
RC22098 (W0106-024) June 20, 2001
Computer Science

IBM Research Report

Customization for SLP Service Request and Reply

Weibin Zhao, Henning Schulzrinne
Columbia University

Chatschik Bisdikian, William Jerome
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

INTERNET DRAFT Weibin Zhao
draft-zhao-slp-customization-00.txt Henning Schulzrinne
Expires: December 20, 2001 Columbia University
 Chatschik Bisdikian
 William Jerome
 IBM
 June 20, 2001

 Customization for SLP Service Request and Reply
 draft-zhao-slp-customization-00.txt

Status of This Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2001). All Rights Reserved.

Abstract

 This document presents a lightweight mechanism for supporting
 customization in SLP where a UA specifies its customization request
 in the SrvRqst via an SLP extension, and the DA customizes the
 SrvRply according to the UA request. Two basic customization
 operations, sorting and bounding the result set, are provided, and
 some complex customization requests are supported by composing these
 two basic operations. Furthermore, customized comparators are enabled
 to decide the result order. Customizing SLP SrvRqst and SrvRply

Zhao, et al. Expires: December 20, 2001 [Page 1]

Internet Draft SLP Customization June 20, 2001

 messages enhances the basic SLP discovery scenario by also
 considering user information and preference, and thus it can support
 value-added services and improve the SLP query efficiency.

1. Introduction

 In the Service Location Protocol (SLP [1]), a User Agent (UA)
 discovers a desired service by specifying its properties (type, scope
 and attribute predicate) via a Service Request (SrvRqst) message, and
 a Directory Agent (DA) answers with a Service Reply (SrvRply) message
 carrying a list of URL entries for the matched services. Although
 performing discovery based on service properties is sufficient for
 most applications, there are some applications that also need to
 incorporate context information (such as location) and user
 preference (such as order and size of the result set) in the SrvRqst
 and customize the SrvRply to tailor it to the user request.

 Customizing SLP SrvRqst and SrvRply messages can provide several
 advantages. First, it enhances the basic SLP discovery scenario by
 also considering user information, and thus it can support value-
 added services, such as location-based discovery (find a service that
 is close to the user). Second, bounding the result size (number of
 URL entries) may be useful when the UA has limited resources or the
 UA uses a low-bandwidth channel. In some cases, a user may just want
 to find a few services, not tens or hundreds of them. Third, sorting
 the result set on some attribute(s) by a DA is more efficient than
 sorting it by a UA when some ordered result set is needed. For
 example, if a UA wants to find the available printers in order of
 speed (pages per minute), using the basic SLP queries, it needs to
 first send a SrvRqst to get a list of printers, then issue an
 Attribute Request (AttrRqst) for each printer to get its speed, and
 finally sort the printer list on speed. The overhead of multiple
 round message exchange and round-trip delay suggests that a sort at
 the DA side is more suitable for this discovery request.

 In this document, we will present a lightweight mechanism to support
 customization in SLP where a UA specifies its customization request
 in the SrvRqst via an SLP extension, and the DA customizes the
 SrvRply according to the UA request. Two basic customization
 operations, sorting and bounding the result set, are provided, and
 some complex customization requests are supported by composing these
 two basic operations. Furthermore, customized comparators are enabled
 to decide the result order.

 The rest of this document is organized as follows: we first define
 terminology in Section 2, then present a design overview in Section
 3. Section 4 defines the Customization extension and Section 5
 defines the Comparator extension. We list constants in Section 6 and

Zhao, et al. Expires: December 20, 2001 [Page 2]

Internet Draft SLP Customization June 20, 2001

 give security considerations in Section 7.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [3].

 Customization Request
 A customization request is specified via an SLP
 extension, which MAY be used in a SrvRqst. It describes
 the preferred way in which the DA SHOULD customize the
 result set for the corresponding SrvRply.

 Reference-based Comparator
 A reference-based comparator is a customized comparison
 function associated with an attribute of a service
 template [2], which MAY be used to compare the attribute
 value with a reference value. This comparison function
 receives two arguments (the second one is the reference
 value), and it returns the difference of the two
 arguments as a non-negative value. If If two compared
 values are equal, it returns 0.

3. Design Overview

 The processing of a SrvRqst can be viewed as having two stages:
 matching service properties to obtain a result set (may be empty),
 then customizing this result set according to the user request. Note
 that a customization may have effects only if the original result set
 has more than one URL entries. In other words, if the original result
 set is empty or has only one URL entry, then any customization will
 produce no effect, and the customization request can be safely
 ignored in this case.

3.1. Sorting and Bounding the Result Set

 Sorting and bounding the result set are two basic types of
 customization. The sort operation refers to the natural sorting of
 alphanumeric characters (sort numbers on value or sort strings on
 lexicographic order). The bound operation refers to selecting the
 first N elements (assume bound N) in a list. If the number of
 elements in the list is less than N, then the bound operation returns
 the whole list.

 We support sort and bound directly, and some complex customizations
 by composing these two basic operations. For example, maximum speed
 (or minimum load) can be expressed as a sort followed by a selection

Zhao, et al. Expires: December 20, 2001 [Page 3]

Internet Draft SLP Customization June 20, 2001

 of the first entry, and minimum load in the top-three fast machines
 can be expressed as a {sort, selection, sort, selection} sequence.
 The sort can be on one attribute or multiple attributes.

 Note that similar customization operations, server side sort [5] and
 paged result manipulation [6], are supported in LDAP [4]. However,
 LDAP does not address composing these basic operations.

3.2. Using Customized Comparator

 Sometimes the natural sort is not sufficient, a customized comparator
 is needed to decide the order. One example is the reference-based
 comparator which compares an attribute value with a reference value,
 and returns a non-negative value as the difference metric for the
 comparison. If two compared values are equal, it returns 0.

 The reference-based comparator is useful for supporting location-
 based discovery which needs to compare a service location with a
 reference location. The difference metric returned by a reference-
 based comparator is application dependent, i.e., application specific
 information is needed to decide what is a best match for a reference
 value. For example, if there is a printer in room 442 and room 458,
 respectively, which printer is closer to a user in room 449?

 A generic interface for the reference-based comparator is as follows.

 public float comparator(String s1, String s2)
 /* compare s1 with s2,
 return a non-negative value as the difference metric
 if s1 and s2 are equal, then return 0
 */

4. Customization Extension

 This extension is used in the SrvRqst message to specify the
 customization request on the result set. Figure 1 gives its format.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Customization Ext. ID = TBD | Next Extension Offset (NEO) |
 +-+
 | NEO, contd. |S|B|C| reserved| Sort-Order | Bound-Size |
 +-+
 | Length of Attr-Value List | Attr-Value List \
 +-+

 Figure 1. Customization Extension

Zhao, et al. Expires: December 20, 2001 [Page 4]

Internet Draft SLP Customization June 20, 2001

 The customization request is specified using three basic operations:
 sorting (S) the result set, bounding (B) the result size and calling
 (C) the customized comparator. These actions can be used individually
 or combined in some way. An operation is selected by setting its
 corresponding bit to 1. The attribute-value list is needed only by
 the sort (S) and call (C) operations: sort is based on all specified
 attributes, and call is applied to attributes that have a value. If a
 customization only has the bound (B) operation, then the length of
 the attribute-value list is zero.

 S: sort the result set on the specified attributes in the Sort-Order.

 The Sort-Order is given in a bit-field where 0 is used for increasing
 and 1 is used for decreasing sorting order. The Sort-Order field can
 specify at most 8 attribute sorting orders corresponding to their
 positions in the attribute list. For example, 0x00 means that all
 attributes are sorted in increasing order, and 0xA0 means the first
 and the third attribute are sorted in decreasing order.

 B: bound the result size to the Bound-Size.

 C: call the customized comparator(s) for those attributes that have
 a reference value. Note that an attribute can have at most one
 customized comparator.

 When multiple attributes are present in the attribute list, they are
 in order of highest to lowest sort key precedence.

 When multiple Customization extensions are present in a SrvRqst
 message, they are processed in sequence.

4.1. Examples

 We use a tuple (action-flag, sort-order, bound-size, attribute-list)
 to represent a Customization extension. A customization that needs
 multiple Customization extensions is illustrated as multiple tuples.

 Example 1. sort in decreasing speed:
 (sort, 0x80, NA, {speed})

 Example 2. bound to three URLs
 (bound, NA, 3, NA)

 Example 3. one minimum load:
 (sort & bound, 0x00, 1, {load})

 Example 4. top three fast speed:
 (sort & bound, 0x80, 3, {speed})

Zhao, et al. Expires: December 20, 2001 [Page 5]

Internet Draft SLP Customization June 20, 2001

 Example 5. one minimum load in the top three fast speed:
 (sort & bound, 0x80, 3, {speed}) and
 (sort & bound, 0x00, 1, {load})

 Example 6. sort in decreasing speed and increasing load:
 (sort, 0x80, NA, {speed,load})

 Example 7. the nearest service:
 (sort & bound & call, 0x00, 1, {location})

4.2. Client-Server Interaction

 A UA MAY use the Customization extension in a unicast SrvRqst sent to
 a DA to specify its customization request. However, a UA SHOULD NOT
 use this extension in a multicast SrvRqst since each SA will answer a
 SrvRply individually, and no customization can be made by SAs.

 For a SrvRqst that has the Customization extension, a DA MUST return
 an OPTION_NOT_UNDERSTOOD [1] error if the DA does not support the
 Customization extension or it cannot perform the requested
 customization.

5. Comparator Extension

 This extension is used in the SrvReg message to specify a customized
 comparison function for an attribute of a service template. Figure 2
 gives its format.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Comparator Ext. ID = TBD | Next Extension Offset (NEO) |
 +-+
 | NEO, contd. | Length of Attribute Str. | Attr. Str. \
 +-+
 |U| Language | Length of Comparator URL or Code |
 +-+
 | Comparator URL or Code \
 +-+

 Figure 2. Comparator Extension

 If the U bit is set to 1, then the comparator is specified via a URL,
 otherwise its code is given in this extension. The Language field
 specifies a platform independent programming language (such as Java
 and script language) in which the comparator is written. Two proposed
 languages are Java (1) and Perl (2).

Zhao, et al. Expires: December 20, 2001 [Page 6]

Internet Draft SLP Customization June 20, 2001

5.1. Client-Server Interaction

 For a SrvReg that has the Comparator extension, a DA MUST return an
 OPTION_NOT_UNDERSTOOD error if the DA does not support the Comparator
 extension, cannot download the program code from the specified URL,
 or does not understand the programming language.

6. Constants

 Customization Extension ID TBD (Section 4)
 Comparator Extension ID TBD (Section 5)

7. Security Considerations

 Before accepting a customized comparator, a DA SHOULD verify the
 program. As a registered comparator MAY crash, a DA SHOULD handle
 failure properly so that a failed comparator will not crash the whole
 system.

8. References

 [1] E. Guttman, C. Perkins, J. Veizades and M. Day, "Service location
 protocol, version 2", RFC 2608, June 1999.

 [2] E. Guttman, C. Perkins and J. Kempf, "Service Templates and
 Service: Schemes", RFC 2609, June 1999.

 [3] S. Bradner, "Key words for use in RFCs to indicate requirement
 levels", BCP 14, RFC 2119, March 1997.

 [4] M. Wahl, T. Howes and S. Kille, "Lightweight Directory Access
 Protocol (v3)", RFC 2251, December 1997.

 [5] T. Howes, M. Wahl and A. Anantha, "LDAP Control Extension for
 Server Side Sorting of Search Results", RFC 2891, August 2000.

 [6] C. Weider, A. Herron, A. Anantha and T. Howes, "LDAP Control
 Extension for Simple Paged Results Manipulation", RFC 2696,
 September, 1999.

9. Authors' Addresses

 Weibin Zhao
 Henning Schulzrinne
 Department of Computer Science
 Columbia University
 1214 Amsterdam Avenue, MC 0401
 New York, NY 10027-7003

Zhao, et al. Expires: December 20, 2001 [Page 7]

Internet Draft SLP Customization June 20, 2001

 Email: {zwb,hgs}@cs.columbia.edu

 Chatschik Bisdikian
 William F. Jerome
 IBM T. J. Watson Research Center
 P.O.Box 218
 Yorktown Heights, NY 10598-0218
 Email: {bisdik,wfj}@us.ibm.com

10. Full Copyright Statement

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Zhao, et al. Expires: December 20, 2001 [Page 8]

