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Abstract 

 
Real-world changes are generally discovered delayed 

by computer systems. The typical update patterns for 
traditional data warehouses on an overnight or even 
weekly basis enlarge this propagation delay until the 
information is available to knowledge workers. 

The main contribution of the paper is the identification 
of two different temporal characterizations of the 
information appearing in a data warehouse: one is the 
classical description of the time instant when a given fact 
occurred, the other represents the instant when the 
information has been entered into the system. We present 
an approach for modeling conceptual time consistency 
problems and introduce a data model that deals with 
timely delays and supports knowledge workers to 
determine what the situation was in the past, knowing only 
the information available at a given instant of time.  

1 Introduction 

The observation of real-world events by computer 
systems is characterized by a delay. In the applied context 
of information systems it is determined by external and 
internal factors (e.g. update patterns, processing speed). 
This so-called propagation delay is the time interval it 
takes for a monitoring system to realize an occurred state 
change. In contrast to operational systems (designed to 
meet well-specified response time requirements), the 
focus of data warehouses (DWHs) [6] is generally the 
strategic analysis of data integrated from heterogeneous 
systems. Late-arriving data that should have been loaded 
into the DWH weeks or months before complicate this 
situation [10]. Hence, keeping data current and consistent 
in that context is not an easy task. 

Until recently, timeliness requirements [4] (describing 
the relative availability of data to support a given process 
within the timetable required to perform the process) were 
restricted to mid-term or long-term. W. H. Inmon, known 
as the founder of data warehousing, cites time variance [6] 
as one of four silent characteristics of a DWH. Timeliness 

can be viewed as an aspect of data quality, which has a 
strong influence on the delay until a system realizes a 
certain state of the data. While a complete, real-time 
enterprise DWH might still be the panacea; there are some 
approaches to enable DWHs to react �just-in-time� [16] to 
changing customer needs and financial concerns.  

Figure 1 demonstrates that typical update patterns for 
traditional DWHs on a weekly or even monthly basis 
enlarge propagation delays until the information is 
available to knowledge workers. Any significant delay in 
the recognition of events may result in a number of further 
considerations needing to be taken into account:  
• Data integration. Aggregates have to be updated, 

because the new records will change counts and totals 
of the  prior history. 

• Analytical processing. Historical analysis results can 
no longer be repeated, if additional information 
regarding that time period is integrated delayed 
(numbers and summaries will change unexpectedly 
from the user�s perspective). 

We present a schema model that copes with delays and 
enables a timely consistent representation of information. 
This enhances analytical processing by considering that 
information validity of data is typically restricted to time 
periods, because of frequent updates or late-arriving data.  

The remainder of this paper is organized as follows. 
Section 2 considers research issues and related work. 
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Figure 1. Delayed discovery of real-world changes. 



Sections 3 and 4 classify common temporal data structures 
in information systems and introduce the concept of 
temporal consistency described from different viewpoints 
(conceptual and logical). Section 5 evaluates the model 
and finally we give a conclusion. 

2 Research issue and related work 

The notion of time is fundamental to our existence and 
an important aspect of real-world phenomena. We can 
reflect on past events and on possible future events, and 
thus reason about events in the domain of time. In many 
models, time is an independent variable that determines 
the sequence of states of a system. There are two different 
temporal characterizations of the information appearing in 
a DWH: one is the classical description of the time instant 
when a given fact occurred; the other represents the 
instant when the information is actually knowable to the 
system. This distinction, implicit and usually not critical 
in on-line transactional processing (OLTP) applications, 
has a particular importance for DWHs, where it can be 
useful to determine what was the situation in the past, 
knowing only the information available at a given time. 

Temporal databases provide support for past, current, 
or even future data and allow sophisticated queries over 
time to be stated [17]. Research in temporal databases [5] 
has grown immensely in recent years. In particular, 
transaction time and valid time have been proposed [7] 
and investigated in detail [8], [15].  

In the field of data warehousing, Bliujute et al. in [1] 
concentrated on the shortcomings of star schemas in the 
context of slowly changing dimensions [9] and concluded 
that state-oriented warehouses allow easier analytical 
processing and even better query performance than 
observed in regular events warehouses. Our formal 
approach to managing temporal consistency (described in 
section 4) is state-oriented, too. 

Pedersen and Jensen [11] describe features that entire 
DWH data models should have (including a requirement 
to handle changes in data over time) and evaluate 
previously proposed models. In the discipline of temporal 
data warehouses a lot of research was done in the context 
of temporal view maintenance, e.g. [13]. 

An interesting practice approach is described in [4], 
where timeliness is viewed as the time from when a fact is 
first captured in an electronic format and when it is 
actually knowable by a knowledge worker who needs it. 
Late-arriving facts and dimension records [10] can 
complicate this situation, because they are changing 
counts and totals for prior history. Some industries, like 
health care, have to deal with huge numbers of late-
arriving records [3]. 

The nature of delays in active temporal databases is 
discussed in [12], concluding that temporal faithfulness 

has to be provided. Applying this concept to data 
warehousing ensures that information is analytically 
processed in a consistent way.  

3 Temporal data structures 

Timestamps allow the maintenance of temporal data. 
When considering temporal data for DWHs we need to 
understand how time is reflected in a database, how this 
relates to the structure of the data, and how a state change 
affects existing data. There are a number of approaches: 
• Transient data. The key characteristics of transient 

data is that alterations to and deletions of existing 
records physically destroy the previous data content. 
This type of data is typically found in operational 
environments (e.g. order-entry systems). 

• Periodic data. Once a record is added to a database, it 
is never physically deleted, nor is its content ever 
modified. Rather, new records are always added to 
reflect updates or even deletions. Periodic data thus 
contains a complete record of the changes that have 
occurred in the data. DWHs are periodic in nature.  

• Semi-periodic data. This kind of data is typically 
found in the real-time data of operational systems 
where previous states are important (bank account 
systems, insurance premiums systems, etc.). However, 
in almost all operational systems, the duration for 
which persistent data are held is relatively short, due to 
performance and/or storage constraints. Therefore, this 
kind of data may be termed semi-periodic data. 

• Snapshot data. Snapshot data are a stable view of data 
as they exist at some point in time. They are a special 
kind of periodic data. Snapshots usually represent the 
data at some time in the past, and a series of snapshots 
can provide a view of the history of an organization. 

The standard approach to storing periodic data (typically 
found in DWHs) is to use time stamped status and event 
records. There are, however, a variety of schemes to 
maximize the efficiency of timestamps [2], [8], [15]. 

The single timestamp approach storing only a start time 
when a record became valid, is well applicable to event 
data, but faces serious deficiencies in the context of 
DWHs, where in general state information is stored. There 
are two relatively common types of queries used in DWH 
environments, which explain the problem: 
1. A query that needs to access current data. In a single 

timestamp scheme, the only way to identify current 
records is to find the latest timestamp of the periodic 
set, which is an inefficient process. 

2. A query that builds a view of the data at a particular 
time in the past. In order to support this kind of query, 
the period of validity of each record must be known, to 



compare it with the required time. With a single 
timestamp approach, the end of the period of validity 
can only be found from the next record in the periodic 
sequence. In general this is also an expensive process. 

In order to address the first problem, a second timestamp 
(called end time) can be added to each fact. It identifies 
the end of the period of validity. This causes performance 
improvements in retrieving data. However, it is not 
sufficient to fully solve the second problem, because the 
period of validity can change over time due to new 
information integrated into the DWH later. A temporally 
consistent view (similar to snapshot data) during 
analytical processing requires the storage of both, the old 
and the new (maybe overlapping) validity period. 
Therefore, we enhance DWH data models with following 
time dimensions (described in detail in section 4.2): 
• valid time dimension (validity of knowledge) as 

motivated above. 
• revelation time dimension (transaction time). It 

describes the point in time, when a piece of 
information was realized by at least one source system. 

• load timestamp. This  represents the point in time 
when the new piece of information was integrated. 

4 Temporal consistency 

Figure 2. Overlapping validity periods. 

The continuum of real time can be modeled by a 
directed timeline consisting of an infinite set {T} of 
instants (time points on an underlying time axis [7]). A 
section of the timeline is called a duration. An event takes 
place at an instant of time, and therefore does not have 
duration. A time interval is determined by the duration 
between two corresponding (start - end) instants.  

Figure 2 describes a situation, where a computer 
system observes state S1 at T1 indicating that a specified 
person (Mr. Smith) lives in Boston. It knows that Mr. 
Smith stays there from T1S to T1E. The next state (S2) 

knowable to the computer system regarding Mr. Smith is 
the new address in New York at T2. Additional data 
reveals that he already lived in New York since T2S.  

In order to determine what was the situation before 
instant T2, it must be feasible to process only those states 
known before T2. By modeling this situation temporally 
consistent, it will always be possible to find out, that the 
system did not know where Mr. Smith lived after T1E until 
the instant T2, when the new piece of information (state 
S2) was integrated into the DWH. 

4.1 Conceptual model 

In this section we will present a conceptual model that 
generalizes the example from Figure 2, which illustrated 
the usefulness of overlapping valid times. A temporally 
consistent representation of information requires a reliable 
view on historical data at any point in time independent 
from propagation delays. Therefore we define: 

A knowledge state (KS) is determined by a specified 
instant T. It considers all information (knowledge) that 
was observed, captured, and integrated until the instant T. 
An ordered relation of two instants T1 < T2 implies that 
KS(T1) ≤ KS(T2). In other words, moving forward in time 
causes the knowledge state to grow.  

In general an analysis focuses on a time interval 
containing at least one instant of interest (II): IIinterest = 
[IIstart, IIend] (e.g. July 1st, 2001). The KS and II are two 
orthogonal time dimensions and therefore independent 
from each other regarding analysis capabilities.  

In general a stored state SX is determined by an instant 
TX (revelation time) and a corresponding valid time 
interval indicated by [TXS, TXE]. A data model enables 
temporal consistency if a set of nine conditions listed in 
Table 1 is satisfied for any combination of stored datasets 
(S1, S2) regarding the same subject.  

Table 1. Conceptual model for temporal consistency 

Knowledge 
State (KS) Instant(s) of interest (II) Retrieved state 

KS < T1 Any II (not defined)1 
II < T1S (not defined)1 

T1S ≤ II ≤ T1E S1 T1 ≤ KS < T2 
II > T1E (not defined)1  
II < T1S (not defined)1 

T1S ≤ II < min(T1E , T2S) S1 
T1E < II < T2S 

2 (not defined)1 
min(T1E , T2S) ≤ II ≤ T2E S2 

KS ≥ T2 

II > T2E (not defined)1 

                                                 
1 �not defined� means neither S1 nor S2. 
2 This case is obsolete, if the corresponding valid times  

[T1S, T1E] and [T2S, T2E] do not overlap. 
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Table 1 describes the timely correct state that will be 
retrieved during analytical processing. The retrieved state 
can be viewed as the output of a function considering the 
applied KS and the specified II. The reading examples 
below exactly describe the contributions of this 
conceptual model to conventional temporal models 
restricted to non-overlapping valid times. 
• At any point in time an analysis based on a KS between 

T1 and T2 (T1 ≤ KS < T2) is able to figure out that state 
S1 was valid till T1E (third entry in Table 1 above), and 
S2 was not yet knowable to the system (forth entry). 

• Moving forward in time (by applying a knowledge 
state of KS ≥ T2) will reveal that e.g. the state S1 was 
only valid till T2S (sixth entry in Table 1), under the 
precondition of overlapping valid times for S1 and S2.  

Any combination of II with KS during analytical 
processing retrieves that state, which is knowable to the 
system at the specified KS. The model has full generality, 
because the number of the involved overlapping states is 
independent from the conditions. Example: If there are 
two overlapping states (S1, S2) considered in an analysis, 
only one of the nine types of overlapping can occur. 

4.2 Modeling temporal consistency for DWHs 

The identified propagation delays and temporal order 
issues in a DWH environment are represented as follows: 

Valid time. This property is always related to a state 
(dataset) at an instant T, and describes the time interval of 
validity of this information - knowable at instant T.  

Revelation time. The revelation time describes the 
point in time, when a piece of information was realized by 
at least one source system. This concept is tightly related 
to the notion of transaction time [15] in temporal 
databases. However, in the context of DWHs we call this 
property �revelation time� to clarify that 1) transaction 
results were already recorded in the source systems and 2) 
analytical processing is proposed to reveal interesting 
relations among facts. 

Load timestamp. The load timestamp is a time value 
associated with some integrated dataset in a DWH. Thus, 
in the presence of delays, it is the load timestamp that 
represents the point in time to which automatic decision 
making or compensating actions should refer in active 
DWH environments. 

The conceptual model is associated with the mentioned 
(orthogonal) types of time information as follows:  
• The valid time is related to the instants of interest (II) 

during analytical processing.  
• Typically the knowledge state (KS) relates to the 

revelation time, to get a timely accurate picture of the 
entity of interest. However, it is possible to relate to the 
load timestamp, to observe and control active 
mechanisms in the context of active DWHs.  

Logical model: 
When designing a temporal data model, an important 

and central aspect is the choice of appropriate timestamps 
of the database facts. Time intervals are used as an 
abbreviation for sets of time points for practical reasons. 
In order to model past and future instants two symbolic 
instants are introduced: �∞ (�since ever�) and +∞ (�until 
changed�). Analytical processing, which is known from 
traditional DWHs, is effectively supported by reusing the 
commonly available time dimension for load timestamps. 

Both, the revelation and valid time of facts will be 
integrated as separated logical time dimensions modeled 
by time intervals or by single timestamps. We already 
discussed this issue in Section 3. It depends on the applied 
environment in which the approach will be better suited 
for [2]. However, deciding on time intervals, the physical 
realization can be done by a bitemporal model (Table 2) 
combining the features of a transaction-time and a valid-
time database. Thus, it represents reality more accurately 
and allows for retroactive as well as postactive updates. 

The proposed logical model allows a designer to mix 
temporal and non-temporal aspects (different strategies for 
every fact star). Temporal consistency for aggregates is 
handled the same way. The integration of new facts 
concerning information about previous data loads causes 
the re-computation of the affected aggregates. The �old� 
aggregates can either be deleted or stored time consistently 
by adjusting the valid time from �until changed� to the re-
computation timestamp.  

Data staging: 
Whereas data staging in traditional DWHs establishes a 

delivery order for new information, managing temporal 
consistency requires the (stronger) temporal order, which 
takes into account already stored facts and aggregates.  

The integration of new data enhancing the knowledge 
state regarding a particular subject is done by retroactive 
updates. Existing data structures (in particular the end 
date for revelation time) of the involved datasets only 
have to be modified if valid times overlap. It is important 
to note that both the valid time of the old state provided by 
the DWH and the new one from data staging (provided by 
a temporal source systems) are not changed - only the end 
date of the revelation time will be changed (if a 
bitemporal model is used). 

Table 2. Temporal order for overlapping valid times. 

location Valid time revelation time load timestamp 

Boston 2001-02-01 � 
2001-04-01 

2001-02-05 � 
until changed 2001-02-06 

    

location Valid time revelation time load timestamp 

Boston 2001-02-01 � 
2001-04-01 

2001-02-05 � 
2001-04-14 2001-02-06 

NY 2001-03-15 � 
2001-06-01 

2001-04-15 � 
until changed 2001-04-16 



Table 2 shows the physical datasets according to the 
situation exemplified in Figure 2. This kind of temporal 
integration method slows down data staging (only in the 
case of overlapping valid times - typed in bold face in 
Table 2), but simplifies analytical processing dramatically. 

5 Evaluation 

The hypercube-based multidimensional model, and the 
star-schema based (extended-) relational model have 
emerged as candidate data models for DWHs. However, 
these models do not adequately address issues related to 
history data and temporal consistency, which are certainly 
core issues in data warehousing. In order to model the 
history of an organization as accurately as possible, 
DWHs have to cope with propagation delays. If a DWH 
has to �tie to the books� (cash flows, statistics, strategic 
planning, etc.), it is not possible to change aggregates (e.g. 
an old monthly sales total), even if the new information 
indicates that the old sales total was incorrect. Traditional 
DWHs ignoring the revelation time of late-arriving 
records will invalidate cash flows and statistics. 

The proposed model enables explicit hierarchies in the 
time dimensions [11] to aid the user in navigation. It 
allows multiple hierarchies in the time dimension based 
on the load timestamp, e.g. days could roll up into weeks 
or months. To our knowledge it is the first DWH model 
that handles the change in data over time systematically 
by adding validity periods and allowing overlapping valid 
times regarding the same subject. This is actually an 
enhancement to the proposed three types of slowly 
changing dimensions [9], in particular for type two. 

The usability of the proposed approach was evaluated 
by the application to an industry project (described in [3]) 
in the domain of accident insurance. There we found out 
that the introduction of the knowledge state viewpoint is 
an enhancement to analytical processing. The focus of our 
approach to managing temporal consistency enables 
knowledge workers to establish and control active 
behavior for DWH environments. 

Managing temporal consistency of stored facts does not 
guarantee a timely correct view of the modeled real world. 
But it ensures that every piece of information captured by 
an organization�s operational source system is integrated 
in a timely correct manner into an entire DWH. 

Important future research directions in this field will be 
the maintenance of DWHs over dynamic information 
systems (data updates, schema changes, dynamic sources). 

6 Conclusion 

The advantages provided by built-in temporal 
consistency support in data warehouses include higher-
fidelity data modeling, more efficient capturing of an 

organizations history, as well as analyzing the sequence of 
changes to that history.  

The presented approach enables a timely consistent 
view for analysis purposes considering that the validity of 
detail data (or aggregates) is typically restricted to time 
periods, because of capturing delays and late-arriving 
records. Ignoring this temporal issue leads to 
impoverished expressive power and questionable query 
semantics in many real-life scenarios. 
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