
RC 22080 (99009) 1 June 2001 Computer Science

IBM Research Report
Mining Long Sequential Patterns in a Noisy Environment

Jiong Yang, Wei Wang, Philip Yu
IBM Research Division

Thomas J. Watson Research Center
P. O. Box 704

Yorktown Heights, NY 10598

Jiawei Han
Simon Fraser University

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Mining Long Sequential Patterns in a Noisy Environment

Jiong Yang, Wei Wang, Philip S. Yu Jiawei Han

IBM T. J. Watson Research Center Simon Fraser University

fjiyang, ww1, psyug@us.ibm.com han@cs.sfu.ca

Abstract

Pattern discovery in long sequences is of great importance in many applications including computational biology study,

consumer behavior analysis, system performance analysis, etc. In a noisy environment, an observed sequence may not

accurately reflect the underlying behavior. For example, the amino acid N in human body is likely to mutate to D with little

impact to the biological function of the protein. It would be desirable if the occurrence of D in the observation can be related

to a possible mutation from N in an appropriate manner. Unfortunately, the support measure (i.e., the number of occurrences)

of a pattern does not serve this purpose. In this paper, we introduce the concept ofcompatibility matrixas the means to provide

a probabilistic connection from the observation to the underlying true value. A new metricmatchis also proposed to capture

the “real support” of a pattern which would be expected if a noise-free environment is assumed. In addition, in the context

we address, a pattern could be very long. The standard pruning technique developed for the market basket problem may

not work efficiently. As a result, a novel algorithm that combines statistical sampling and a new technique (namelyborder

collapsing) is devised to discover long patterns in a minimal number of scans of the sequence database with sufficiently high

confidence. Empirical results demonstrate the robustness of the match model (with respect to the noise) and the efficiency of

the probabilistic algorithm.

1 Introduction

Pattern discovery in long sequences is of great importance in many applications. As an important metric, thesupport[4, 11,

15, 21, 24] (or some derivation of support) is widely used to qualify significant patterns. Due to the presence of noise, a

symbol may be misrepresented by some other symbols. This substitution may prevent an occurrence of a pattern from being

recognized and in turn slashes the support of that pattern. As a result, a frequent pattern may be “concealed” by the noise.

This phenomenon commonly exists in many applications.

� Bio-Medical Study. Mutation of amino acids is a common phenomenon studied in the context of biology. Some

mutations are proved to occur with a non-negligible probability under normal circumstances and incur little change to

its biological functionalities. For example, the amino acid N in human body is likely to mutate to D with little impact

to the behavior [10]. In this sense, they should not be considered as totally independent individuals.

� Performance Analysis. Many system-monitoring applications involve collecting and analyzing attributes that take con-

tinuous numerical values. A common approach to process them is to quantize the domain into categories. If the true

value of an attribute is close to the boundary of the quantization, there is a fair chance that the observed value may fall

into the adjacent bin and be represented by a different label. It would be desirable if such kind of distortion can be

taken into account during the data mining process.

� Consumer Behavior. It happens frequently that a customer may end up buying a slightly different merchant from what

he (she) originally wanted due to various reasons, such as the desired one was out of stock or misplaced. Allowing

obscurity in item matching may conduce to unveil the customer’s real purchase intention.

This problem becomes critical when the pattern is long because a long pattern is much more vulnerable to distortion

caused by noise. Our experiments in Section 5 show that, even with a moderate degree of noise, a frequent long pattern may

have as much as60% chance to be labeled as an infrequent pattern. Let’s take the gene sequence analysis as an example.

The length of a gene expression can range up to a few hundreds if amino acids are taken as the granularity of the analysis.

Figure 1(a) shows a fragment of gene expression that is found in campylobacter jejuni genome [12]. Some clinical studies

show that, the amino acids N, K, and V are relatively more likely to mutate to amino acids D, R, and I, respectively. The

corresponding gene expressions after the mutation are shown in Figure 1(b), (c), and (d) respectively. Even though all of these

mutated gene expressions somewhat differ from the standard one in Figure 1(a), it is more equitable to treat them as possible

(degraded) occurrences of the standard expression than to consider them as totally independent gene expressions.

M T K Y Q V C E B R H U J G P O L I N X

A M T K Y Q V C E B R H U J G P O L I XD

A

A

(a) a fragment of gene expression in Campylobactier Jejuni Genome

M T Y Q V C E B R H U J G P O L I N XR

A M T K Y Q C E B R H U J G P O L I N XI

(b) N mutates to D

(c) K mutates to R

(d) V mutates to I

Figure 1: An example of gene expression

In order to accommodate the above circumstance, it is necessary to allow some flexibility in pattern matching. Unfor-

tunately, most previously proposed models [4, 11, 15, 21, 24] for sequential patterns only take into account exact match of

1

the pattern in data1. In this paper, we present a more flexible model that allows obscurity in pattern matching. A so-called

compatibility matrixis introduced to enable a clear representation of the likelihood of symbol substitution. Each entry in

the matrix corresponds to a pair of symbols(x; y) and specifies the conditional probability thatx is the true value giveny is

observed. Figure 2 gives an example of compatibility matrix. The compatibility matrix essentially creates a natural bridge

between the observation and the underlying substance. Each observed symbol is then interpreted as an occurrence of a set

of symbols with various probabilities. For example, an observedd1 corresponds to a true occurrence ofd1, d2, andd3 with

probability 0.9, 0.05, and 0.05, respectively. Similarly, an observed symbol combination is treated as an occurrence of a set

of patterns with various degrees. A new metric, namelymatch, is then proposed to quantify the significance of a pattern and

is defined as the “aggregated amount of occurrences” of a pattern in the sequence database. The match of a pattern indeed

represents the “real support” that were expected if no noise presents.

value

observed
value

0.85

0.9 0.1 0 0 0

0 0 0.15

true

0d5

0 0.1 0.1 0.75 0.05

0.05 0 0.7 0.15 0.1

0.05 0.8 0.05 0.1 0

d1

d2

d3

d4

d1 d2 d3 d4 d5

Figure 2: An example of compatibility matrix

The well-known Apriori property also holds on the match measure, which states thatany superpattern2 of an infrequent

pattern is also infrequent and any subpattern of a frequent pattern is also frequent. This guarantees that any previous algorithm

designed for the support model [4, 11, 15, 21, 24] can be generalized to suit the match model, though it may not necessarily be

efficient. Compared to the support model, a much larger number of patterns may possess some positive matches. In addition,

the length of a pattern can be considerably long in the context we address, e.g., gene expression analysis. The combined effect

of these two factors may force any direct generalization of existing algorithms (even including those designed for long patterns

[1, 6]) to scan the entire sequence database many times. To tackle this problem, we propose a novel sampling-based algorithm

that utilizes the Chernoff Bound [9, 16, 23, 25] to estimate the set of patterns whose matches in the sample are very close

to the threshold so that there is no sufficient statistical confidence to tell whether the pattern would be frequent or not in the

entire sequence database. These ambiguous patterns are then investigated against the entire sequence database to finalize the

set of frequent patterns. Because the sample size is usually limited by the memory capacity and the distribution-independent

nature of Chernoff Bound provides a very conservative estimation, the number of ambiguous patterns is usually very large.

Consequently, significant amount of computation needs to be consumed in order to verify these ambiguous patterns in a level-

wise manner. We observed that, for the protein sequence database, majority of the time would be spent in this verification step

when the discovered pattern contains dozens of symbols. To expedite the process, we proposed a so calledborder collapsing

technique to conduct the examination of these ambiguous patterns. While the super-pattern/sub-pattern relationship forms

a lattice among all patterns, the set of ambiguous patterns “occupies” a contiguous portion of the lattice according to the

Apriori property. Therefore, starting from the lower border and the upper border embracing these ambiguous patterns, the

border of frequent patterns (in the entire sequence database) is located efficiently by successively collapsing the gap between

these two borders until no ambiguous pattern exists. To maximize the extent of each gap collapsing operation, only the set of

ambiguous patterns with the highest collapsing power are identified and probed. As a result, the expected number of scans
1Another approach to tackle the problem is to perform sub-space clustering on the sequence database and then derive patterns from each discovered

clusters. However, since each sequence is relatively long (e.g., containing thousands of symbols), it is not clear how the clustering technique can be applied

efficiently and accurately for such a high dimensional space.
2We will define shortly that a patternP is a superpattern ofP 0 if P 0 can be obtained by replacing some position(s) inP with the “don’t care” symbol *.

In such a case,P 0 is also called a subpattern ofP .

2

through the entire database is minimized.

There is a clear distinction between our algorithm and existing algorithms [23, 25] that also use sampling technique to

mine frequent patterns. In the previous proposed approaches, the frequent patterns calculated from the sample is usually taken

as the starting position of a level-wise search conducted in the entire sequence database until all frequent patterns have been

identified. This strategy is efficient if the number of frequent patterns that fail to be recognized from the sample is small, which

is typically the case under the assumption of a reasonably large sample size and a relatively short pattern length. However, in

the problem we try to solve, the number of ambiguous patterns may be substantially larger, which makes a level-wise search

an inefficient process. In contrast, our algorithm can successfully deal with such scenario by each time directly probing the set

of ambiguous patterns that would lead to a collapse of the space of remaining ambiguous patterns to the largest extent, so that

the number of necessary scans through the sequence database is minimized. This leads to substantially better performance

than the existing sampling approach. We will investigate the effect of the border collapsing technique in more detail in a later

section and will show that, in most cases, a couple of scans of the sequence database are sufficient even the pattern is very

long when the border collapsing is employed.

In summary, the following contributions are claimed in this paper.

� The concept ofcompatibility matrixis introduced to define possible symbol substitutions caused by noise.

� A novel metricmatchis proposed to capture the significance of a pattern under the noisy environment.

� A sampling based algorithm is devised to efficiently mine long patterns that satisfy a match threshold.

– The Chernoff Bound is used to estimate the set of ambiguous patterns with very high confidence.

– Instead of using a level-wise search, aborder collapsingtechnique is performed to locate the border of frequent

patterns so that the expected number of passes through the sequence database is minimized.

� We conduct numerous experiments to demonstrate the robustness of the match model and the efficiency and effective-

ness of the proposed algorithm.

The remainder of this paper is organized as follows. Section 2 gives a brief survey of related work. The model of obscure

patterns is proposed in Section 3. Section 4 discusses the sampling based algorithm in detail. The experimental results are

shown in Section 5. Finally, Section 6 draws the conclusion.

2 Related Work

2.1 Sequential Patterns

Much work has been done in the area of sequential pattern discovery [1, 4, 6, 20, 21, 24]. Ignoring other differences in the

problem definition, a major common shortcoming among most of previous work is the lack of flexibility in pattern matching

(i.e., only the exact match of a pattern in the input data is considered an occurrence of the pattern). In practice, given a

pattern and an observed sequence, the disagreement of the pattern with some portion of the sequence may be a result of either

truly behavior change or simply distortion of the appearance incurred by noise. An implicit assumption made by existing

frameworks is that both cases are regarded as absence of the pattern, which is not necessarily the optimal approach to deal

with noise in many applications. In contrast, we introduce a more flexible model that is able to successfully separate these

two cases and restore the strength of the pattern diluted due to the distortion incurred by noise.

3

2.2 Algorithms on Mining Long Patterns

A widely used strategy to speed up the process of mining long patterns is to incorporate some look-ahead technique in the

original Apriori-based scheme so that the set of maximum frequent itemsets3 can be identified without traversal through every

frequent itemset. Several algorithms [19, 6, 30] have been proposed along this direction, among which the Max-Miner [6]

is the most noted advance. The Max-Miner offers simple and effective heuristics to generate candidates for long patterns

throughout the mining process and is able to achieve a performance improvement of at least an order of magnitude compared

to other look-ahead techniques. In this paper, we will use Max-Miner as the representative of this class of algorithms in the

experimental study to compare the performance with that of our proposed approach.

More recently, extensive research [1, 14, 15, 31] has been carried out on mining patterns in a depth-first projection-

based fashion as opposite to the traditional breadth-first Apriori-based traversal. As patterns are usually organized via a

tree [1, 14, 15] (or lattice in [31]) structure, along with the discovery of frequent patterns when traversal through structure,

data projection onto each newly identified frequent pattern is also taken to facilitate the subsequent examination of its super-

patterns. In particular, Han et al. [14] propose a so-called frequent pattern tree (FP-tree) to organize the produced data

projection in a concise and ingenious manner so that the generation of a huge number of candidate patterns can be avoided

completely. While the FP-growth [14] is designed for mining frequent itemsets in general, the FreeSpan [15] and SPADE

[31] are specifically tailored for mining sequential patterns. It is interesting to notice that, the depth-first approaches generally

perform better than breadth-first ones if the data is memory-resident, and the advantage becomes more substantial when the

pattern is long. However, in our model, we assume disk-resident data that is far beyond the memory capacity.

2.3 Sampling-based and Probabilistic Algorithms

Data mining on sample data has also been explored previously. Srikant et al. [23] and Toivonen et al. [25] are among the

earliest to propose sampling-based algorithms to mine frequent itemsets. In this approach, a set of samples is first gathered.

(The Chernoff bound can be used to determine the right sample size.) The frequent itemsets are computed based on the

samples. LetF be the set of frequent itemsets in the sample data and their immediate superpatterns. The supports of itemsets

in F are then computed based on the entire dataset and serve as the (advanced) starting position of a level-wise search that

eventually identifies all frequent patterns. This approach is very efficient if the set of frequent patterns mined from the sample

data is a good approximation of the exact result from the entire data. This is typically true when the sample size is large and

the pattern is of moderate length. This observation is also confirmed in [29]. In our application domains, e.g., computational

biology, the number of symbols in a pattern can be very large, e.g., up to a couple hundred. Thus, the number of candidate

patterns examined in the last stage can be substantially large, which may require many scans of the entire database.

In addition, some research has been carried out on designing randomized algorithms to mine frequent patterns. Gunopulos

et al. [13] is among the pioneers in this direction.

3 A Model of Obscure Patterns

In this paper, we are interested in finding patterns that may be concealed (to some extent) by noise in a sequence database. We

first introduce some terminologies that will be used throughout this paper. Let� be a set of distinct symbolsfd1; d2; : : : ; dmg.

Definition 3.1 A sequenceof length l is an ordered list ofl symbols in�. A sequence databaseis a set of tuplehSid; Si

whereSid is the ID of the sequenceS.

3An itemset isfrequentif its number of occurrences in a given database is above a certain threshold, and it is called amaximum frequent itemsetif any of

its superset is not frequent.

4

Definition 3.2 A pattern of length l is represented as a list ofl symbols, each of which is either a symbol in� or an eternal

symbol denoted by “*”. The eternal symbol “*”4 is used to indicate the “don’t care” position in a pattern. A pattern is also

referred to as ak-pattern if the pattern containsk non-eternal symbols.

Note that the formative difference between a sequence and a pattern is that a pattern is allowed to contain the eternal symbol

*. Conventionally, we usesequenceto refer to the raw data in the database which serves as the input to the data mining

algorithm and usepattern to denote the output produced by the algorithm. Each eternal symbol * specified in the pattern

can match a single symbol on the corresponding position (rather than a subsequence with (optional) length constraints) in

the input sequence. In this sense, our model is a somewhat stricter than previous models [4, 15, 24, 31]. Nevertheless, we

want to mention that the inclusion of the eternal symbol in the pattern specification enables the representation of fixed-length

gap(s) between meaningful portions in a pattern. This is very important in many position-sensitive applications such as the

analysis of DNA transcription factors. For example, Zinc Finger is a common transcription factor that has the signature

C � �C � � � � � � � � � � � � �H � �H whereC andH represent amino acid cysteine and amino acid histidine, respectively.

In general, ak-pattern of lengthl would containl � k eternal symbol * wherek � l. To exclude trivial patterns from

consideration, we also require that neither the first symbol nor the last symbol in a pattern can be the eternal symbol *.

Definition 3.3 Given two patternsP = d1d2 : : : dl andP 0 = d01d
0
2 : : : d

0
l0 wherel � l0, P is asubpattern ofP 0 if there exists

an integerj (1 � j � l0 � l) such that, for eachi (1 � i � l), eitherdi = � or di = d0i+j is true. In such a case,P 0 is also

referred to as asuperpattern ofP .

Intuitively, P is a subpattern ofP 0 if P can be generated by (1) dropping a prefix and/or a suffix ofP 0; or (2) replacing

some symbold0i in P 0 with the eternal symbol *; or (3) a combination of (1) and (2). For example,d1 � d3 andd1 � �d4d5

are subpatterns ofd1 � d3d4d5 but d1d2 is not. It is clear that the sub-/super-pattern relationship defines a lattice among all

patterns. Figure 3 shows a fragment of the lattice.

 d

1 2 d d

1 2 3 d d d

1 3 d * d

1

1

1

2

. . .

3 4

3 4 1 2 3 21 4 1 3 4

1 1 5

5

5 5 5

4

2

1 4 51 3 51 3 41 2 51 2 4 . . .

. . .

. . .

. . . d d d d d

 d d d d d d d * d d d * d d d * d d d

 d d * d d d * * d d * d d d * d * d d * * d d

 d * * d d * * * d

Figure 3: A fragment of lattice of sequential patterns

Our goal is to find the significant patterns in a sequence database in the presence of noise. In order to accommodate the

noise, we propose a flexible model that allows obscurity in pattern matching. If the observed data does not match exactly

but is somewhat “compatible” with a pattern, it can be regarded as a degraded occurrence of the pattern. To honor the

“partial” occurrence of a pattern, we propose a new metric, namelymatch, to characterize the significance of the pattern in a

symbol sequence. In particular, the conditional probability of the true value given an observed symbol is utilized to quantify

“compatibility” between a pattern and an observed symbol sequence, and to assess thematchof the pattern.

Definition 3.4 Let� = fd1; d2; : : : ; dmg be a set of distinct symbols. Anm � m matrixC, referred to ascompatibility

matrix , can be used to represent the conditional probabilities for each pair of symbols. Given two symbolsdi anddj , the

4It is equivalent to the symbol “.” used in regular expression.

5

entryC(di; dj) = Prob(true value = di j observed value = dj) is the conditional probability thatdi is the true value

given thatdj is observed.

Figure 2 shows an example of the conditional probability matrix between 5 symbolsd1, d2, d3, d4, andd5. An entry

C(di; dj) > 0 indicates thatdi might be (mis)represented asdj in the observation; whileC(di; dj) = 0 implies that the

symboldi cannot be represented asdj despite the presence of noise. For instance,C(d1; d2) = 0:1 andC(d1; d3) = 0 in

Figure 2. This means that there is a chance that ad1 flips to ad2 in the observation but it is impossible that ad1 may turn

to ad3. We also defineC(�; di) = 1 for all i(1 � i � m) to handle the don’t care position(s) in the pattern. The intuition

is that any (observed) symbol should befully compatiblewith the don’t care position and therefore should not incur any

change to the match of the pattern. Note that the compatibility is not necessary a symmetric measurement in the sense that

C(di; dj) 6= C(dj ; di) may be true in some occasion. In Figure 2,C(d1; d2) = 0:1 andC(d2; d1) = 0:05. We also want to

point out that, in the caseC(di; di) < 1, an observed symboldi does not always imply thatdi really occurs.C(d1; d1) = 0:9

implies that an observedd1 truly represents itself with90% probability and is a misrepresentation of some other symbol with

10% chance. (According to Figure 2, an observedd1 has a5% chance to be a misrepresentation ofd2 andd3, respectively.) It

is conceivable that (1) the compatibility matrix provides a meaningful measure to reveal the substance given the observation,

and (2) the assessment of each entry has great impact to the final result. In practice, this matrix can be either given by a domain

expert or learned from a training data set. In gene sequence analysis, this matrix can be obtained through clinical study. Some

practical examples can be found in [10] on the biology sequence analysis. In this paper, we assume that the compatibility

matrix is given by some domain expert in advance and will not elaborate on how to obtain and justify the value of each entry

in the matrix. We also demonstrate in Section 5 that, even with a certain degree of error contained in the compatibility matrix,

our model can still produce results of reasonable quality.

Given a patternP = d1d2 : : : dl and a segment5 of l observed symbolss = d01d
0
2 : : : d

0
l, the conditional probability

Prob(P j s) represents the probability thats corresponds to an occurrence ofP , and can be used as the indication of how

much the pattern tallies with the observation. Therefore, we define thematchof P in s to be the value ofProb(P j s).

Definition 3.5 Given a patternP = d1d2 : : : dl and a segment ofl observed symbolss = d01d
0
2 : : : d

0
l, thematch of P in s

(denoted byM(P; s)) is defined as the conditional probabilityProb(P j s).

Assuming that each observed symbol is generated independently, we haveM(P; s) = Prob(P j s) = �1�i�lC(di; d
0
i).

If M(P; s) > 0, thens is regarded as a (degraded) occurrence ofP andM(P; s) is viewed as the degree of which the pattern

P is retained/reflected ins. We also say thatP matchess if M(P; s) > 0 andP does not matchs otherwise. For example,

the match ofP1 = d1 �d2 in a segments = d1d2d2 isM(P1; s) = C(d1; d1)�C(�; d2)�C(d2; d2) = 0:9�1�0:8 = 0:72.

However, the patternP2 = d1d2d5 does not matchs becauseM(P2; s) = C(d1; d1)�C(�; d2)�C(d5; d2) = 0:9�1�0 = 0.

Definition 3.6 For a symbol sequenceS of lengthlS and a patternP of lengthlP wherelS � lP , thematch of P in S is

defined as the maximal match ofP in every distinct segment (of lengthlP) in S. That is,M(P; S) = maxs2SM(P; s) where

s is a segment of lengthlP in S.

There are totallylS � lP + 1 distinct segments (of lengthlP) in S. All distinct segments of lengthlP can be gener-

ated by maintaining a window of lengthlP and sliding it one position at a time through the sequence. For example, there

are 5 distinct segments of length 2 in the sequenced1d2d2d3d4d1. The match ofP = d1d2 in this sequence is equal

to maxfM(P; d1d2);M(P; d2d2);M(P; d2d3);M(P; d3d4);M(P; d4d1)g = maxf0:72; 0:08; 0:005; 0; 0g = 0:72. Infor-

mally, the match of a patternP in a sequenceS is equal to the match ofP in the segment (ofS) which “best” aligns with

P , and can be regarded as an indicator of the degree of which the patternP exhibits in the sequenceS. We also say thatP

matchesS if M(P; S) > 0 andP does not matchS otherwise.

5A segment is defined as a contiguous portion of a sequence.

6

Definition 3.7 Given a patternP and a databaseD ofN sequences, thematch ofP in D is the average match ofP in every

sequence inD, i.e.M(P;D) = �S2DM(P;S)
N .

Similar to the traditional support model, a user is asked to specify a minimum match thresholdmin match to qualify sig-

nificant patterns. All patterns that meet themin match threshold are then referred to asfrequent patterns. It is clear that

thematchmodel can accommodate misrepresentation of symbols due to noise in a seamless manner and provide a powerful

means to properly separate the noise and change of behavior.

1. Given a patternP = d1d2 : : : dl and a segments = d01d
0
2 : : : d

0
l, if the symbol at a given position (e.g.,d0i) in s cannot

be a misrepresentation of the corresponding symbol (e.g.,di) in P (i.e.,C(d0i; di) = 0), then the match of the pattern

P in the segments is 0 and thes would not be considered an occurrence ofP .

2. For each “don’t care” position in a pattern, the compatibility on this position is 1 (by definition), no matter what the

corresponding observed symbol is. Hence, this position would not incur any loss to the match of the pattern.

3. The match model also provides a natural bridge towards the traditional support model that does not allow partial match

between pattern and data. In a noise-free environment, the conditional probability matrix becomes anidentity matrix

(i.e.,C(di; dj) is 1 if i = j and is 0 otherwise). The occurrence of a pattern becomes binary: either 1 (present) or 0

(absent). The match of a pattern in the data would be identical to the support of the pattern. In general, the more noise

the environment assumes, the less skew the conditional probability distribution. Consider an extreme case where the

sequence database is dominated by noise and no dependency exists between the observation and the true value. Then,

all entries in the compatibility matrix would have the same value1
m wherem is the number of distinct symbols. As

a result, all patterns would have exactly the same match value. This coincides with our intuition in the sense that, if

the observed data is totally independent of the underlying system behavior, then no pattern should be considered more

significant than others.

Figure 4(a) shows a database of 4 sequences. Figure 4(b) and (c) show the comparisons of supports and matches of each

symbol and each pattern with two symbols, respectively. The number of patterns with positive match is usually much larger

than that with positive support. In particular, as the pattern length increases, the match decreases at a much slower pace than

the support. In the previous example (Figure 4(a)), consider patternsd3, d3d2, d3d2d2, andd3d2d2d1. Their supports are

0.5, 0, 0, 0, respectively; whereas their matches are 0.4, 0.07, 0.016, and 0.00522, respectively. This phenomenon is a direct

consequence of the allowance of partial match between pattern and data segment. While each segment may increase the

support of only one pattern with a full credit, its effect is dispersed among multiple patterns in terms of lifting their matches

by various degrees. Figure 4(d) shows the amount of match that the segmentd2d2 may contribute to each pattern. There are

totally 9 patterns that actually “benefit” from it. Note that the summation of these 9 numbers is still 1. It can be viewed as a

“redistribution” of certain portion of the support in such a manner that the uncertainty introduced by noise is properly taken

into account. For each pattern, the differential between the match and the support is the necessary rectification made towards

the significance of the pattern. While the support can be viewed as the “face value” of a pattern, the match indeed represents

the “expected value” (if no noise had presented).

The well-known Apriori property also holds on the match metric, which can be stated as in the following claims.

Claim 3.1 The match of a patternP in a symbol sequenceS is less than or equal to the match of any subpattern ofP in S.

The proof of the above claim can be sketched as follows. LetP = d1d2 : : : dl andP 0 = d01d
0
2 : : : d

0
l be two patterns and

P is a subpattern ofP 0. For any data segments = x1x2 : : : xl, the match ofP in s is M(P; s) = �1�i�lC(di; xi) and the

match ofP 0 in s is M(P 0; s) = �1�i�lC(d
0
i; xi). Since for each positioni, eitherdi = d0i or di = � is true, we have either

C(di; xi) = C(d0i; xi) or C(di; xi) = C(�; xi) = 1 � C(d0i; xi). As a result, it must be true thatM(P; s) � M(P 0; s).

7

d2

d4 d2 d1
d1 d2 d3 d1

ID sequence

1

3
2

4
d4d3 d2 d1

symbol
d1
d2
d3
d4
d5

support
0.75
1.00
0.50
0.50
0

match

0.075

0.538
0.800
0.400
0.425

support match

0

0
0
0
0
0
0
0
0 0

0.25

0
0.50

0.136
0
0.070
0.321
0.023
0.053
0.004
0.033
0.006
0.008
0.028

pattern
d1 d1
d1 d2
d1 d3
d1 d4
d1 d5
d2 d1
d2 d2
d2 d3
d2 d4
d2 d5
d3 d1
d3 d2
d3 d3

support match pattern

0
0

0
0

0
0

0.25

0.25

0.25

d2

0.25

(d) the match contributed to each pattern by an observation of "d2 d2"

0.25

0.50

0
0.203

0.023
0.004
0.391
0.200

0.070

0.020

0.160
0.052
0.035
0.165
0.070
0.043

d3 d4
d3 d5
d4 d1
d4 d2
d4 d3
d4 d4
d4 d5
d5 d1
d5 d2
d5 d3
d5 d4
d5 d5

(c) support and match of patterns with two symbols

pattern match matchpattern match pattern match pattern matchpattern

0.08
0.640.08

0.01

0
0.01
0

0
0.08
0

0
0
0
0
0

0.01
0.08
0
0.01
0

0
0
0
0
0

d1 d1
d1 d2
d1 d3
d1 d4
d1 d5

d2 d1
d2 d2
d2 d3
d2 d4
d2 d5

d3 d1
d3 d2
d3 d3
d3 d4
d3 d5

d4 d1
d4 d2
d4 d3
d4 d4
d4 d5

d5 d1
d5 d2
d5 d3
d5 d4
d5 d5

(a) a sequence database (b) support and match of each symbol

Figure 4: Comparison ofsupportandmatch

By definition, the match of a pattern in a sequence is the maximal match of the pattern in every distinct segment of the

sequence. It is very straightforward that, for any symbol sequenceS,M(P; S) �M(P 0; S) is also true. As a direct corollary

of Claim 3.1, the follow claim also holds.

Claim 3.2 (Apriori property) The match of a patternP in a sequence databaseD is less than or equal to the match of any

subpattern ofP in D.

A direct implication of the Apriori property is that, given amin match threshold, the set of frequent patterns occupy

a “continuous portion” in the pattern lattice, and can be described using the notion ofborder [20]. Intuitively, the border

demarcates the separation between the set of frequent patterns and the rest of the lattice, and can be represented by the set

of frequent patterns whose immediate super-patterns are all infrequent. For example, if the patterns with solid circles are

frequent in Figure 3, then the border should consist of three patterns:d1d2d3, d1d2 � �d5, andd1 � �d4. These three patterns

are also referred to asborder elements. We sometimes use the phrase “the border ofmatch0” as the abbreviation of “the

border of frequent patterns givenmatch0 as themin match threshold”.

An interesting observation we will explore in a later section is that, given a reasonable threshold, the number of frequent

patterns at each level (in the super-/sub-pattern lattice) using the match metric is usually larger than that using the support.

This is because, as the pattern length increases, the match decreases at a much slower pace than the support. Even though any

algorithm powered (sometimes implicitly) by the Apriori property can be adopted to mine frequent patterns according to the

match metric, it will produce a less efficient solution. The weakness becomes more substantial in mining sequence data since

the length of a pattern can easily range up to dozens and even hundreds in many applications, such as gene expression. Even

a direct generalization of previously proposed approach for mining long patterns under the support model (e.g., Max-Miner

[6]) still requires many scans of the sequence database if the database is disk-resident. In the next section, we design a novel

8

algorithm that can efficiently generate the border of frequent patterns in a few scans of the sequence database with very high

confidence statistically.

4 A Probabilistic Approach

For a given sequence database, we want to find patterns whose match satisfies a user-specified thresholdmin match. As

we mentioned before, any algorithm previously proposed for mining frequent patterns [1, 4, 6, 14, 15, 19, 24, 31] under the

support framework can be generalized to mine patterns that satisfy the minimum match requirement. One factor that leads

to algorithm inefficiency is that the mining of long patterns typically requires many scans of the data. Even the algorithms

designed for mining long patterns [6] may still require many scans of the data when the pattern is substantially long. This

problem becomes more evident in mining sequence data. For example, a gene expression typically contains at least a couple

hundred amino acids. To reduce the number of necessary passes through the input sequences, we propose a fast mining

algorithm that can discover the border of frequent patterns in a few scans of the sequence database. Sampling technique is

used to obtain a quick estimation of the border and additional scan(s) of the sequence database can be performed to finalize

the border.

In order to obtain an estimation of the border of frequent patterns without examining the entire sequence database, we

use the additive Chernoff bound [9, 16] to estimate the range of the match of a pattern from a sample of the data with a high

statistical confidence (e.g.,99:99%). Let X be a random variable whose spread6 is R. For example, in the context of the

match model, the match can vary from 0 to 1 and thereforeR = 1. Suppose that we haven independent observations ofX ,

and the mean is�. The Chernoff Bound states that with probability1� �, the true mean ofX is at least�� �, where

� =

r
R2 ln(1=�)

2n

For example, assume that the spread of a random variable is 1 and� is the mean of 10000 samples of the random variable.

Then we are able to say that the true value of the random variable is at least�� 0:0215 with 99:99% confidence. Similarly,

with probability1� �, the expected value of variableX is at most�+ �. This provides the opportunity to estimate the range

of the match for each pattern from a set of samples.

Claim 4.1 (Chernoff bound estimation)Given a set of sample data and a thresholdmin match, a pattern isfrequent with

probability1� � if �match > min match+ � and isinfrequent with probability1� � if �match < min match� �, where

�match is the match of the pattern in the sample data7. Those patterns (referred to asambiguouspatterns) whose matches

in the sample are betweenmin match� � andmin match+ � remain undecided and need further examination.

An attractive property of the Chernoff bound is that it is independent of the probability distribution that generates the

observations, as far as such probability distribution remains static during the entire process. This distribution-free nature is

very important because the underlying distribution that characterizes the match of a pattern is usually unknown. However,

this generality comes with the price of a more conservative bound than a distribution-dependent estimation and would require

a larger number of observations to reach the same bound. This weakness sometimes prevents us from obtaining a tight bound

when the sample sizen is limited (e.g., due to memory size). Clearly, the number of ambiguous patterns highly depends on

the value of� which itself is a function of the sample size. A large number of ambiguous patterns may incur many scans of

the entire sequence database. Therefore, the value of� should be as small as possible. In order to further reduce� under the

constraint of memory capacity, instead of usingR = 1, we employ an additional step to derive a more restricted spreadR for
6The spread of a random variable is defined as the difference between the maximum possible value and the minimum possible value of the random

variable.
7By definition, the match of a pattern in the sample data is the average match of every sample.

9

the match of each pattern. According to the Apriori property (Claim 3.2), the match of a pattern is always less than or equal

to the minimum match of each symbol in the pattern.

Claim 4.2 (Restricted spread)The restricted spreadR for the match of a pattern(d1; d2; : : : ; dl) isR = min1�i�lmatch[di]

wherematch[di] is the match of the symboldi in the entire sequence database.

For example, the match of(d1; �; d2) would not exceed the minimum match ofd1 andd2. If the matches ofd1 andd2 are

0.1 and 0.05 in the database respectively, then the match of(d1; �; d2) has to be between 0 and 0.05 (instead of the original

spread 1) in the database. Thus, we can useR = 0:05 when applying the Chernoff bound and reduce the value of� by 95%.

(Note that� is linearly proportional toR.) Therefore, before we examine the in-memory sample, a scan of the entire sequence

database is performed to compute the match of each individual symbol. Note that as a by-product of this step, a random

sample of the data can be easily obtained and kept in memory without any extra overhead. This sample set can then be used

directly to classify patterns using Chernoff bound.

Nevertheless, when the pattern is long (e.g., in the range of dozens to hundreds of symbols) and the tolerable error is very

small, the number of ambiguous patterns can be still considerably large and may require significant amount of computation

and many scans through the database. This problem is more severe when the match (rather than the support) is used as the

metric. To address this issue, we propose aborder collapsing technique to ensure a minimum number of scans through the

sequence database. Hence, the following three-fold algorithm is developed for mining the obscure patterns of lengthl.

1. While scanning the sequence database, find the match of each individual symbol and take a random sample of se-

quences.

2. Identify the borders that embrace the set of ambiguous patterns (i.e., whose match is betweenmin match � � and

min match+ �) using Chernoff bound based on the sample taken at the previous step.

3. Locate the border of frequent patterns in the entire sequence database via border collapsing.

A question one may concern is that, since the Chernoff bound only provides a probabilistic bound (rather than an absolute

one), there is a small chance (bounded by�) that a patternP is frequent (i.e., its actual match in the entire sequence database

is at leastmin match) butP ’s match in the sample data is belowmin match� �. Even though the measured error is much

smaller than� in practice, it is important to understand the characteristic of these misclassified patterns. According to the

above algorithm,P will be mislabeled as infrequent in the second phase. We now explore the impact of such mislabeled

patterns to the quality of the result. Intuitively, it would be a less serious issue if the actual match of a mislabeled pattern is

very close tomin match� � than the scenario where the actual match is far abovemin match. The rationale is that, in the

former case, one can always lower the threshold slightly to include the originally mislabeled patterns in the result. Therefore,

the match distribution of mislabeled patterns is very important. Letdis(P) be the difference between the actual match of a

mislabeled patternP andmin match. It is easy to derive from the Chernoff bound that the probabilityProb(dis(P) > �)

diminishes exponentially as� grows. For example,Prob(dis(P) > 2�) = Prob(dis(P) > �)4. This theoretically guarantees

that the matches of most mislabeled patterns locate close tomin match � �. This observation is also confirmed in the

experimental results in Section 5.5. We now investigate each step in detail in the following subsections.

4.1 Phase 1: Finding Match of Individual Symbols and Sampling

In this phase, with one scan of the sequence database, we need to calculate the match of every symbol and obtain a sample

set. Let’s first look at the computation of the match of each symbol. The pseudo code of computing match of every symbol is

shown in Algorithm 4.1. A countermatch[d] is initiated for each distinct symbold 2 � to store the match value ofd (Line

1-2). As we scan through each sequenceDi in the database,max match[d] stores the match ofd in Di. For each symbol

10

encountered (e.g.,d0), we update the value ofmax match[d] if necessary (Line 5-9). Every time after examining a sequence,

the match of each symbold in the database,match[d], is increased by an amount ofmax match[d]
N (Line 10-11). Figure 5(a)

illustrates the valuemax match of each symbol after examining each element in the first sequence in Figure 4(a) according

to the compatibility matrix in Figure 2. When we examine the second symbol (i.e.,d2),max match[d2] andmax match[d4]

are updated toC(d2; d2) andC(d4; d2), respectively. The last column of Figure 4(a) shows the match of each symbol in this

sequence. The value ofmatch of each symbol after examining each sequence in Figure 4(a) is shown in Figure 5(b). For

instance, after processing the first sequence, the match ofd2 is increased by an amount ofmax match[d2]
N = 0:8

4 = 0:2. Note

that the match of multiple symbols may be updated when we examine each symbol in the sequence. After we examine the

entire sequence database,match[d] holds match of each symbold andd is a frequent symbol ifmatch[d] � min match.

initial

0

0

0

0

0

0.8

match

d1

d2

d3

d4

d5

1 2 3 4
sequence

0.225

0.2

0.175

0.025

0.038

0.45

0.4

0.213

0.213

0.038

current_match

d1

d2

(a) calculate max_match in "d1 d2 d3 d1"

d3

d4

d5

initial d1

0

0

0

0

0

0.9

0.05

0.05

0

0

0.9

0.8

0.05

0.1

d2 d3 d1

0.9

0.8

0.7

0.1

0.15

0.9

0.8

0.7

0.1

0.150

0.675

0.6

0.388

0.4

0.075

0.538

0.4

0.425

0.075

(b) calculate match in Figure 4(a)

Figure 5: Calculate match of each symbol

Obtaining the set of frequent symbols can be beneficial in two aspects.

� According to the Apriori property, only frequent symbols may participate in a frequent pattern. With the set of frequent

symbols on hand, we can eliminate unnecessary counters to a large extent. This is even more important to the match

model since an occurrence of a symbol combination may trigger updates to match counters of multiple patterns.

� The match of each (frequent) symbol in a (candidate) pattern can be used to provide a much restricted spreadR of the

match for this pattern to produce a much tighter bound�. It will eliminate a large number of ambiguous patterns that

need to be re-examined against the entire sequence database.

It is easy to see that the computational complexity of this procedure isO(N � lS �m) wherelS andm are the average

sequence length and the number of distinct symbols, respectively. Note that, in the case wherelS � m, it is easily to reduce

the bound toO(N � (lS +m2)) by a simple optimization motivated by the following observation: for any given symbold,

its match in a sequenceDi is the maximal compatibility ofd with any symbold0 in the sequence, i.e.,max match[d] =

maxd02Di C(d; d
0). Therefore, we only need to update the value ofmax match for the first occurrence of each distinct

symbol in the sequence8. For example, we can omit the calculation associated with the second occurrence ofd1 in Figure 5(a)

(once we verified thatd1 has been encountered before in the sequence). In summary, the computational complexity isO(N �

minflS �m; lS +m2g).

During the scan of the sequence database, a sample of sequences is also taken and stored in memory. Letn be the

number of samples that can be held in memory. A very simple way [27]9 to guarantee a random sampling is to generate an

independent uniform random variable for each sequence to determine whether that sequence should be chosen (Line 12). At

the beginning, a sequence will be chosen with probabilityn
N . Subsequently, ifj sequences have been chosen from the firsti

sequences, then the next sequence will be chosen with probabilityn�j
N�i (Line 13-16). The computational complexity of the

sampling procedure isO(N +n� lS), which makes the total computational complexity stillO(N �minflS�m; lS+m2g).

Algorithm 4.1 Calculating Match of Each Symbol and Taking Samples

8By maintaining a flag for each symbol, we can easily check whether a symbol has been encountered before in the current sequence.
9Interested readers please refer to [27] for a comprehensive discussion of various sampling methods.

11

SymbolMatchSampling(D, n)

f /* D is the database ofN sequences

n is the number of samples that need to be taken */

1: for each distinct symbold do

2: match[d] 0 /* Initialize the match array */

3: j 0 /* j is the number of samples that have been chosen */

4: for i 1 to N do /* exam each sequence sequentially */

5: for each distinct symbold do

6: max match[d] 0 /* max match[d] records the match ofd in the current sequence (Di) */

7: for each symbold0 2 Di do /* Di is theith sequence inD */

8: for each symbold whereC(d; d0) > max match[d] do

9: max match[d] C(d; d0)

10: for each distinct symbold do

11: match[d] match[d] + max match[d]
N

12: p rand[0; 1] /* generating a random number between 0 and 1 */

13: if p < n�j
N�i

do

14: then

15: takeDi as a sample

16: j j + 1

17: return (match)

g

4.2 Phase 2: Ambiguous Pattern Discovery on Samples

Based on the samples taken in the previous phase, all patterns can be classified into three categories:frequentpatterns,in-

frequentpatterns, andambiguouspatterns, according to their observed matches in the sample data. In this phase, we want to

find the two borders in the super-pattern/sub-pattern lattice, which separate these three categories. The border (denoted by

FQT) between the frequent patterns and the ambiguous patterns is the set of frequent patterns whose immediate superpatterns

are either ambiguous or infrequent, whereas the border (denoted by INFQT) between the ambiguous patterns and the infre-

quent patterns are the set of ambiguous patterns whose superpatterns are all infrequent. More specifically, these two borders

correspond to the match thresholdsmin match+ � andmin match� � respectively (with respect to the sample data).

Since the Apriori property holds on the match metric, many (border discovery) algorithms presented for mining frequent

patterns (with respect to a support threshold) [3, 6, 14, 20] can be adopted to solve this problem with one modification —

the routine to update match(es) when examining each sample sequence. LetP = d1d2 : : : dl be a candidate pattern and

match[d1; d2; : : : ; dl] denote the counter storing the match of the patternd1d2 : : : dl in the sample data. By definition, the

match of a pattern in the sample data is the average match of the pattern in every sample sequence. To compute the match

of a patternP = d1d2 : : : dl in a sequenceS, a straightforward way is to maintain a sliding window of widthl. As the

window slides through the sequence by one position at a time, the match ofP with the segment covered by the window can

be calculated, and the highest one is the match ofP in the whole sequence. The pseudo code is shown in Algorithm 4.2.

This process would requireO(j S j �l) computation theoretically wherej S j is the length ofS. Nevertheless, since the

compatibility matrix is usually a sparse matrix, we can easily obtain a much more efficient algorithm to compute the match

in nearly�(j S j) time [5, 17, 18, 28]. Due to the space limitations, we will not elaborate on it in this paper.

With zero as the initial value, a straightforward way to compute the match ofP in the sample is to accumulate the value of

match[d1; d2; : : : ; dl] by an amount ofM(P;S)
n for each sample sequenceS whereM(P; S) is the match ofP = d1; d2; : : : ; dl

in S. After we obtainmatch[d1; d2; : : : ; dl], P is labeled as

12

� a frequentpattern ifmatch[d1; d2; : : : ; dl] > min match+ �;

� anambiguouspattern ifmin match� � < match[d1; d2; : : : ; dl] < min match+ �;

� an infrequentpattern otherwise;

where� =
q

R2 ln(1=�)
2n andR = min1�i�lmatch[di] (Line 17-29). The borders FQT and INFQT are also updated accord-

ingly (Line 22-23, 28-29). Because we aim at finding not only the border separating frequent patterns and ambiguous patterns

but also the border separating ambiguous patterns from infrequent patterns, a patternP may be considered as a candidate

pattern iff every sub-pattern ofP is either a frequent or ambiguous pattern by the Apriori property. Since the sample data

is in memory, any pruning technique (such as breadth-first, depth-first, looking-ahead, etc., [1, 3, 6, 14, 20]) may be used to

conduct the search and would produce a reasonable solution. Note that our objective is to identify the borders that separate

frequent patterns, ambiguous patterns, and infrequent patterns. Therefore, we only need to keep track of the set of patterns

that define these two borders. At the end of the search process, all patterns that have not been categorized are regarded as

infrequent patterns.

Algorithm 4.2 Calculating Match and Labeling Patterns

CalculateMatch(P)

f /* Calculate the match of patternP = d1d2 : : : dl in sample */

1: for each sample sequenceS do

2: max match 0

/* record the maximal match ofP in S */

3: current match 0

/* record the match ofP in a segment falls in */

/* the sliding window */

4: i 1

/* current starting position of the sliding window inS */

5: j 1 /* current position inP */

6: while i �j S j �l+ 1 do f

7: current match C(dj ; Si+j�1)

8: while j < l and current match > 0 do

9: j j + 1

10: current match current match� C(dj ; Si)

11: if current match > max match

12: thenmax match current match

13: i i+ 1 /* slide the window to right by one position */

14: j 1

/* resetj so that we start to compute from */

/* the left most symbol ofP again */

g /* finish computing the match ofP in S */

15: match[P] match[P] + max match
n

/* n is the number of samples */

16: return (match)

g

Label Patterns(P)

f /* P = d1d2 : : : dl */

17: R minfmatch(d1);match(d2); : : : ;match(dl)g

18: �
q

R2 ln(1=�)
2n

19: if match[P] > min match+ �

20: then

21: label[P] `significant0

22: FQT FQT [fPg

23: remove fromFQT any sub-pattern ofP

24: else ifmatch[P] < min match� �

25: then label[P] `insignificant0

26: else

27: label[P] `ambiguous0

28: INFQT INFQT [fPg

29: remove fromINFQT any sub-pattern ofP

g

The optimal value of the confidence parameter� used in the Chernoff bound is application dependent and can be adjusted

by the user. Since the Chernoff bound is a very conservative bound, the actual error is usually much smaller than the theoretical

13

probability�. Empirically, when the pattern length is relatively short, a moderate value of� (e.g., 0.001) is able to produce

considerably high accuracy. This observation is also confirmed by our experiments discussed in the next section. However,

as the pattern length grows, the number of patterns that need to be further verified against the entire database grows in an

exponential pace. We will continue to investigate in this matter in the next section.

Assume the maximum length of any frequent pattern isblP . There are up toO((m+1)blP) distinct patterns of length up toblP , wherem is the number of symbols. (Note that there arem+1 choices for each position:m specific symbols and *.) The

computational complexity of this phase isO((m + 1)blP� j S j � blP � n) since it might takeO(j S j � blP � n) computation

to calculate the match of a pattern. Note that this only characterizes the theoretically worst scenario. In practice, much less

computation is usually required and all computation can be done efficiently as all sample data are in memory.

4.3 Phase 3: Border Collapsing

At this phase, we need to investigate ambiguous patterns further to determine the real border of frequent patterns. If the

memory can hold the counters associated for all ambiguous patterns (i.e., all patterns between FQT and INFQT), a single

scan of the entire sequence database would be able to calculate the exact match of each ambiguous pattern and the border

of frequent patterns can be determined accordingly. However, we may experience with the scenario where a huge number

of ambiguous patterns exist. This may occur when there are a large number of patterns whose matches happen to be very

close to the thresholdmin match, which is typically the case when the pattern is long. In such a case, multiple scans of the

sequence database become inevitable.

Our goal of this phase is to efficiently collapse the gap between the two borders embracing the ambiguous patterns into

one single border. An iterative “probing-and-collapsing” procedure can be employed. In order to minimize the expected

number of scans through the database, the ambiguous patterns that can provide high collapsing effect are always probed first.

A greedy algorithm can be developed to repeatedly choose the pattern with the most collapsing power among the remaining

ambiguous patterns until the memory is filled up. A scan of the database is then performed to compute the matches of this set

of patterns and the result is used to collapse the space of the remaining ambiguous patterns. This iterative process continues

until no ambiguous pattern exist.

While the two borders embracing the ambiguous patterns act as the “floor” and the “ceiling” of the space of ambiguous

patterns, an algorithm that is analogous to the binary search would serve our purpose. The algorithm is presented as Al-

gorithm 4.3. The patterns on the halfway layer between the two borders can provide the most collapsing effect and in turn

should be probed first. The patterns on the quarterway layers are the set of patterns that can produce the most collapsing effect

among the remaining ambiguous patterns, and so on. Consider the set of ambiguous patternsd1, d1d2, d1d2d3, d1d2d3d4,

andd1d2d3d4d5 in Figure 6(a). It is easy to see thatd1d2d3 has the most collapsing power. Ifd1d2d3 is frequent, thend1

andd1d2 must be frequent by the Apriori property. Otherwise (i.e.,d1d2d3 is infrequent),d1d2d3d4 andd1d2d3d4d5 should

be infrequent as well. Therefore, no matter whetherd1d2d3 is frequent or not, two other patterns (among the five) can be

properly labeled without any further investigation on them. Similarly, we can justify thatd1d2 andd1d2d3d4 have more

collapsing power than the remaining two. As depicted in Algorithm 4.3, the algorithm identifies the patterns on the halfway

layer, quarterway layers,18 layers, ... successively until the memory is filled up by the corresponding counters. There are two

quarterway layers (each of which is the halfway layer of a half), four1
8 layers (each18 layer is the halfway layer of a quarter),

and in generalx=2 1
x -layers (each one is the halfway of a1x=2 region), wherex is a power of 2. The process is carried out

by sequentially computing the halfway layer between two adjacent layers calculated previously in a recursive manner. For

example, the halfway layer (Layer 1) is computed first, followed by generating two quarterway layers (Layers 2 and 3) as

shown in Figure 6(a). Given two layers of patterns, the functionHalfway() in Algorithm 4.4 can be used to derive the

halfway layer between them. Note that we do not physically store all ambiguous patterns. The set of ambiguous patterns that

belongs to the desired layer is generated by the functionHalfway(). Consider a pair of patternsP1 andP2 (one from each

14

border), whereP1 is a sub-pattern ofP2. The halfway patterns are the set of patterns that consist ofd i1+i22 e non-* symbols

and are super-patterns ofP1 and sub-patterns ofP2 (Line 4-6) , wherei1 andi2 are the number of non-* symbols inP1 and

P2 respectively.

To better understand the effect brought by the border collapsing, let’s assume that only patterns on the halfway layer are

held in memory. If a halfway pattern turns out to be frequent, then all of its sub-patterns are frequent. Otherwise (i.e., the

pattern is infrequent), all of its super-patterns are infrequent as well. In either case, one of these two borders is collapsed

to that halfway pattern. For example, if we know thatd1d2d3d4d5 is on the border separating the ambiguous patterns and

infrequent patterns whiled1 is on the border between frequent patterns and ambiguous patterns as shown in Figure 6(b). Thus,

the patternsd1d2d3, d1d2 � d4, d1d2 � �d5, d1 � d3d4, d1 � d3 � d5, andd1 � �d4d5 are ambiguous patterns on the halfway

layer between two borders and will be examined first. It is obvious that one of the borders would collapse to the halfway layer

if these halfway patterns have homogeneous label (i.e., either all are frequent or all are infrequent). In this case, the space of

ambiguous patterns is reduced by half. A more interesting scenario is that the halfway patterns have mixed labels (i.e., some

of them are frequent while the rest are not), which turns out to provide even more collapsing effect. Assume thatd1d2d3 and

d1d2 � �d5 are frequent (marked with solid circles on the halfway layer) while the remaining one (indicated by dashed circles

on the halfway layer) are not. By applying the Apriori property,d1, d1d2, d1 � d3, andd1 � � � d5 should also be frequent.

Similarly, d1d2d3d4, d1d2d3 � d5, d1d2 � d4d5, d1 � d3d4d5, andd1d2d3d4d5 are all infrequent. Note that onlyd1 � �d4 still

remains ambiguous as indicated by a solid rectangle in Figure 6(b). In general, if the memory can hold all patterns up to the

“ 1
x layer”, the space of ambiguous patterns can be at least narrowed to1

x of the original one wherex is a power of 2. As

a result,if it takes a level-wise searchy scans of the sequence database, onlyO(logx y) scans are necessary when the

border collapsing technique is employed.

1 2 3 d d d

1 2 d d 1 3 d * d

1 d

1 2 3 d d d

1 2 d d 1 3 d * d

1 d

Halfway

Patterns
Halfway

(a) probing priority

Patterns

(b) a scenario where the halfway patterns have mixed labels

Quarterway
Patterns

Quarterway
Patterns

infrequent

frequent

remain
ambiguous

Layer[2]

Layer[1]

Layer[3]
1

1 2 3 4

3 4 1 2 3 21 4 1 3 4

1 1 5

5

5 5 5

4

2

1 4 51 3 51 3 41 2 51 2 4

 d d d d d

 d d d d d d d * d d d * d d d * d d d

 d d * d d d * * d d * d d d * d * d d * * d d

 d * * * d d * * d

1

1 2 3 4

3 4 1 2 3 21 4 1 3 4

1 1 5

5

5 5 5

4

2

 d d d d d

 d d d d d d d * d d d * d d d * d d d

1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 d d * d d d * * d d * d d d * d * d d * * d d

 d * * d d * * * d

INFQT

FQT

FQT

INFQT

Figure 6: Border Collapsing of Ambiguous Patterns

15

Algorithm 4.3 Border Collapsing of Ambiguous Patterns

BorderCollapsing(FQT, INFQT)

f /* FQT is the set of patterns on the border separate the frequent and ambiguous patterns

while INFQT is the set of patterns on the border separate the infrequent and ambiguous patterns */

1: j 1

2: /* j is an index that keeps track of the number of layers that have been put into memory */

3: while there exist some ambiguous patternsdo f

4: while the memory still has spacedo f

/* ComputeLayer[j] (Line 5-16) */

/* First, determine the two layers of patterns of which the halfway should be taken. (Line 5-15) */

5: if j = 1

/* At the very beginning, the halfway patterns between two borders embracing

the ambiguous patterns are considered. */

6: then

7: Layer[j]:Lower parent FQT

8: Layer[j]:Upper parent INFQT

9: else ifj mod 2 = 0

10: then

11: Layer[j]:Lower parent Layer[bj=2c]:Lower parent

12: Layer[j]:Upper parent Layer[bj=2c]:patternset

13: else

14: Layer[j]:Lower parent Layer[bj=2c]:patternset

15: Layer[j]:Upper parent Layer[bj=2c]:Upper parent

/* Then, compute patterns that belong toLayer[j] */

16: Layer[j]:patternset Halfway(Layer[j]:Lower parent; Layer[j]:Upper parent)

17: Initialize counter for patterns inLayer[j]

18: j j + 1

g /* The memory has been filled up */

19: scan the sequence database to compute the matches of patterns in memory

20: updateFQT andINFQT

21: j 1

g /* no ambiguous pattern exists */

22: return FQT

g

Algorithm 4.4 Finding Halfway Patterns

Halfway(Layer1, Layer2)

f /* Layer1 and Layer2 are two sets of ambiguous patterns */

1: halfway ;

2: for eachP1 2 Layer1 andP2 2 Layer2 do

3: if P2 is a super-pattern ofP1 do

4: i dNum Non Eternal(P1)+Num Non Eternal(P2)

2
e

/* i is the number of non-eternal symbols of the halfway patterns forP1 andP2 */

5: for each i-patternP such thatP is a super-pattern ofP1 and subpattern ofP2 do

6: halfway halfway [fPg

7: return (halfway)

g

16

In summary, this approach can greatly reduce the number of scans through the sequence database by only examining a

“carefully-chosen” small subset of all outstanding ambiguous patterns. While the traditional level-wise evaluation of ambigu-

ous patterns push the border of frequent patterns forward across the pattern lattice in a gradual fashion; the border collapsing

technique employs a globally optimal order to examine ambiguous patterns to minimize the overall computation and the num-

ber of scans through the database. When the pattern is relatively short, border collapsing achieves a comparable performance

as the level-wise search. However, when the pattern is long (as in the applications we addressed earlier in this paper), the bor-

der collapsing technique can yield substantial improvement. Its efficiency is demonstrated in experimental studies presented

in the next section. We also want to mention that the proposed algorithm can also be used to mine long patterns with the

support model efficiently.

5 Experimental Results

5.1 Robustness of Match Model

Since misrepresentation of symbols may occur, some symbols may be substituted by others in the input sequence database.

In this subsection, we compare the robustness of the support model and the match model with respect to varying degrees of

noise. We use a protein database [12] that consists of 600K sequences of amino acids10 as thestandard databaseto generate

test databasesby embedding random noises. A probability� is introduced to control the degree of noise.� = 0 means

no misrepresentation and a higher value of� implies a greater degree of misrepresentation. For each sequenceS in the

standard database, its counterpartSt in the test database is generated as follows: for each amino aciddi in theS, it will

remain asdi with probability1�� and will be substituted by another amino aciddj (1 � j � m andj 6= i) with probability
�

m�1 , wherem = 20 is the number of distinct amino acids.S andSt would have the same length. Each entryC(di; dj) in

the corresponding compatibility matrix is1 � � if i = j and is �
m�1 otherwise. We also experienced with different noise

distribution and, after a thorough study, we found that the degree of noise (rather than the distribution of the noise) plays a

dominant role in the robustness of the model. Therefore, we only report the results under the assumption of uniform noise

due to space limitations.

Let RM be the set of patterns discovered via match model andRS be the set of patterns discovered via support model

on the standard sequence database with the same thresholdmin match = min support = 0:001. It is expected thatRS

equal toRM since the match model is equivalent to the support model if no noise is assumed. This set of patterns will

be used as the standard to justify the quality of the results generated from test database. Given a test database, letR0
M

be the set of patterns discovered in the match model andR0
S be the set of discovered patterns under the support model.

Figure 7(a) and (b) show the accuracy and completeness of these two models with respect to various degree of noise�,

respectively. The accuracies of the match model and the support model are defined asjR0

M
\RM j

jR0

M
j and jR0

S
\RSj

jR0

S
j respectively.

On the other hand, the completeness for the match and the support models are defined asjR0

M
\RM j

jRM j and jR0

S
\RSj

jRSj
, respectively.

Intuitively, the accuracy describes how selective the model is while the completeness captures how well the model covers the

expected results. For the match model, both the accuracy and the completeness are very high (i.e., more than95%) due

to the compensation of the compatibility matrices. This demonstrates that the match model is able to handle the noise in

a proper manner. However, the support model appears vulnerable to the noise/misrepresentation in the data. When the

misrepresentation factor� increases, the quality of the results by the support model degrades significantly. For example,

when� = 0:6, the accuracy and completeness of the support model are61% and33%, respectively.

With a given degree of noise (e.g.,� = 0:1), the accuracy and completeness of the support and match models with

different number of non-eternal symbols in a pattern are shown in Figure 7 (c) and (d), respectively. With more non-eternal

10Each sequence consists of dozens to thousands of amino acids.

17

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

70

80

90

100

Noise (1 − α)

A
cc

ur
ac

y
(%

)

Match Model
Support Model

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

70

80

90

100

Noise (1 − α)

C
om

pl
et

en
es

s
(%

)

Match Model
Support Model

(b)

0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

100

Number of non−eternal symbols in a pattern

A
cc

ur
ac

y
(%

)

Match Model
Support Model

(c)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Number of non−eternal symbols in a pattern

C
om

pl
et

en
es

s
(%

)

Match Model
Support Model

(d)

Figure 7: Accuracy and Completeness of the Two Models

symbols, the quality of the support degrades while the quality of the match model remains constant. This is due to the fact

that for a pattern with a large number of non-eternal symbols, there is a higher probability that at least one position mutates.

We also experimented with the test database generated according to the BLOSUM50 matrix [10] which is widely used to

characterize the likelihood of mutations between amino acids in the computational biology community. We then use both the

support and the match model to mine patterns on the test database with the minimum threshold set to 0.001. Comparing to

the patterns discovered on the standard database, we found that both the accuracy and the completeness of the match model

are well over99% while the accuracy and the completeness of the support model are70% and50%, respectively.

In the previous experiments, we assume that our knowledge of noise is “perfect”, i.e., the compatibility matrix truly reflects

the behavior of noise. However, in reality, the available compatibility matrix itself may contain some error and is indeed a

(good) approximation of the real compatibility among symbols. This is typically the case when the compatibility matrix is

generated from empirical studies. Thus, the quality of the compatibility matrix also plays a role in the performance of the

match model. We also did some experiments to explore the robustness of the match model in this respect. Figure 8 shows the

accuracy and completeness of the match model with respect to the amount of error contained in the compatibility matrix. In

this experiment, we choose the test database generated from� = 0:2. The error is incorporated into the compatibility matrix in

the following manner. For each symboldi, the value ofC(di; di) is varied bye% (equally likely to be increased or decreased).

The rest entriesC(dj ; di) (j 6= i) in the same column are adjusted accordingly so that the summation�1�j�mC(dj ; di) is

still 1. Even though the completeness and accuracy degrades with the increase of error, the degradation is moderate even with

high error rate. For example, with10% error, our match model still can achieve88% accuracy and85% completeness. Note

18

that the error in the compatibility matrix is usually very limited (i.e.,� 10%) in practice and hence the match model can

perform very well.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Error (%)

A
cc

ur
ac

y
(%

)

(a)

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Error (%)

C
om

pl
et

en
es

s
(%

)

(b)

Figure 8: Robustness of Match Model

In addition, we also carried out the experiments on real trace logs of a multimedia search engine ScourNet [8] and

obtained a similar result (i.e., accuracy/completeness with respect to both the degree of noise and the amount of error in the

compatibility matrix). We will not present the details due to space limitations [28].

5.2 Number of Candidate Patterns

The number of candidate patterns11 that need to be evaluated is a crucial factor towards the overall efficiency of any approach.

In this subsection, we analyze the number of candidate patterns at each level of the super-/sub-pattern lattice for both the

support and match models. The same test databases generated from the protein sequences in the previous subsection are

used to compute the number of candidate patterns. Since they all have the similar behavior, we only report the number of

candidate patterns for the test database with� = 0:2 and for the thresholdmin support = min match = 0:001 in Figure 9.

In this figure, the number of candidate patterns peak at the 10th 14th level, then begins to diminish. However, the number

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6
x 10

6

Number of non−eternal symbols in a pattern (level)

N
um

be
r

of
 c

an
di

da
te

 p
at

te
rn

s

Match Model
Support Model

Figure 9: Number of candidate patterns at each level

11A candidate pattern is a pattern whose sub-patterns are all frequent.

19

0 5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

200

Number of Samples (in thousands)

N
um

be
r

of
 A

m
bi

gu
ou

s
P

at
te

rn
s

(in
 m

ill
io

ns
)

α=0.2
α=0.15
α=0.1
α=0.05

Figure 10: Ambiguous Patterns w.r.t. Sample Size

of candidate patterns under the match model diminishes at a much slower pace than that of the support model. Even at the

fiftieth level, there are still dozens of thousands of candidate patterns under the match model. This phenomenon makes mining

pattern under the match model a more challenging task. In general, the support model generates less candidate patterns at

each level due to the fact that the presence of noise dilutes the strength of some qualified patterns and makes them disqualified.

In contrast, the match model tends to restore the original strength of each diluted pattern and hence minimizes the impact of

noise.

5.3 Sample size

As mentioned previously, the sample size could affect the number of ambiguous patterns significantly and in turn impact the

overall efficiency of our approach greatly. Figure 10 shows the number of ambiguous patterns with respect to the number of

samples. The number of ambiguous patterns decrease significantly as a function of the number of samples. Also with greater

degree of noise (i.e., larger�), the number of ambiguous patterns increases.

5.4 Spread of MatchR

For any pattern, instead of applying the default valueR = 1, a much constrained spreadR can be estimated from the match

of each involved symbol in the pattern and used to provide a tighter Chernoff bound. This leads to a significantly reduced

number of ambiguous patterns. The same test database generated in the previous subsection are used here. Figure 11(a)

shows the average match spreadR of a candidate pattern with respect to the number of non-eternal symbols.R of a candidate

pattern is the minimum match of its involved symbols. LetR(P) be the spread of the match of a patternP = d1d2 : : : dl,

thenR(P) = minfmatch(d1);match(d2); : : : ;match(dl)g. With more non-eternal symbols, the spreadR becomes tighter.

With higher degree of noise (i.e., larger value of�), the match spread reduces because the noise dilutes the strength of the

true patterns. In Figure 11(b), we compute the ratio of the number of ambiguous patterns produced using the constrainedR

over that with the defaultR = 1. It is evident that the number of ambiguous patterns can be reduced to less than20% (for

pattern with more than 10 non-eternal symbols) when the constrainedR is applied. As a matter of fact, a five-folds pruning

power is obtained.

20

0 5 10 15 20 25 30 35 40 45 50
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of non−eternal symbols in a pattern (i)

A
ve

ra
ge

 S
pr

ea
d

(R
)

α=0.05
α=0.1
α=0.15
α=0.2

(a)

0 5 10 15 20 25 30 35 40 45 50
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of non−eternal symbols in a pattern (i)

A
ve

ra
ge

 r
at

io
 o

f a
m

bi
gu

ou
s

pa
tte

rn
s

α=0.05
α=0.1
α=0.15
α=0.2

(b)

Figure 11: Effects of spreadR

5.5 Effects of Confidence1� �

In the previous experiments, we fix confidence1� � as 0.9999. In this subsection, we are examining the effects of different

�. Figure 12 shows the effect of1 � � on the number of ambiguous patterns and the accuracy of the results. We assume

that 200,00 samples are used for this test. With smaller confidence, the number of ambiguous patterns decreases dramatically

because the error bound� decreases, which implies a much faster response time. On the other hand, the error rate of the

algorithm could increase slightly with a smaller confidence as shown in Figure 12(b). The error rate is defined as the ratio of

the number of mislabeled patterns over the number of frequent patterns. However, since the Chernoff Bound is a distribution

independent estimation, the bound it provides is very conservative. The actual precision of the results is much higher than the

specified confidence. For example, when confidence is 0.9, i.e.,� = 0:1, the error rate is around0:01. When1� � = 0:9999,

the error rate can diminish to the order of10�6.

0.9 0.92 0.94 0.96 0.98 1
0

20

40

60

80

100

120

140

Confidence (1−δ)

N
um

be
r

of
 A

m
bi

gu
ou

s
P

at
te

rn
s

(in
 m

ill
io

ns
)

(a)

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Confidence (1−δ)

er
ro

r
ra

te

(b)

Figure 12: Effects of confidence1� �

Figure 13 shows the distribution of the matches of mislabeled patterns in the above experiment. It is clear that over 90%

of the missed patterns are those whose real match is within 5% over the threshold, while no pattern missing whose real match

is 15% over the threshold. This means that most missing patterns are very close to the threshold. This observation coincides

with the theoretical analysis in the previous section.

21

5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

Distance from threshold (%)

P
er

ce
nt

ag
e

of
 m

is
se

d
pa

tte
rn

s
(%

)

Figure 13: Missing patterns

5.6 Performance of Probabilistic Algorithm

The overall efficiency of our probabilistic algorithm is demonstrated in Figure 14. Max-Miner [6] is one of the fastest algo-

rithm for mining frequent long patterns, which employs a look-ahead technique. We adopt the Max-Miner as the deterministic

algorithm to compare the performance. (We also notice that the work in [1] yields fast computation time under the assumption

that the entire data set can fit into memory. This is obviously not the scenario assumed in this paper. Thus, we do not furnish

a comparison with it.) The only modification to the Max-Miner is the computation of match value of a pattern (instead of

support value). Another algorithm we compared is the sampling based approach proposed by Toivonen [25]. In this approach,

a level-wise search is used to finalize the border of frequent patterns after the sampling. We will refer to this approach as

“sampling-based level-wise search” in the following discussion. The primary difference between this approach and our ap-

proach is that we employ a much more efficient method, namely border collapsing, to locate the border of frequent patterns.

The confidence parameter of our algorithm is set to 0.9999. Figure 14(a) shows the CPU time of these three algorithms with

respect to various match thresholds. Figure 14(b) shows the number of scans employed by these three algorithms.

It is evident that our algorithm can substantially reduce the CPU time and the number of scans through the database than

both previous proposed schemes. This is due to the efficiency brought by the border collapsing technique. In our algorithm,

the number of patterns that need to be examined against the entire database is much less than that in the other two algorithms.

More specifically, when the match threshold is relatively high, our approach requires two scans of the sequence database

while both Max-Miner and the sampling-based level-wise search requires at least five scans of data. As the match threshold

decreases, the border collapsing algorithm requires three or four scans of the database while the other two approaches need

10 or more scans of the database. The significant reduction in number of database scans of our algorithm comes from

the combined effect of sampling and border collapsing. We also would like to mention that the sampling-based level-wise

approach spends majority of the time on finalizing the border of frequent patterns after estimating the border from the samples.

We observed that there is a high likelihood that the final border is “far” from the estimated one and many scans of the data

may be required before it is reached. This is because the match value usually changes very little from level to level in the

pattern lattice especially when the pattern is long. This effect can clearly be observed from Figure 14(c).

5.7 Scalability with respect to the Number of Distinct Symbolsm

In all above experiments, we utilize the gene expression data which consists of 20 symbols (i.e., amino acids). Now we

analyze the performance of our algorithm with respect to the number of distinct symbols,m. In this experiment, we employ

22

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x 10
−3

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Minimum Match

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

.)

Max−miner
Sampling with Level Search
Sampling with Board Collapsing

(a)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

x 10
−3

0

2

4

6

8

10

12

Minimum Match

N
um

be
r

of
 S

ca
ns

Max−miner
Sampling with Level Search
Sampling with Board Collapsing

(b)

20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

18

20

Length of Longest Pattern

N
um

be
r

of
 S

ca
ns

Max−miner
Sampling with Level−wise Search
Sampling with Border Collapsing

(c)

Figure 14: Performance of three algorithms

several synthetic data sets, each of which consists of 100K sequences and each sequence contains 1000 symbols on average.

We vary the number of distinct symbols (m) in each data set. The minimum match threshold is set to 0.001. A compatibility

matrix is constructed for each data set. In reality, most entries in a compatibility matrix is zero or near zero. Thus, the

compatibility is generated in such a manner that a symbol is compatible to around 10% of other symbols with various degree.

Figure 15(a)(b) shows the number of scans and response time of our algorithm, respectively. The number of scans decreases

with the increase ofm because less patterns are qualified to be significant. However, this trend does not hold for the response

time. The average response time decreases initially, but increases whenm gets large (e.g., greater than 10000). This is due to

the fact that the size of the compatibility matrix is a quadratic function ofm and the computation cost for each scan increases

significantly. For example, ifm = 10000, then it requires about 40MB space to store the compatibility matrix if each non-zero

entry occupies 4 Bytes. The performance of our algorithm degrades whenm is extremely large. Nevertheless, the algorithm

performs very efficiently when the number of distinct symbols is within a reasonable range (m � 104).

6 Conclusion

In this paper, we are interested in discovering long sequential patterns in a noisy environment. In this environment, the

observed symbol in a sequence may differ from the underlying true value. The concept ofcompatibility matrixis introduced

to provide a probabilistic connection from the observation to the underlying true value. A new metricmatchis thus, proposed

to capture the “real support” of a pattern which would be expected if a noise-free environment is assumed. Since the length

23

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Number of distinct symbols

N
um

be
r

of
 s

ca
ns

(a)

0 2000 4000 6000 8000 10000 12000
0

500

1000

1500

2000

2500

3000

3500

4000

Number of distinct symbols

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(s

ec
.)

(b)

Figure 15: Scalability w.r.t. the number of distinct symbols

of a pattern could be very large, the standard pruning technique developed for the market basket problem may not work

efficiently. As a result, a probabilistic algorithm is devised to discover long patterns in a minimal number of scans of the

sequence (e.g., 2 to 4) with sufficiently high confidence. Empirical results demonstrate the robustness of the match model

(w.r.t. the noise) and the efficiency of the probabilistic algorithm. As a future research direction, we are developing strategies

that can further improve the performance of the algorithm for the applications where a huge number of distinct symbols exist

(e.g., E-Commerce).

References
[1] R. Agarwal, C. Aggarwal, and V. Prasad. Depth first generation of long patterns.Proc. 6th Intern. Conf. on Knowledge Discovery and

Data Mining (SIGKDD), 108-118, 2000.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases.Proc. ACM SIGMOD Conf.
on Management of Data, 207-216, 1993.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.Proc. 20th Int. Conf. on Very Large Data Bases, 487-499,
1994.

[4] R. Agrawal and R. Srikant. Mining Sequential Patterns.Proc. Int. Conf. on Data Engineering (ICDE), 3-14, March 1995.

[5] R. Baeza-Yates and G. Navarro. Faster approximate string matching.Algorithmica, 23(2) 127-158, 1999.

[6] R. J. Bayardo Jr. Efficiently mining long patterns from databases.Proc. ACM SIGMOD Conf. on Management of Data, 85-93, 1998.

[7] C. Bettini, X. S. Wang, S. Jajodia, and Jia-Ling Lin. Discovering frequent event patterns with multiple granularities in time sequences.
IEEE Transaction on Knowledge and Data Engineering, 10(2), 222-237, 1998.

[8] Vincent Busam. Personal Communications, 2000.

[9] P. Domingos and G. Hulten. Mining high-speed data streams.Proc. ACM SIGKDD, 71-80, 2000.

[10] R. Durbin, S. Eddy, A. Krough, and G. Mitchison.Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids.
Cambridge University Press, 1998.

[11] M. Garofalakis, R. Rastogi, and K. Shim. SPIRIT: sequential pattern mining with regular expression constraints.Proc. Int. Conf. on
Very Large Data Bases (VLDB), 223-234, 1999.

[12] National Center for Biotechnology Information. Available at “http://www.ncbi.nlm.nih.gov”.

[13] G. Gunopulos, H. Mannila, and S. Saluja. Discovering all most specific sentences by randomized algorithms.Proc. 6th Int. Conf. on
Database Theory, 215-229, 1997.

[14] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.Proc. ACM SIGMOD Int. Conf. on Management of
Data (SIGMOD), 1-12, 2000.

24

[15] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, and M. Hsu. FreeSpan: frequent pattern-projected sequential pattern mining.
Proc. Int. Conf. on Knowledge Discovery and Data Mining, 2000.

[16] W. Hoeffding. Probability inequalities for sums of bounded random variables.Journal of the American Statistical Association, vol 58,
13-30, 1963.

[17] H. V. Jagadish, R. T. Ng and D. Srivastava. Substring selectivity estimation.Proc. ACM Symposium on Principles of Database Systems,
249-260, 1999.

[18] H. V. Jagadish, N. Koudas, and D. Srivastava. On effective multi-dimensional indexing for strings.Proc. ACM SIGMOD Conference
on Management of Data, 403-414, 2000.

[19] D. Lin and Z. Kedem. Pincer-search: a new algorithm for discovering the maximum frequent set.Proc. 6th European Conf. on
Extending Database Technology, 1998.

[20] Heikki Mannila and Hannu Toivonen. Levelwise search and borders of theories in knowledge discovery.Data Mining and Knowledge
Discovery, vol. 1, no. 3, 241-258, 1997.

[21] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences.Data Mining and Knowledge
Discovery, vol. 1, no. 3, 259-289, 1997.

[22] Y. Qu, C. Wang, and X. S. Wang. Supporting fast search in time series for movement patterns in multiple scales.Proc. 7th ACM Int.
Conf. on Information and Knowledge Management, 251-258, 1998.

[23] R. Srikant and R. Agrawal. Mining generalized association rules.Proc. 21st Int. Conf. on Very Large Data Bases, 407-419, 1995.

[24] R. Srikant and R. Agrawal. Mining sequential patterns: generalizations and performance improvements.Proc. 5th Int. Conf. on
Extending Database Technology (EDBT), 3-17, 1996.

[25] H. Toivonen. Sampling large databases for association rules.Proc. 22nd Int. Conf. on Very Large Data Base, 134-145, 1996.

[26] A. Tung, H. Lu, J. Han, and L. Feng. Breaking the barrier of transactions: mining inter-transaction association rules.Proc. Int. Conf.
on Knowledge Discovery and Data Mining, 1999.

[27] J. Vitter. An efficient algorithm for sequential random sampling.ACM Transactions on Mathematical Software, 13(1), 58-67, 1987.

[28] J. Yang, W. Wang, and P. Yu. Mining long sequential patterns in a noisy environment.IBM Research Report, 2001.

[29] M. Zaki, S. Parthasarathy, W. Li, and M. Ogihara. Evaluation of sampling for data mining of association rules.Proc. 7th Int. Workshop
on Research Issues in Data Engineering (RIDE–in conjunction with ICDE), 42-50, 1997.

[30] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association rules.Proc. 3rd Int. Conf. on
Knowledge Discovery in Databases and Data Mining, 283-286, 1997.

[31] M. Zaki. SPADE: an efficient algorithm for mining frequent sequences.Machine Learning Journal, special issue on Unsupervised
Learning, 42(1/2), 31-60, 2001.

25

