
RC 22089 (99042) 12 June 2001 Computer Science

IBM Research Report
An Intelligent Notification System

Vincent Bazinette, Norman H. Cohen, Maria R. Ebling,
Guerney D. H. Hunt, Hui Lei, Apratim Purakayastha,

Gregory Stewart, Luke Wong, Danny L. Yeh
IBM Research Division

Thomas J. Watson Research Center
P. O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Intelligent Notification System
Vincent Bazinette, Norman H. Cohen1, Maria R. Ebling,
Guerney D. H. Hunt, Hui Lei, Apratim Purakayastha,

Gregory Stewart, Luke Wong, and Danny L. Yeh

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598

{vbazine,ncohen,ebling,gdhh,hlei,apu,gstewar,lukew,dlyeh}@us.ibm.com

Abstract. Today, pervasive computing often centers around accessing web information from
handheld devices. One attractive alternative is for a user to subscribe to relevant information and
to be notified when such information becomes available. In this paper, we describe a system that
allows users to specify a wide variety of interesting, and possibly complex, events, which may
require the system to aggregate data from numerous content sources. Furthermore, because users
typically have different devices available to them at different times, the system delivers the
message to one or more of the users’ devices based upon their general preferences as well as their
present context. Our Intelligent Notification System reduces the demand for user attention by
delivering the requested information to the user on a convenient device in a timely and
appropriate fashion.

1 Introduction
The quantity of information available on the Internet is immense and it increases each

day. Anyone needing to detect when certain events occur or when certain conditions are met is
faced with the difficult challenge of detecting those events or of monitoring those conditions.
Compounding this difficulty is the fact that, at its core, the Web is a pull technology.
Consequently, the user must actively search out the needed information on a regular and frequent
basis.

Consider Susan, an executive who regularly invests in the stock market. She would like to
invest in PQR Corporation, but only when the price falls below $14 per share and her current
on-line trading account balance is at least $5000. Because of her interest in this company, she
also keeps a close watch on the business news for any articles mentioning PQR. Using today’s
technology, she must monitor her account balance and, when it is above $5000, she then must
monitor the price of the stock. She checks the stock price on-line whenever she gets a chance
during the day and, when time permits, she also scans the CNNfn web site. Because her job
responsibilities must take priority, she frequently does not even get the opportunity to check the
stock price of PQR.

To address these difficulties and alleviate the burden such activities place on users, we
have built a system, the Intelligent Notification System, that allows users to specify events and

1

1 Contact author

conditions of interest to them. The system monitors information from a variety of sources, such
as news wires and stock tickers. When the event occurs or the conditions are met, the system
notifies the user via a convenient means, controlled by the user, such as instant messaging,
e-mail, cellular phone, or WAP.

Using the Intelligent Notification System, Susan monitors PQR with much less effort.
She submits two subscriptions. One subscription notifies her of any news wire articles
mentioning PQR. The other notifies her when the stock price falls below $14 per share and her
current account balance exceeds $5000. When an article of interest is published or when the
stock and account requirements are met, the Intelligent Notification System notifies Susan. As an
executive however, Susan is often in meetings with customers. In such situations, instead of the
normal chime of her WAP phone, she would like the system to alert her gently using either
instant messaging (if she happens to be logged on and not making a presentation) or her pager
(which she keeps set on vibration mode).

This vision presents a number of interesting research challenges. One such challenge
relates to the quantity of information brought to the user’s attention. The system must allow users
to define criteria that are sufficiently selective to avoid overwhelming them with irrelevant data
(and incurring high wireless-communication fees). Yet, the criteria must be sufficiently broad to
allow for an adequate and appropriate match rate. Another challenge is that, in the era of
pervasive computing, users may have more than one device and they may switch from one device
to another many times throughout the day. Further, depending upon users’ current activities, not
all of their available devices may be appropriate. Our system must be capable of knowing which
device is appropriate to use at any given time. Additional challenges include scalability and
privacy.

In this paper, we begin by discussing the desired features and challenges presented by this
system. We then discuss the architecture of the system, including each of the major components.
Next we discuss some outstanding research issues that we are working to address. We conclude
with a discussion of related work and the contributions of this research.

2 Desired Features and Challenges
The key features of this system include programmable aggregation, multi-modal

notification, and exploitation of user context. Each of these features, including its desired
functionality and the challenges it presents, is discussed in the following sections.

2.1 Programmable aggregation
Most web portals today (e.g., my.yahoo.com) offer some form of content aggregation that

collects data from various sources and presents it to the user in a personalized manner. The
various data sources are often explicitly identified via URLs (e.g., local weather information
from weather.com) and the personalization is centered on presentation. The data from various
sources is not materially altered or correlated with other data. In contrast, our system allows a
user (or an application running on behalf of the user) to control how data from various sources
are aggregated and correlated.

2

When Susan places her request, our system will first determine that Susan wants live
financial information and will open a connection to an appropriate stock data feed. It will then
monitor the data feed for the appropriate condition (PQR is trading below $14). When the
condition occurs, our system will query Susan’s on-line trading account (with proper prearranged
authorization from Susan) for current balance and projected cash requirement information. If the
balance is greater than $5000, the Intelligent Notification System will initiate notification.

There are a number of technical challenges in programmable data aggregation as we
envision it. First, a large number of diverse data sources may need to be discovered and
supported. Applications will require support for accessing data from the web, from
wire-service–type data feeds, from various databases, and from files. Applications will typically
not want to specify the actual physical data source but instead describe the data source in some
symbolic form, such as “PQR stock” (or XML equivalent). The system will need to figure out the
actual data source appropriate for the request. In some cases, a live data feed will be appropriate;
in others, some archival data source will be appropriate. The system must also allow applications
to specify aggregation logic as well as provide various libraries of common aggregation functions
for faster application development. Second, we envision programmable aggregation to be
distributed, especially when we transcend from the consumer domain to the enterprise domain.
Data from various sensory data sources (other than location) may need to be aggregated at the
edges of the network such that only the aggregated data, and not the voluminous raw data, are
propagated across the network. Consider a traffic application that suggests shortest paths to
motorists from their current locations to their destinations based on data from various traffic
sensors. This entails computation of traffic density metrics based on vast amounts of sensor data.
Such density metrics are best computed at the edges of the network in server(s) near the sensors
and only the computed metrics used in the shortest path calculations.

2.2 Multi-modal Notification
Susan’s requirements imply that we support notifying our users by a variety of means.

Users may want notification by voice over wired or wireless phones; they may want text-based
notification via email, instant messaging, pagers, or SMS; in addition to text, they may want
enhanced notifications (e.g., one containing an image) via instant messaging or e-mail; they may
further want hard-copy notifications on a fax machine or a networked office printer. To support
this diverse set of requirements, our system uses a large number of device gateways (e.g., WAP
gateway) and services (e.g., instant messaging), and performs on-the-fly transcoding of the
notification content to the format suitable for the destination device. Due to space limitations on
some devices, the actual notification may involve presenting a summary of the content (e.g., just
a headline) to the user. To offer this functionality, our service maintains the actual content in
persistent store and allows the user to access the full content when desired (sometimes very
conveniently by simply clicking a URL embedded in a text notification).

Further, our system notifies Susan according to her preferences. These preferences may
involve static directives, such as sending urgent notifications via cellular phone and FYI
notifications via e-mail. They may also involve dynamic directives, such as using low-key
notifications while Susan is in a meeting. The preferences may also involve further user
directives such as a preference for instant messaging over pager messages when the user happens
to be logged on.

3

UND is only useful if the service it provides is easily useable by the average person. The
principal challenges are in the user interface and the presentation of information. How much
control does a recipient need? How do we present the preferences options in an easily
comprehensible way? What sort of delivery guarantees are needed and how can we provide
them?

2.3 Exploitation of User Context
To deliver notifications in the most appropriate manner, our system must gather

information about Susan’s context (e.g., whether or not Susan is in a meeting). Context includes
such information as daily activities (inferred from an electronic calendar), on-line presence, and
location. Rather than deriving and managing user context in an ad hoc manner, we have chosen
to place the functionality in the infrastructure and have developed a context service. An
infrastructural context service brings two advantages. First, it simplifies the development of other
pervasive computing applications and encourages them to exploit diverse sources of user context.
Second, it amortizes the costs of introducing new context sources across multiple applications.

Developing a context service presents a number of challenges. First, context information,
by its nature, is personal and sensitive. Our instincts impressed upon us the need to protect the
privacy of context subjects to the greatest extent possible. A privacy protection mechanism for
context services must make provisions for the specification and enforcement of individualized
policies. Second, the space of context information is tremendous. There are many different
aspects of the computing context and the same aspect may be represented at different semantic
levels. Services supporting a general notion of context must accommodate heterogeneous context
sources and must allow new context sources to be easily added. Third, applications’ needs for
context information are as diverse as the applications themselves. Therefore, a context service
should provide structure to heterogeneous context information and present an integrated view to
applications. It should supply the quality of context information upon request and allow
applications to assert their quality of information requirements. Further, it should support both
synchronous and asynchronous operations.

3 Architecture
Figure 1 depicts the architecture of the Intelligent Notification System, as it would be

deployed in a Web server environment. In such an environment, end users access the system via
a web browser. Application servlets access the Intelligent Notification System through a Java
API and allow users to register events of interest to them (trigger servlet) and to access content
after a match has occurred (content-retrieval servlet). In addition, content adapters collect
content from various sources, such as news feeds and web sites, and push2 that content to the
Intelligent Notification System. In addition, users may request that a message be sent to a

4

2 Although a content adapter may obtain its content through either a push mechanism (e.g.,
subscribing to a service that automatically sends new content) or a pull mechanism (e.g., actively
polling a known content source), it is responsible for pushing that content to the Intelligent
Notification System.

specified user or users directly (notification servlet), but this functionality is orthogonal to this
paper and will not be discussed further.

The three major components of the Intelligent Notification System are the Trigger
Management Service, the Universal Notification Dispatcher, and the Secure Context Service.

! Trigger Management Service. The Trigger Management Service maintains a record of
user interests and accepts content from various sources. When content arrives that is of
interest to one or more users, the Trigger Management Service identifies the match and
takes appropriate action, including simply notifying the user, according to each user’s
wishes.

! Universal Notification Dispatcher. The Universal Notification Dispatcher transmits
messages to specified end users through gateways for a variety of devices, selected
according to the end users’ preferences. Some of these preferences are contingent on the
end user’s current context, which the Universal Notification Dispatcher obtains from the
Secure Context Service.

5

Trigger-
Management

Service

Universal
Notification
Dispatcher

Secure
Context
Service

web server

notification preferences

trigger
servlet

notification
servlet

direct notification request

Intelligent
Notification

Service
WAP

gateway

SMS
gateway

FAX
gateway

voiceXML
gateway

instant
messaging

gateway

e-mail
gateway

content
adapter

content-
retrieval
servlet

triggered notification request

content-retrieval request

content
source

Figure 1. Architecture of the Intelligent Notification System and its environment.

! Secure Context Service. The Secure Context Service maintains context information
about its users. It allows users to specify who can access the various types of context it
maintains. When a context request arrives from the Universal Notification Dispatcher or
any other application or service, the Secure Context Service authorizes the requester and
releases only that context which the user has approved.

Each of these components is discussed in more detail in the sections that follow.

3.1 Trigger Management Service
The Trigger Management Service manages a user’s events of interest and matches the

incoming messages from content adapters to users’ events of interest; if a match occurs, the
service may store content associated with the event into a persistent content store and/or send
notification to end users. A user’s events of interest are termed triggers. A trigger is associated
with a trigger handler, with one or more content sources, and with a firing condition. A content
source is a named entity to which a content adapter may direct messages. For example, a content
adapter obtaining content from the Reuters News Service might direct a message to a content
source named “ReutersNewsService” each time it obtains a news story. The message
generated by a content adapter may include named attributes. For example, a message
corresponding to a news story might have attributes named “headline” and “body”. A firing
condition is an SQL92 predicate in which the names of these attributes may appear. In our
example, the firing condition “headline LIKE '%PQR%'” would test whether the word
“PQR” appears in the subject line of a news story. In this example, when the
“ReutersNewsService” content source receives a news-story message whose headline
attribute contains the word “PQR”, a match occurs, and all triggers that have this firing condition
are said to fire.

When a trigger fires, the Trigger Management Service invokes the handleMatch
method of its trigger handler. This method executes one or more actions on behalf of the user and
returns a result specifying further actions to be performed by the Trigger Management Service.
One possible further action is to store the news story into a persistent storage for later retrieval by
the user, and another possible further action is to request the Universal Notification Dispatcher to
send a notification to the user. The result returned by the trigger handler may also specify that the
trigger should be removed, so that it will not fire again. (This would be appropriate, for example,
if a user was interested in being notified the first time that the price of a particular stock fell
below $14, but not every subsequent time the stock was traded at or below that price.) A
trigger-handler object may contain variables that maintain state from one call on its
handleMatch method to the next.

The Trigger-Management Service uses a matching engine to direct messages from
content adapters to the applicable triggers. The applicable triggers for a given message are those
whose content source is the one to which the content adapter wrote the message, and whose
firing conditions are true for the attribute values contained in the message. Our architecture uses
Gryphon [Agu99], a content-based publish-subscribe system, for this purpose. When a match
occurs, Gryphon invokes a callback function that executes the trigger handler associated with a
trigger, examines the result returned by the trigger, and performs the further actions specified by

6

the result. The actions performed by the trigger handler may be conditional on other sources of
data, such as the time of day or the user’s current bank balance.

The Trigger-Management Service contains two persistent stores, a persistent-trigger store
and a persistent content store. In our architecture, each store is implemented as a DB2 table,
accessed through the Java JDBC API. However, we isolate those parts of the implementation that
are DB2-specific, and even those that are specific to a relational database, thus making it easy to
plug in different persistent stores.

Each time a new trigger is registered, it is stored in the persistent trigger store. The result
returned by a trigger handler’s handleMatch method specifies whether the state of the
trigger-handler object should be updated in the persistent store. A handleMatch method that
modifies the state of its trigger-handler object should return a result requesting that the persistent
store be updated; however, many handleMatch methods do not modify the states of their
trigger-handler objects, so we allow the handleMatch method to return a result indicating that
the potentially expensive persistent-storage update is unnecessary. The registry of active triggers
is initialized from the persistent trigger store when the Trigger-Management Service starts up.
Thus, if the service is stopped and later restarted, all triggers that had been registered beforehand
are still registered, and all trigger-handler objects are in the state they were in prior to the restart.

When the result returned by a trigger handler’s handleMatch method indicates that
content is to be stored persistently for later retrieval, that content is stored in the persistent
content store. The store generates a numeric key that may be embedded in a notification and used
by a servlet to retrieve the content later. Content is added to the persistent content store with an
expiration time. A scavenger thread runs periodically and removes expired content from the
store.

The architecture of the Trigger-Management Service is summarized in Figure 2.

7

DB2

content-
retrieval
servlet

content
adapter

trigger
servlet

Persistent
Trigger
Store

Persistent
Content
Store

scavenger
thread

delete

update,
fetch store

matching
engine

(Gryphon)
invoke callback

invoke callback

add trigger
subscribe publish

fetch

requests for
Universal
Notification
Dispatcher

trigger

trigger

trigger

trigger

trigger manager

Figure 2. The architecture of the Trigger-Management Service.

3.2 Universal Notification Dispatcher
The Universal Notification Dispatcher (UND) is responsible for dispatching messages to

subscribers based upon their preferences. The UND enables subscribers to have a single address
through which they can receive messages (or notifications) on multiple devices. Messages are
dispatched based on the preferences of the subscriber. The UND is capable of dispatching
messages to a variety of devices including telephones, cellular phones, WAP-enabled phones,
and instant messaging services.

The UND accepts messages from the sender of that message or from an application that is
submitting the message on behalf of the sender. Each message is for an individual, who is called
the intended recipient (or simply recipient). The UND assumes that it is operating in a closed
environment and that every sender has already been authenticated by the enclosing environment.
Further, all recipients must be subscribers of the UND.

8

During the subscription process, users must configure the system by specifying their
delivery preferences and device configurations. Users specify their delivery preferences using
role-based access control. To facilitate this process, users must first assign authorized senders to
groups (e.g., friends, family, managers, colleagues). In addition, each user is automatically given
a virtual anonymous group. All senders not explicitly assigned to another group receive the
authorizations given to this anonymous group. (By default, the anonymous group has no
permission.) After defining groups, the user must assign authorizations to each group. For
example, the user may only allow certain groups of people to use certain devices or the user may
only allow certain types of messages (e.g., urgent, normal, and FYI) to be sent to a particular
device. Further, if users choose to use calendar context information, they must configure their
contact preferences for the various calendar contexts using a context-enabled calendar tool.
These contact preferences include which groups may send notification in which contexts. For
example, while traveling, a user may allow her colleagues to send urgent messages but may allow
her line management to send both urgent and normal messages.

Our system gives the recipient complete control over the method of delivery. The UND
honors the recipient’s preferences by dispatching messages only to devices that the recipient has
authorized the sender, or more correctly one or more of the groups to which the sender belongs,
to use under the current context. It releases no information about which device was chosen to the
sender.

Figure 3 shows the architecture of this component. The client submits requests on behalf
of senders. Clients can be GUIs, such as the notification servlet shown in Figure 1, that allows a
user to submit a notification request directly or they can be complex programs, such as the
Trigger Management Service discussed previously, that submit notification requests when
complex events have occurred.

A notification controller uses the recipient’s preferences, as received from the Preference
Engine and the recipient’s context, as received from the Secure Context Service, to determine the
preferred device via which to notify the user. Once a device is chosen, the notification controller
sends the message to the appropriate gateway for dispatch. The gateways have the responsibility
of transforming the message based upon the capabilities of the intended device (if necessary) and
then dispatching it for subsequent delivery. Each gateway is responsible for dispatching messages
to devices of a particular type. For example, the WAP Gateway is responsible for delivering
messages to WAP-enabled devices.

9

Preference
Engine

Client

Notification Controller
Instance

Email
Server

R
equestQ

ueue

Secure
Context

SCS API

Socket
Server

U
N

D
A

P
I

Gateway

G
ate w

ay
In terf ace

Gateway

G
ate w

ay
In terf ace

WAP

Email

Gateway

G
ate w

ay
In terf ace

SMS

G
ate w

a y
In terf ace

Other
Gateways

Service
Provider's
Gateway

To

To

Service

Figure 3: Architecture of the Universal Notification Dispatcher

The UND is designed to support new, unanticipated devices as they are released into the
marketplace. The common gateway interface is the key to this extensibility. To support a new
device, an outgoing gateway that uses the common gateway interface must be implemented. In
addition, configuration parameters must be refreshed to allow the UND to dispatch messages
intended for the new device type to the newly implemented gateway.

3.3 Secure Context Service
A context service provides standardized support to context-aware applications.

Applications interact with the context service to obtain required information without worrying
about the details of context management. We call our context service the Secure Context Service
(SCS) because one of our main design goals is to protect the privacy of context subjects.

The overall SCS architecture is shown in Figure 4. It consists of a mediator, a
configurable set of context drivers, and a collection of utility components. In addition, there are
two programming interfaces: the SCS API and the Context Driver Interface. The SCS API allows
applications to submit requests. The Context Driver Interface, used internally, allows the
mediator to communicate with the various context drivers.

10

Mediator

Location
Context Driver

...
Context Driver

Context Driver Interface

Secure
Context
Service

Instant
Messaging

Context Driver

Event Engine

Privacy Engine

Connection Mgr

Context Cache

Internal Utilities

SCS API

Calendar
Context Driver

Figure 4. Architecture of the Secure Context Service.

Applications request context information through the SCS API. The API uses a forms
metaphor: An application partially fills out a form, identifies the requested form fields, and
optionally specifies the desired quality of information such as freshness and confidence; the SCS
in turn responds with the forms that match the application specification. An application interacts
with the SCS in one of three ways. First, it may issue a synchronous context query. Second, it
may request a one-time notification when a particular context event occurs. Third, it may
subscribe to a context condition so that it will be notified whenever the specified condition is
satisfied.

The mediator dispatches application requests to the appropriate context drivers, through
the uniform Context Driver Interface. Each context driver handles one type of context
information and encapsulates the details of interaction with the context source. A context driver
may pull information from context sources, either periodically or on demand. Alternatively, it
may simply allow the context source to asynchronously push updated information.

Four utility components are available to context drivers: a context cache, a connection
manager, a privacy engine and an event engine. The context cache retains recently accessed
context information in main memory for performance reasons. The connection manager
maintains persistent connections with various context sources to minimize the costs of constantly
reestablishing connections with the same source; it is meant to be used by pull-based context
drivers. The privacy engine authorizes access to context information based on policies defined by

11

individual information owners, again using role-based access control. The event engine matches
context events with registered application interests.

Figure 4 shows a number of context drivers. The location context driver pulls a user’s
location information from a variety of sources. The other two drivers are push-based: the
calendar context driver derives information such as a user’s current activity and contact means
from his or her calendar entries; the instant messaging context driver provides information on a
user’s instant messaging online status.

4 Current status and future plans
We have implemented a substantial amount of the function envisioned in the scope of the

Intelligent Notification System. In fact, our system is driving the development of a product. In
this section, we discuss the current status and future plans for each component.

The Trigger Management Service supports simple triggers with a single content source
and a simple SQL match condition on the content. The service allows persistence of matched
content to be retrieved later by the user. The TMS API is, however, extensible to multiple content
sources as well as complex filters on those sources. Future versions of TMS will support such
operations. We plan to support additional data sources for programmable aggregation. The
Trigger Management Service is a first step towards a system addressing the many challenges in
distributed aggregation [Coh01].

The Universal Notification Dispatcher allows for messages to be sent out using a wide
variety of physical means including regular telephone, fax, email, instant messaging, SMS, and
WAP. The service also supports notification transcoding which appropriately tailors the outgoing
notification to the destination device characteristics. We want to extend the notification
dispatcher to scalably support group notifications and to support a wider range of notification
mechanisms.

The Secure Context Service currently supports both synchronous queries and
asynchronous one-time notifications. It incorporates context from two different sources: the
user’s calendar and instant messaging status. We are in the process of incorporating additional
context sources, such as various forms of location, and of supporting continuous monitoring of
interesting context events. We would like to explore the notion of persistent context by detecting
long-term trends and patterns from historical user context.

5 Related work
An alternative model for monitoring changing data is the continuous query, which was

introduced in the Tapestry system [Ter92] and also used by systems such as OpenCQ [Liu99] and
COUGAR [Bon00]. In this model, a stream of incoming data values is treated as a sequence of
rows in a constantly growing relational-database table. The addition of new rows satisfying a
particular query triggers some programmed action. In contrast, the Trigger Management System
does not retain a full history of past events. Instead, our system supports triggers that retain just
enough state about previous events to recognize when a situation of interest to the end user has

12

occurred. In addition, unlike a continuous query which specifies a static matching criterion, a
trigger can adapt its matching criteria based on past history: A given incoming data value might
trigger a notification given one history of past events, but not with another.

Active databases [McC89] recognize patterns of incoming events and react to recognized
patterns by executing event-condition-action rules. Ode [Geh92], Snoop [Cha94], and SAMOS
[Gat94] are examples of such rule-based active databases. Similarly, Amit middleware [Adi00]
has its own XML-based language for defining patterns of events as situations and reacting when
a particular situation is detected. In contrast to systems that define their own rule languages, the
Trigger Management Service has application triggers programmed in Java. Although triggers
can perform arbitrary actions, TMS makes it particularly convenient to react to situations by
issuing notifications. Further, our support for persistent retention of content associated with an
event is beyond the scope of these other systems.

The goal of the Mobile People Architecture project at Stanford University is to make
people, rather than devices, the addressable units in the network [Man99]. To that end, they have
proposed a system and have built a prototype of that system that allows people to receive
communications through any network, device, or application they choose. Their system includes
a tracking agent that monitors the network, device, or application users are actively using. This
tracking agent corresponds roughly to one of our context drivers. Unlike their system, our design
is not application specific.

The Universal Inbox project at UC Berkeley includes a personal activity coordinator that
tracks the activities of users [Ram00]. This information includes a user’s location, the status of a
user’s device, who the user is currently talking to (as well as the importance of that other person).
Again, our system offers a more general context service.

The Cricket Location-Support System [Pri00] provides support for mobile devices to
determine their own location within a building. Cricket explicitly does not use location tracking,
purportedly to “address” the privacy problem inherent in such approaches. By doing so, however,
Cricket precludes certain types of applications unless an application on the mobile device makes
its location known externally. The existence of such an application lands Cricket back at square
one with respect to privacy. In contrast, the Secure Context Service addresses the privacy
question head on by giving users control over who can access their context information. Further,
our context service supports a general notion of context, not just location.

Hull and his colleagues describe a system that, like SCS, is intended to handle many
diverse sources of contextual information, though the only source with which they have
experience is location data from their custom Pinger device [Hul97]. Because their system is
intended to serve just a single individual using a wearable computer, privacy was not considered
a design goal and was not explicitly addressed.

The TEA and Mediacup projects [Gel00] explore an architecture for obtaining and using
context in everyday devices. In contrast to many context-based projects, context information in
these projects is sensed on the devices themselves. The Mediacup broadcasts the context it
detects. These broadcasts could be monitored and stored in a system such as ours. The TEA
phone demonstrates a novel use for context information. It shows how context can be exploited
to give users, in this case the caller, more information about the current activities of the person

13

they are trying to reach. Though the TEA phone uses self-sensed context, similar functionality
could be provided through the use of our system. Neither of these projects consider the problem
of privacy – in both cases, context information is treated as openly available and no restrictions
are placed upon its dissemination.

6 Conclusions
The attention of the user is fast becoming the most precious resource on the Internet. The

Intelligent Notification System helps the user manage the growing volumes of available
information in two ways: First, the system manages triggers that monitor the flow of voluminous
information and notifies the user only when situations of interest have arisen. Second, the system
provides context-based universal notification to allow the user to be notified in the mode most
appropriate to the user's current context and preferences. Our extensible architecture addresses
the wide variety of existing and yet-to-emerge mobile information devices. We turn the
information glut to our advantage by analyzing data about the user's context and using it to
deliver information in the most effective way, while respecting and safeguarding the user's
privacy through role-based access control. The Intelligent Notification System turns the
monitoring of Internet data from a time-consuming focus of human attention to an automated
activity. The user receives notifications at a rate and in a manner that lets him concentrate on his
primary tasks.

References

Cohen, N.H.; Purakayastha, A.; Turek, J.; Wong, L.; Yeh, D. Challenges in flexible
aggregation of pervasive data. IBM Research Report RC 21942, January 23, 2001.

[Coh01]

Chakravarthy, S.; Krishnaprasad, V. Anwar, E.; Kim,S.-K. Composite events for
active databases: semantics, contexts and detection. In Jorge B. Bocca, Matthias
Jarke, and Carlo Zaniolo, eds., VLDB ’94, Proceedings of 20th International
Conference on Very Large Data Bases, September 12-15, 1994, Santiago de Chile,
Chile, Morgan Kaufmann, San Fransisco, 1994, 606-617.

[Cha94]

Bonnet, P.; Gehrke, J.; Seshadri, P. Querying the physical world. IEEE Personal
Communications 7, No. 5 (October 2000), 10-15.

[Bon00]

Aguilera, M. K.;.Strom, R. E.; Sturman, D. C.; Astley, M.; Chandra, T. D..
Matching events in a content-based subscription system. Proceedings of the
Eighteenth Annual ACM Symposium on Principles of Distributed Computing,
May 4-6, 1999, Atlanta, Georgia, 53-61.

[Agu99]

Adi, A.; Botzer, D.; Etzion, O.; Yatzkar-Haham; T. Push technology
personalization through event correlation. In El Abbadi, A.; Brodie, M.L.;
Chakravarthy, S.; Dayal, U.; Kamel, N.; Schlageter, G.; Whang, K-Y., eds., VLDB
2000, Proceedings of 26th International Conference on Very Large Data Bases,
September 10-14, 2000, Cairo, Egypt, Morgan Kaufmann, San Fransisco, 2000,
643-645.

[Adi00]

14

Terry, D.; Goldberg, D.; Nichols, D.; Oki, B. Continuous queries over
append-only databases. Proceedings of the 1992 ACM SIGMOD International
Conference on Management of Data, San Diego, California, June 2-5, 1992,
321-330.

[Ter92]

Raman, B.; Katz, R.; Joseph, A. Universal Inbox: Providing Extensible Personal
Mobility and Service Mobility in an Intergrated Communication Network. In
Proceedings of the Third IEEE Workshop on Mobile Computing Systems and
Applications (Monterey, CA, December 2000), IEEE Computer Society, 95-106.

[Ram00]

Priyantha, N.; Chakraborty, A; Balakrishnan, H. The Cricket Location-Support
System. In Proceedings of the Sixth Annual International Conference on Mobile
Computing and Networking (Boston, MA, August 2000), ACM, 32-43.

[Pri00]

McCarthy, D.; Dayal, U. The architecture of an active database management system.
Proceedings of the 1989 ACM SIGMOD International Conference on Management
of Data, Portland, Oregon, May 31 - June 2, 1989, 215-224.

[McC89]

Maniatis, P.; Roussopoulos, M.; Swierk, E.; Lai, K.; Appenzeller, G.; Zhao, X.;
Baker, M. The Mobile People Architecture. ACM Mobile Computing and
Communications Review (MC2R), July 1999.

[Man99]

Liu, L.; Pu, C.; Tang, W. Continual queries for Internet scale event-driven
information delivery. IEEE Transactions on Knowledge and Data Engineering 11,
No. 4 (July/August 1999), 610-628.

[Liu99]

Hull, R.; Neaves, P.; Bedford-Roberts, J. Towards Situated Computing. In the
Proceedings of the 1st International Conference on Wearable Computing (1997),
IEEE, 146-153.

[Hul97]

Gellersen, H.-W.; Schmidt, A.; Beigl, M. Adding Some Smartness to Devices and
Everyday Things. In the Proceedings of the Third IEEE Workshop on Mobile
Computing Systems and Applications (Monterey, CA, Dec. 2000), ACM, 3-10.

[Gel00]

Gehani, N. H.; Jagadish, H. V.; Shmueli, O. Event specification in an active
object-oriented database. Proceedings of the 1992 ACM SIGMOD International
Conference on Management of Data, San Diego, California, June 2-5, 1992, 81-90.

[Geh92]

Gatziu, S.; Dittrich, K.R. Detecting composite events in active database systems
using Petri nets. Proceedings, Fourth International Workshop on Research Issues in
Data Engineering, Houston, Texas, February 14-15, 1994, 2-9.

[Gat94]

15

