approach has been inverted to consider the situation in which the
size of the uncertainty is unknown, and it is desired to estimate some best un-
certainty from the regression of the data. This may be achieved by choosing

C = I/AY?, to yield

E(E24P])=N — Dp = (y"y — af PXTX Pay) , (25)

AY?
and solving for AY2. The best subset is the one that produces the small-
est AY?. This component selection criterion is essentially identical to one
proposed by Lott, [34], who also recognized the possibility of reducing the
optimal space of subsets by ranking the components. However the connec-
tion between the selection of an optimal subset and a minimum AY? was not
established, and connection with x? was not explored. Generally, for overde-
termined systems, AY goes through a minimum as the number of components
is decreased. The smallest set is the best. However, in underdetermined sys-
tems there tends to be no minimum in AY. For a fixed AY, there will usually
be some particular subset of components where P(x%_p, > Efes[P]) min-
imizes. Once some AY is selected and the component subset is extracted,

the values of ay and cov(a,a) which are consistent with the quality of the
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regression and the variation in the data may be computed.

The problem with the simple method of selecting a subset that spans the
space of variation, as in PCA, is that the dependent variable may depend
on some of the components with smaller variation. It is similar to trying to
describe a pizza pie with a pancake model: if the short axis is discarded, there
is no dimension to describe the layering of ingredients. This problem is well
known, and there have been a number of solutions posed for selecting some
optimal subset of components.[30] Yet many commercial packages still rank
components according to their variation A, = (Xuy)TC(Xwuy), which only
measures the range of variation of the component, and not the contribution

of the component & to the goodness of fit.

3 Scale Invariance Problems in Component
Selection

The previous section outlined the effect of principal component subset selec-
tion based on conditioning and predictive power. However, there is a major
problem in the selection of principal components. This is that the compo-
nents depend on the scaling, or units of measurement, of the independent
variables. Simply changing the units of measurement can significantly affect
the components, how well they are conditioned and how much predictive
power they express. This section presents a simple scaling transformation
that renders the system completely well conditioned, and which reduces the

number of predictive components to one.
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Define
?=Xx"Cx. (26)
Then
lim (T + ) ' XTCX (D +el) ' =P, (27)
Define

limX (C+el) ' =V
e—0

Further define

a = Ia,

ay = Tag=VTCy,

so that

Xa=Va. (28)

In this representation, each component is equally well conditioned, and
any orthogonal set of vectors spanning P, is a set of eigenvectors, and is thus
a set of principal components.

The residual error is then

Eres = Y Cy—al X"CXag
= 70y~ limy"CX (XTCX + ) TXTOX (XTCX + ) XTCy
= yTCy —limy"CVT (I? +el) 'I?(I?+e) TV'Cy
e—0
= y'Cy—y'CVPVTCy

= y'Cy — of Pyag.
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Again considering projection operators P + Q = P, where PP, = P, yields
Eios =Y Cy — o Poy — o Qoyg.

Now, define P = &p&! selects only one component &,. The projection in @

is af Qg = 0, leaving
5r2es [P]= ZITC?J - agao. (29)

Under this scaling, constructed in a way that is independent of the de-
scriptors’ initial units of measurement, there are no poorly conditioned com-
ponents, and the predictive information may be contained by only one com-
ponent.

Another question that this scaling has bearing on is the distinction be-
tween the least error in the dependent variable y and the least error in the

coefficients a.[40] Consider the transformation
Xa=1lim X(T +el) 'Ta=Va,
e

where

a =Ta. (30)
Then the x? error has the form
£ = yTCy—al XTCXag+ (a — ag)TXTCX (a — ao)
= li_r>% {yTC’y —ad (T +e)'THT +el)

+(a = ao) (T + D) 'TXI + €)™ (o — ap) }
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or

E2=yTCy — aOTPoao + (a— aO)TPO(a — ap). (31)

In this scaling, the measures of the errors in « are on the same basis as the
measures in the errors in the prediction of the y.

Further, the covariance of « is

cov(a, ) = T'cov(a,a)l’
= lim D([% 4 ) 'T?(T% +el)™'T
€—>
= P.
So while only one component carries information about the regression, all of

the components carry uncertainty. This implies that the covariance of a may

be partitioned into the information bearing part P = &y&], and Q = Py— P,

so that
cov(a,a) = li_I)%(F +el)reov(a, o) (T +el)™t
= li_r)%(F +el)T'Py (T +el)™!
= lm(T+e) (P + Q)L +el)™
= lim(T + e ) 'P(D+el) ' + lim (T + e)'QT +€eI) ™,
€E—> €—>

Each term is positive definite, making positive contributions to var(y) for
some predicted y.

According to the notion of subset selection, the goal is to discard com-
ponents that contain no predictive information, but which add uncertainty
to the problem. In this case, the @) partition contains no predictive infor-

mation, but does contain information about uncertainty. Essentially, the @
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contributions represents the uncertainty in estimating 0 given the quality of
the data set.

A few points should be reviewed. First, for underdetermined systems, any
contributions to a from ()9 = I — P, produce no change in the error g(zzoef'
Essentially, the a’s are undetermined, or are only determined to within spec-
ified uncertainties within the subspace F,. Within that subspace, the total
uncertainty may be partitioned into contributions from the various compo-
nents. While most of the components appear to contribute no information
about value, they do represent regions of the space explored and spanned by
variations in the y represented by C~! = cov(y,y). So, besides transferring
degrees of freedom from 5§oef to Efeg, a subset selection P also projects out
contributions to the uncertainty from the discarded components Qa = 0. As
such, it no longer reflects the total space of a explored by the sampling in
the X and cov(y,y).

Given the estimated parameters, it is possible to estimate a yegt (scalar)

for a vector = of independent variables as

Yost = T ag & /2T cov(a, a)z. (32)

Following the previous section, consider the problem of estimating error

bars from data. The first step is to identify C ! = AY?I. Then

£(1)
2 —
E(AY) = ING
Eeoet(D)
— f
Eéoef(AY) - CX%/?

Etes(1)
5r2es(AY) = K;Q
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82 Pl(1
EoeflPIAY) = %
Eres|P](AY) = %.

The expectation value E [Séoef[P](Ay)] should satisfy

E[£2,4PIAY)] = E[E2[PI(AY)] - E [Es[P)(AY)]

= N-Dp
E [5goef[P](1)]
AY?2 ’

where N is the number of data points, and Dp is the number of components
spanned by P. This implies

E [ggoef[P](l)]
N—-Dp

AY? =

(33)

In the representation used in the previous section, it would appear that suc-
cessive exclusion of principal components would cause AY? to pass through
a minimum. However, in this representation, where all of the predictive in-
formation is contained in only one component, it is clear that there will be
no minimum down to Dp = 1, and that a minimum where Dp # 1 is an arti-
fact of the diagonalization of X”CX in whatever the independent variables’
scalings were.

At the same time,
cov(a, a)(AY) = cov(a,a)(1)AY?.

Discarding degrees of freedom, even though they do not predict y, will min-

imize Dp, increase N — Dp, reducing the expected value AY2. Further, the
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corresponding exclusion of those estimates in
covp(a,a) = li_%(F +e)T'P(T +el)™!

further underestimates cov(a,a), which shows up in error bars Ayegt =
zTcov(a,a)x that are too small to be consistent with the regression data.
The problem of assessing the statistical quality of the data is particularly
problematical for underdetermined systems. In this case, AY = 0, and there

are no error bars.

4 QSAR Analysis of CoOMMA: Methods and
Results

The CoMMA descriptors[18] of a molecule are a vector of the form

I, I, I, py Py P P q Quz Gy dp dy d,

where I, I, and I, are the principal values of the moment of inertia, p,, p,,
P, are the absolute values of the components of the dipole moment written
in the inertial principal axis frame, p is the magnitude of the dipole moment
(invariant under translation in a neutral molecule). Since the quadrupole
depends on the center of expansion if the molecule has a dipole, the field
is not uniquely specified unless a unique center of expansion is specified.
Given some expansion about an origin, translation of the center of expan-
sion to the point specified by Q - p'= 0 yields a unique quadrupole moment.
Further, since the dipole is an eigenvector of the quadrupole moment with

eigenvalue 0, and the trace of the quadrupole TrQ = 0, it follows there is
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only one characteristic number ¢, along with the principal axes, that speci-
fies the quadrupole.[20] While the unique specification of such a center is not
absolutely necessary for a good QSAR, it does provide an index which may
be used with a QSAR in conjunction with database searches on uniquely
characterized molecular field characteristics. The numbers ¢,, and gy, rep-
resent the projections of the quadrupole on the dipolar axes. The vector d,
dy, and d, is the absolute values of the displacement components from the
center of mass to the center of dipole expressed in the inertial frame. Since
the sense of the inertial axes is not determined, only the absolute values of
the components of p and d were retained, and the quadrupolar cross terms
Quys Quz, and gy, were discarded.[18][19] This implies the COMMA descriptors
are unchanged by chiral transformations, and prediction of chirally sensitive
activites for chiral isomers will fail.

The data used for an illustrative example in this section have all been
publish previously.[18][19] The 21 steroids distributed with the SYBYL[4]
molecular modeling program are analyzed as an example. The twelfth steroid
provided in that set, and listed as molecule 2 in the original citation,[2]
has been recognized to be incorrect.[13][17] The structure used here was
corrected. The 21 steroids are numbered and displayed in Figure 1. The
structures were initially constructed with standard angles and bond lengths
provided in the SYBYL 6.01 program,[4] global energy minimization based
on the TRIPOS force field program,[41] with 10° angular resolution system-
atic search, followed by a further force-field optimization. The dipole and

quadrupol moments of the charge distributions were computed from single
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point Gaussian 92[42] computations on a 631G™ basis set. The values are
enumerated in Table 1. The activities to be predicted are listed in Table 2.

The computation outlined in Section 3 was performed, using all of the
components in Py to predict the error. The independent variables were aug-
mented with an auxilliary fourteenth “descriptor” whose value is always set
equal to 1. This provides a simple way to include the offset in the error
propagation of the coefficients. The predicted coefficients together with their
expected errors are listed in Table 3. The size of the error bars would sug-
gest that many of the coefficients do not contain sufficient signal to predict
any meaningful regression. However, Table 4 shows very strong correlations
between the coefficients that must be taken into account when computing
a propagation of error. When this computation is properly performed, the
resulting error bars are quite consistent with observation, as seen in Table
5, suggesting that some of the notions of controlling for poorly conditioned
variables might be better managed through consideration of coefficient cor-
relations.

The same computation was performed using the projection P = Gy,
yielding unreasonably small error bars for the coefficients in Table 6, ex-
tremely strong correlations between the coefficients, Table 7, and error bars
that do not reflect the observed deviations, as seen in Table 8. This ideal case
of principal component subset selection, where the one component carrying
predictive information was isolated and used, is seen not to contain sufficient

information to correctly predict the error propagation.
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5 Conclusions

Since there is a way of extracting a scaling transformation of the independent
variables such that all the principal components are equally well conditioned,
and in which only one component contains all the predictive information, it
follows that the problem of principal component subset selection determined
by conditioning and predictive contribution is an artifact of the initial scaling
of the independent variables. Further, the distinction between the errors in
the estimation of the coefficients as opposed to the estimation of the errors
in the prediction of the dependent variable vanishes in the scaling proposed
here. However, all of the information in this scaling is also contained in the
components of the possibly more poorly conditioned initial scaling of the
data.

If that scaling was poorly conditioned, then the coefficients will be highly
correlated with large propagated errors, but those coefficients may produce
good predictions of the activities. This further implies that slight variations
in the data, or the inclusion or exclusion of data points, may produce wildly
differing coefficients which nevertheless predict the same good estimated ac-
tivities with reasonable uncertainties. If consistency in the predicted coeffi-
cients is important, then some component subset selection may be preferred.
However, error propagation is invalidated, and such a selection must become
an artifact of the accident of the initial selection of the physical units and
the correlations in the sampled independent variables.

Another immediate conclusion is that it is not meaningful to infer the
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importance of the various combinations of descriptors from the predictiv-
ity of various components, or to infer the predictive power of independent
descriptors, since the predictive information can be contained by just one
component while an effective description of the uncertainties requires all of
the components.

An alternative approach might be to identify strongly correlated variables
from the error analysis, and drop one of them from the regression. Such
information may be more effectively obtained by using the correlations to
determine which variables may be carrying redundant information that could
confound the conditioning of the regression, and to use techniques such as
cross-validation to identify a most effective subset of descriptors to describe
the data.

In grossly overdetermined systems, such as CoMFA [2] rapid and eas-
ily implemented algorithms such as PLS|[3] have become the de facto stan-
dard. And, as has been seen earlier, it is very problematical to perform an
error analysis for underdetermined systems except through cross-validation
or bootstrapping techniques. Even though error analysis is difficult due to
the nonlinearities in PLS, linearized approximations are available.[22] How-
ever, if the number of components is limited by a relatively small number
of measurements, some common algorithms permit the rapid computation of
leading principal components for systems with large numbers of independent
descriptors.
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Table 1: 21 CoMMA Descriptors
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0.3915
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0.2835
0.5811
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0.5013
0.7433
0.8081
0.2723
0.6382
0.5737
0.7982
0.3773
0.6217
0.6349
0.4490
0.3483
1.1664
0.4108
0.8756
0.8036
0.7168
0.9709
1.0228
0.6760

11.0412
14.9601
11.7459
3.2629
8.9785
4.1172
6.0591
7.5800
11.4266
13.8848
6.8832
7.7018
3.1454
1.7074
4.3961
15.1479
5.6797
17.9561
2.5270
13.2736
11.8327

-5.6178
-5.3851
-1.3790
-0.0126
0.7687
-0.1809
0.9080
0.4016
-5.9301
-8.4355
-0.9245
0.0950
-0.4393
-0.0166
-0.2734
-7.5869
1.0759
-7.4856
-0.1950
-3.4224
-8.7428

-2.3094
13.4133
11.2658
-2.9277
-0.3653
0.2657
3.7394
3.7201
-3.4086
1.0865
1.4685
0.0629
3.1271
-0.8155
-3.2590
5.2529
1.0009
17.8694
1.6137
1.8752
8.6369

8.2273
11.6361
8.4244
3.5541
4.6459
5.1398
4.9107
2.5517
12.4445
5.6349
11.0534
0.9324
24.7143
3.2962
2.2074
4.7018
2.8061
8.0317
6.1636
4.9162
3.5667

5.4694
1.5378
2.9809
2.3327
2.9329
5.7280
5.1797
2.3555
6.4638
3.7610
5.3463
2.6090
3.6345
1.9849
4.3425
4.0808
3.1952
0.8073
3.4024
0.7754
0.5092

1.8269
13.7519
9.8699
3.1487
2.4664
1.3064
1.1889
0.1187
2.8828
2.1358
6.5989
1.2987
1.3121
1.8622
6.4725
2.8027
0.3680
9.3829
4.2125
3.7030
2.0745




Table 2: 21 CBG Activities

Activity
6.279
7.653
7.881
5.919
5.00
5.00
5.00
5.255
5.255
5.00
7.380
5.00
7.740
6.724
5.00
5.763
5.613
7.881
7.881
6.892
5.00
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Table 3: CoMMA PCR Regression Coefficients

Coefficients =+ Errors
0.00152784 +  0.00261244
—0.00237925 =+  0.00333417
0.00244299 +  0.00274996
—2.80199 +  3.10896
—2.07624 +  1.39958
0.366779 +  1.58565
6.12432 +  3.78857
—0.0112143 4+  0.046603
0.0985031 4+  0.0781397
—0.0269981 +  0.0384506
0.149761 +  0.0326788
0.00314725 £+  0.0802196
0.167175 +  0.0555252
0.412245 + 1.16034
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Table 4: CoMMA PCR Regression Coefficient Correlations
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Correlation Coefficients

1
-0.7434
0.6714
-0.3406
-0.3687
-0.5878
0.2629
0.01046
-0.1678
-0.0519
0.1478
0.2336
0.1432
-0.1786

-0.7434
1
-0.9930
0.5530
0.1990
0.4893
-0.4813
0.0485
-0.1776
0.0702
-0.4405
-0.2823
-0.3020
0.3947

0.6714
-0.9930
1
-0.5552
-0.1722
-0.4379
0.4855
-0.0748
0.2116
-0.0706
0.4391
0.2802
0.2941
-0.4289

-0.3406
0.5530
-0.5552
1
0.5665
0.6797
-0.9857
-0.2212
-0.6701
0.1623
-0.6445
-0.5786
-0.6073
0.7414

-0.3687
0.1990
-0.1722
0.5665
1
0.4534
-0.6146
-0.3651
-0.09764
0.4536
-0.2789
-0.4824
-0.2300
0.5763

-0.5878
0.4893
-0.4379
0.6797
0.4534
1
-0.6379
-0.3673
-0.3589
-0.2256
-0.2945
-0.3115
-0.1413
0.2345

0.2629
-0.4813
0.4855
-0.9857
-0.6146
-0.6379
1
0.2903
0.6870
-0.2255
0.6817
0.6005
0.6135
-0.7848

0.0105
0.04850
-0.07479
-0.2212
-0.3651
-0.3673
0.2903
1
0.4906
-0.2488
0.3298
0.0852
-0.0459
-0.2405

-0.1678
-0.1776
0.2116
-0.6701
-0.0976
-0.3589
0.6870
0.4906
1
-0.0062
0.5742
0.3093
0.3895
-0.5470

-0.0519
0.07018
-0.07062
0.1622
0.4536
-0.2256
-0.2255
-0.2488
-0.0062
1
-0.3953
-0.0030
-0.4772
0.4029

0.1478
-0.4405
0.4391
-0.6445
-0.2789
-0.2945
0.6817
0.3298
0.5742
-0.3953
1
0.2386
0.5582
-0.5498

0.2336
-0.2823
0.2802
-0.5786
-0.4824
-0.3115
0.6005
0.08517
0.3093
-0.0030
0.2386
1
0.3753
-0.6873

0.1432
-0.3020
0.2941
-0.6073
-0.2300
-0.1413
0.6135
-0.0459
0.3895
-0.4772
0.5582
0.3753
1
-0.5033

-0.1786
0.3947
-0.4289
0.7414
0.5763
0.2345
-0.7848
-0.2404
-0.5470
0.4029
-0.5498
-0.6873
-0.5033
1




Table 5: CoMMA PCR Regression Activity Prediction

Measured | Predicted =+ Errors

Activity | Activity
6.279 6.08868 £+  0.240674
7.653 7.91285 £+  0.266234
7.881 7.99297 £+  0.288605
5.919 5.875568 £+  0.22007
5.0 4.82527 £+  0.28579
5.0 5.48766 £+  0.232538
5.0 4.92669 £+  0.317322
5.255 5.41805 £  0.329263
5.255 5.61347 £+ 0.248522
5.0 4.83734 £+  0.307287
7.38 7.11644 £+  0.253489
5.0 4.9226 £+  0.28976
7.74 7.65107 £ 0.346948
6.724 6.70262 £  0.330707
5.0 4.8961 +  0.295984
5.763 5.57878 £+  0.308924
5.613 5.60417 £  0.203773
7.881 7.6102 + 0.311304
7.881 7.75545 £+ 0.300585
6.892 7.13346 £+  0.315381
5.0 5.16656 £+  0.32183
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Table 6: One Component CoMMA PCR Regression Coefficients

Coeflicients = Errors
0.00152784 4+  1.88815e — 05
—0.00237925 =+  2.94034e — 05
0.00244299 4+  3.01911e — 05
—2.80199 +  0.0346277
—2.07624 +  0.0256587
0.366779 +  0.00453274
6.12432 +  0.0756858
—0.0112143 + 0.000138589
0.0985031 4+  0.00121733
—0.0269981 £+  0.000333649
0.149761 +  0.00185078
0.00314725 £+  3.88944e — 05
0.167175 +  0.00206598
0.412245 +  0.00509462
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Table 7: CoMMA One Component PCR Regression Coefficient Correlations

Correlation Coefficients
T|-1y 1 |-1({-1{1|1|-1|1}-1j1(11]|1

-111}-1j11|-1-11|-1|1|-1}-1|-1}-1

1-1y1-1-1j1|1}-1y1}-1j1 111

-111}-1j1|1|-1-1|1|-1|1|-1}-1|-1}-1
-111}-1j1|1|-1-1|1|-1|1|-1}-1|-1}-1

1-1y1-1-1j1|1}-1y1}-1j1|1 1|1

1-1y1-1-1j1|1}-1y1}-1j1 111

-111}-1j11|-1-11|-1|1|-1}-1|-1}-1

1-1y1-1-1j1|1}-1y1}-1j1 111

-1j1(-1y1|1|-1}-1|1|-11|-1}-1}-1}-1

1-1y1-1-1j1}1}-1y1}-1j1 111

1-1y1-1-1j1|1}-1y1}-1j1 111

1-1y1-1-1j1|1}-1y1}-1j1 111

1-1y1-1-1j1|1}-1y1}-1j1 111




Measured | Predicted =+ Errors
Activity | Activity

6.279 6.08868 +  0.0752453
7.653 7.91285 £  0.0977889
7.881 7.99297 £  0.0987791
5.919 5.87558 £  0.0726118
5.0 4.82527 £+  0.0596318
5.0 5.48766 +  0.0678179
5.0 4.92669 £  0.0608852
5.255 5.41805 £  0.0669575
5.255 5.61347 £  0.0693726
5.0 4.83734 £+  0.0597811
7.38 7.11644 £  0.0879467
5.0 4.9226 £+  0.0608347
7.74 7.65107 £  0.0945537
6.724 6.70262 £  0.0828326
5.0 4.8961 +  0.0605072
5.763 5.57878 £  0.068944

5.613 5.60417 £  0.0692577
7.881 7.6102 £ 0.0940487
7.881 7.75545 £+  0.0958438
6.892 7.13346 £+  0.0881571
5.0 5.16656 +  0.0638496
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Table 8: CoOMMA One Component PCR, Regression Activity Prediction



Figure 1: 21 corticosteroids with measured globulin binding activities.





