
RC 22091 (W0106-020) 13 June 2001 Computer Science

IBM Research Report
Layered Queueing Models for

Enterprise JavaBean Applications

Te-Kai Liu, Santhosh Kumaran, Zongwei Luo
IBM Research Division

Thomas J. Watson Research Center
P. O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Layered Queueing Models for Enterprise JavaBean Applications

Te-Kai Liu, Santhosh Kumaran, and Zongwei Luo
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598
tekailiu@us.ibm.com

Abstract

Traditional capacity sizing of enterprise systems relies on
benchmarking a system using benchmark clients that generate
a workload pattern similar to real-world workload. When new
functions are added to the system or when the workload pattern
changes, benchmarking has to be performed again. This is a
costly and time-consuming approach for capacity planning.
Layered queueing models have been used to study the
performance of software systems. The approach is able to
identify major performance parameters of software systems.
Given a workload pattern, the models can be solved
analytically to predict the system performance quickly.

This paper proposes a layered queueing model for
predicting the performance of distributed enterprise
applications built on Enterprise JavaBeans (EJB) technology.
We show how such models can be applied for capacity sizing of
distributed enterprise systems. We demonstrate this by using
this methodology to predict the performance of a sample
application built on an EJB-based business-to-business e-
commerce platform. We compare deployment options and study
the effect of different workload patterns on system capacity.

1. Introduction

In just over two years since its introduction, Enterprise
JavaBeans (EJB) technology has gained significant acceptance
among platform providers and enterprise development teams.
This is primarily because the EJB server-side component model
simplifies development of distributed object applications that
are transactional, scalable, and portable. Enterprise JavaBeans
servers provide automatic support for middleware services such
as transactions, security, database connectivity, and thus reduce
the complexity of application development.

Despite its growing popularity, performance of EJB-based
applications has remained a concern. This is especially true for
large scale B2B e-Commerce applications such as Private
Trading Exchanges and e-Marketplaces, where a company has
to ensure that the Service Level Agreements (SLA) with its
trading partners are being met. The growing use of this
technology in many e-Commerce applications makes the
performance of EJB-based systems an important issue to be
considered.

 Benchmarking is commonly used to measure the
performance of software systems. But benchmarking can be
done only after the systems are operational. The challenge of
the system designers and integrators is to predict the
performance of the system before they are fully built so that the
right topology and design decisions can be made to ensure that

service level agreements can be met. This can be achieved only
by using reliable performance prediction models. This paper
investigates the performance prediction of EJB-based
applications using analytic models. In particular, we focus on
the modeling of an EJB-based B2B e-Commerce application
framework.

The rest of the paper is organized as follows. We begin with
a brief overview of EJB technology and a description of the
application framework. Next we introduce our modeling
approach and describe the modeling of the framework-based
applications using this approach. We discuss a methodology
for calibrating these models. We show how this methodology
can be applied for capacity sizing of applications built on the
framework for a given topology and workload pattern.

2. EJB Overview

There are two types of Enterprise JavaBeans: Entity Beans
and Session Beans. Entity beans model data objects; these
objects usually correspond to persistent records in a database.
Session beans model business objects; they typically work with
entity beans or other resources to implement the business logic.
The EJB technology differentiates the remote interface of a
bean from its home interface. The remote interface defines the
exposed business methods of an EJB. The home interface
defines the life cycle methods of the bean typically used by the
EJB container for locating, creating, and removing the beans.
A good introduction to the EJB technology can be found in [6].

3. Application Framework for B2B e-Commerce

The goal of the framework is to enable rapid development of
B2B e-Commerce applications. The framework achieves this by
creating a brokering layer between the B2B clients and the
enterprise systems. This layer provisions service requests from
the clients by mapping them to appropriate enterprise systems
such as workflow engines, legacy applications, ISV
applications, and business objects. Major components of the
framework are shown in Figure 1. We describe the framework
using the fundamental design patterns [8] on which it is based.

The BFMAdmin component is designed based on the Façade
design pattern [8]. Its purpose is to serve as an entry point for
all client requests and route them to the appropriate brokering
components. The Façade is implemented as a Session Bean.

The brokering components are called Adaptive Documents
(ADocs). ADocs provide domain-specific and state-dependent
service brokering. In the B2B e-Commerce area, examples of
ADocs include Registration, Purchase Order, Request-For- 1

Quote, etc. ADocs are based on the State design pattern [8], as
they demonstrate state-dependent behavior. An ADoc
implementation consists of an ADoc Entity that captures the
state information and an ADoc Controller that encapsulates the
state-dependent ADoc behavior. The behavior is shared among
all instances of an ADoc type. For example, all Purchase Orders
exhibit the same behavior and we need only one controller for
the Purchase Order ADoc. An ADoc Entity exists for each
instance of an ADoc. Using the Purchase Order example, there
is an instance of a Purchase Order ADoc Entity for each
purchase order in the system. ADoc Entity is implemented using
an Entity Bean. The ADoc Controller is described using an
XML script, which BFMAdmin reads in and internalizes as
Java objects.

 The framework supports web transactions by means of
ADoc behavior. When a client issues a web transaction, it
reaches some ADoc in the system as a service request. As
defined in the behavior of the ADoc, the ADoc controller
executes a set of actions determined by the current state of the
ADoc and the contents of the service request. These actions are
implemented as a transaction. A service request may also result
in changing the state of an ADoc. The fulfillment of a service
request follows the Command design pattern. The participants
in the command design pattern [8] and their roles are as
follows:

 i. Command
A command declares an interface for executing an
operation. Commands are invoked by the ADoc
Controller.

 ii. ConcreteCommand
A ConcreteCommand defines a binding between a
Receiver object and an action. It implements a specific
operation by invoking the corresponding operations on
Receiver.

 iii. Receiver
A Receiver knows how to perform the operations
associated with a request. Any class may serve as a
Receiver. Commonly used Receivers in B2B e-
Commerce include workflow engines, enterprise
applications, business objects, and trading partner
gateways.

The commands are implemented as Java objects. The
BFMAdmin initializes these objects based on the XML-based
script files. The Receivers could be EJBs or Java objects in the
local JVM. A Java object known as an Application Adapter can
be used as a receiver to communicate with applications that
support a messages-oriented API. An Entity Bean is used as a
receiver to communicate with data objects. A Session Bean is
used as a receiver to communicate with Business Objects. More
details on the framework can be found in [9].

An application platform for B2B e-Commerce can be
realized by augmenting the framework with a set of services
beyond those provided by an EJB server. These include
directory services, solution management services, and
messaging services. More details on such a platform can be
found in [9].

 W orkflow
Interface

W F
E ngine

C lient

Business
O bject

D ata
O bject

A pplication
A dapter

D atabase
A pplication

R EC EIV E R S

Process B roker Fram ew ork

BFM
A dm in A D ocs

C om m ands

Figure 1: Process Broker Framework

4. The Modeling Approach

The layered queueing modeling (LQM) is chosen as the
modeling approach in this paper. The LQM has been used to
study the performance of distributed software systems [1], [2],
[5]. It is able to identify major performance parameters of
software components [3]. It can determine software queueing
effects (requests queued at servers) and competition between
applications. It can also detect software bottlenecks [4]. These
observations have led us to LQM as the modeling mechanism
for modeling EJB applications such as the B2B e-Commerce
application framework described above.

In LQM, a server process is modeled as a “task” which has
one or more entries corresponding to the major method calls
that the server process exposes to its clients. We model an EJB
by three layers of tasks. The task at the top layer has one or
more entries, each corresponding to a business method of the
EJB. The second layer has a task corresponding to a database
management system (DBMS) which accepts database
connection requests from the EJB, processes SQL statements,
and retrieves/updates the data stored in the persistent store, i.e.
a disk. The resource demands of the entries of the DBMS task
could vary from one EJB method to another. So in general there
will be an entry in the DBMS task for each method of the EJB
being modeled. The third layer has a task corresponding to a
disk subsystem that is modeled in LQM as a processor with one
or more entries, each of which corresponds to a type of disk
demand.

Figure 2 shows a three-layer model for an EJB. Each entry
of the 3 tasks has a value corresponding to its CPU demand,
except for the entries, volume1 and volume2, which correspond
to different disk demands. Each arrow has a value associated
with it, which is the average number of calls to the entry being
pointed to.

Before a client can invoke a method call on the business
methods of an EJB, it needs to get a reference to an EJBObject
of the bean. For an entity bean, the client first does a lookup for
the home interface of the bean via JNDI (Java Naming and
Directory Interface) and then invokes the find method of the
bean's home interface, which is typically a findByPrimaryKey() 2

method. For a session bean, a client invokes the create method
of the bean's home interface before the business methods can be
called. To take into account the overhead of getting a reference
to an EJBObject of the bean, we add an additional entry to the
first layer of the model. The entry name is “find” for an entity
bean and “create” for a session bean. Note that this entry
represents the overhead incurred by the EJB server. The
overhead incurred by the client is not explicitly modeled. It is
assumed to be part of the resource demands of the calling
clients.

Figure 2: LQM for an EJB

Although not representing data stored in a database, session
beans can make JDBC calls to access (i.e., read/update/delete)
data in a database. In such cases, the model for a session bean is
very similar to the model for entity beans. The difference is that
session beans calls DBMS directly, whereas entity beans
(specifically container managed persistence beans) rely on an
EJB container to make the calls. For session beans that do not
access databases, the model reduces to one layer only.

5. LQM for the Framework-Based Applications

In this section, we discuss how to form an LQM for
applications built on the framework. We show a simple
application with two business transactions.

In the first transaction, the value of an attribute is set in a
backend data object in response to a service request from the
client. An entity bean with container-managed persistence is
used for implementing the data object.

The request first arrives at the façade (BFMAdmin), which
gets the current state from the appropriate ADoc instance.
Based on the current state and the business event specified in
the service request (Event1 in this example), BFMAdmin
executes the appropriate commands on the backend objects. In
this example, only one command is executed, which is to set an
attribute in a purchase order data object. The receiver for this
command is an entity bean. The client passes the attribute value
as a parameter in the service request. Figure 3 shows the
collaboration diagram.

The second scenario involves fetching the value of an
attribute by invoking a method on a business object. This
scenario differs from the earlier one primarily by the type of
receiver used. Here the receiver is a session bean that uses an
entity bean for persisting the data. Figure 4 shows the
collaboration diagram. 3

Figure 3: Collaboration diagram for request: Event 1

We use the collaboration diagram to develop an LQM to
model the response time for provisioning these business events.
Figure 5 shows the LQM for Event1. When BFMAdmin
receives the event1 service request, it invokes the methods of
the ADoc entity bean and PO entity bean according to the
sequence shown in Figure 3. Since the ADoc bean and the PO
bean are container managed persistence beans, methods of
DBMS will be invoked by the container.

Figure 4: Collaboration diagram for the request: Event2

Figure 5: LQM for Event1

6. A Method for LQM Calibration

The LQM models need to be calibrated before it can be used
for capacity sizing in which the impact of workload pattern on
system capacity is evaluated during infrastructure planning prior
to deployment. A calibrated LQM models can be used to
compare EJB deployment options in scalability studies as well.
We will discuss some of these applications in Section 7.

Calibration of the model translates to determining the values
of the parameters for the tasks at each layer in the model. The
first step in this process is profiling the application so that
resource usage can be determined at method level for all EJBs
in the application. Additionally, we benchmark the application
to obtain response time for a service request versus the
workload. The workload is defined as the number of concurrent
requests handled by the system. In this paper, we are primarily
focused on the steady state performance of EJB systems. To
that end, we have developed a multi-threaded benchmark client
that spawn a specified number of client threads to drive the EJB
application according to the scenarios specified in the
collaboration diagrams. Each thread submits a service request
of the type specified in the scenario and wait for a response. As
soon as a response arrives, the thread will promptly submit
another service request with zero think time to ensure that
workload of the EJB server is constant throughout the
measurement period.

The values of the model parameters are selected based on
the profiling data and the benchmark data. This is an iterative
process since profiling data will give only a range of values for
the model parameters. The selection of a value within this range
is accomplished by solving the LQM analytically using an
initial set of values, matching the predicted response time
against the benchmark data, and repeating this process till
convergence.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0 5 10 15 20 25 30 35

number of threads

R
es

po
ns

e
tim

e

Measurement Dc = 120 Dc = 80

Figure 6: Steady state response time (msec) for Event1

Figure 6 shows observed and predicted response time versus
workload for Event1, where Dc is the total CPU demand of the
event1 service request. Figure 6 shows that Dc =80 gives a
better match to the measurement data. The response time shows
a linearly growing trend as the number of threads increases.
This is due to the fully utilized disk resource which throttles the
throughput of the system. The utilization of the disk and CPU is

given in Figure 7. The heavy utilization of the disk is in part
due to the internal transaction logging of the BFMAdmin,
which is a functional requirement of B2B e-Commerce
applications.

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20

Number of concurrent threads

U
til

iz
at

io
n

CPU
Disk

Figure 7. Utilization of Disk and CPU.

The linear trend, observed in Figure 6, is due to the zero
think time assumption made in the client model. As the think
time increases, we start to see the exponential growth of the
response time as the number of threads increases.

7. Applications of the Model

In this section, we show two numerical examples to illustrate
applications of the performance model. First we consider a
capacity-sizing scenario. Figure 8 shows a LQM for the EJB
application described in Section 5.

In this example, all of the beans and the DBMS are deployed
on the same machine, which has a single processor and a single
disk. The workload of the system is modeled by n concurrent
clients with np of them submitting the Event1 service request
and n(1-p) of them submitting the Event2 service request, where
p is between 0 and 1. In other words, the variable n models the
workload intensity and the variable p models the workload
pattern. A client thread of type 1 will invoke the Event1 service
request and wait for a response. When a client thread receives a
response, it will make another call after t second of think time.

The resource demands used in the examples are summarized
as follows. All demands are in seconds.

volume1 0.005
handleFind 0.01
handleGet 0.01
handleSet 0.01
Find 0.01
Create 0.02
Getter 0.001
Setter 0.001
Event1 0.02
Event2 0.02

getValues of the ERP session bean will call getValue of the
ERP entity bean 10 times for its 10 attributes. 4

Figure 8. LQM for the example EJB application.

The performance metric is the average response time T,
which is defined to be the weighted sum of the response times,
T1 and T2, of the 2 types of service requests given by T = p*T1
+ (1-p)*T2.

Figure 9 shows that the average response time versus the
number of concurrent clients for p = 0.5 and p = 0.3. Since the
type-2 requests demand more resources, the average response
time is longer when the percentage of type-2 clients is higher
(i.e., p being smaller). The system capacity is defined as the
maximum number of concurrent clients the system can support
while keeping the average response time less than a specified
value. From Figure 9 we see that given the maximum tolerable
average response time equal to 1 sec, the system capacity is 40
and 50 for p = 0.3 and 0.5, respectively. This shows that the
system capacity depends on the workload characteristics,
currently modeled by the variable p.

In the second example, we assume that the same EJB
application is deployed on two machines of the same processing
speed. There are several configurations possible. In this
example, we have the BFMAdmin and ADoc entity bean
deployed on one machine while the PO entity bean, ERP
session bean and ERP entity bean deployed on the other
machine. Both machines have a local DBMS installed. The
average response time as a function of the number of concurrent
clients is shown in Figure 9. Due to the increased processing
power, we see the capacity of the system (i.e. 90 for p = 0.5) is
improved but less than double as expected.

8. Conclusion

We have developed a methodology based on layered
queueing models for capacity sizing of Enterprise JavaBean
applications. We demonstrated its use in capacity sizing of EJB
applications and evaluating the effect of workload
characteristics on system capacity. Future work includes
improving calibration techniques, extending the models to 5

represent end-to-end B2B e-commerce systems, and using the
model to analyze and streamline deployment topologies.

Figure 9. Effect of workload pattern and deployment option
on system capacity.

9. Acknowledgement

The authors would like to thank Prof. C. M. Woodside for
providing the LQNS tool [7], which was used for performance
prediction in this paper.

10. References

[1] L. G. Williams and C. U. Smith, “Performance Evaluation
of Software Architecture”, Proceedings of Workshop on
Software Performance, 1998.
[2] C. M. Woodside et al., “The Stochastic Rendezvous
Network Model for Performance of Synchronous Client-Server-
like Distributed Software”, IEEE Trans. On Computer, vol. 44,
no. 1, pp. 20-34, 1995.
[3] J. Dilley et al., “Web Server Performance Measurement and
Modeling Techniques”, Performance Evaluation, vol. 33, pp.
5-26, 1998.
[4] J. E. Neilson et al., “Software Bottleneck in Client-Server
Systems and Rendezvous Networks”, IEEE Trans on Software
Engineering, vol. 21, no. 9, pp. 776-782, 1995.
[5] M. Woodside, “Software Performance Evaluation by
Models”, Performance Evaluation, LNCS 1769, pp. 283-304,
2000.
[6] R. Monson-Haefel, Enterprise JavaBeans, second edition,
O’Reilly, 2000.
[7] R. G. Franks et al., “A Toolset for for Performance
Engineering and Software Design of Client Server Systems,”
Performance Evaluation, vol. 24, no. 1-2, pp. 117-135, 1995.
[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns – Elements of Reusable Object Oriented Software,
Addison-Wesley Publishing Company, NY, 1995.
[9] K. Bhaskaran, J-Y Chung, R. Das, T. Heath, S. Kumaran, P.
Nandi, “An e-Business Integration & Collaboration Platform
for B2B e-Commerce,” Proceedings of the Third International
Workshop on Advanced Issues of E-Commerce and Web-Based
Information Systems (WECWIS 2001), IEEE Computer Society
Press, June 2001.

0

0.5

1

1.5

2

2.5

0 50 100 150

Nu m b e r o f c lie n ts (n)

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(s

ec
)

p = 0.3 p = 0.5 Dual mac hines

