
RC ����� ������� August �� �		�
Computer Science
Mathematics

IBM Research Report

Improved Symbolic and Numerical Factorization

Algorithms for Unsymmetric Sparse Matrices

Anshul Gupta

IBM Research Division
T� J� Watson Research Center
P� O� Box ���
Yorktown Heights� NY �����

anshul�watson�ibm�com

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if ac�
cepted for publication� It has been issued as a Research Report for early dissemination of its contents� In
view of the transfer of copyright to the outside publisher� its distribution outside of IBM prior to publica�
tion should be limited to peer communications and speci�c requests� After outside publication� requests
should be �lled only by reprints or legally obtained copies of the article �e�g�� payment of royalties��

IBM
Research Division

Almaden � Austin � China � Delhi � Haifa � Tokyo � Watson � Zurich



IMPROVED SYMBOLIC AND NUMERICAL FACTORIZATION

ALGORITHMS FOR UNSYMMETRIC SPARSE MATRICES

ANSHUL GUPTA�

Abstract� We present algorithms for the symbolic and numerical factorization phases in the
direct solution of sparse unsymmetric systems of linear equations� We have modi�ed a classical
symbolic factorization algorithm for unsymmetric matrices to inexpensively compute minimal elimi�
nation structures� We give an e�cient algorithm to compute a near�minimal data�dependency graph
that is valid irrespective of the amount of dynamic pivoting performed during numerical factoriza�
tion� Finally� we describe an unsymmetric�pattern multifrontal algorithm for Gaussian elimination
with partial pivoting that uses the task� and data�dependency graphs computed during the symbolic
phase� These algorithms have been implemented in WSMP�an industrial strength sparse solver
package�and have enabled WSMP to signi�cantly outperform other similar solvers� We present
experimental results to demonstrate the merits of the new algorithms�

Key words� sparse matrix algorithms� Gaussian elimination� LU factorization� multifrontal
methods

AMS subject classi�cations� ��C	����C
����F�����F�����Y��

�� Introduction� The Watson Sparse Matrix Package 	WSMP
 ���� is a high

performance and robust software package for solving general sparse systems of linear
equations using direct factorization of the coe�cient matrix A into triangular factors L
and U � As is typical for such solvers� WSMP has four distinct phases� namely� Analysis
comprising ordering for �ll
in reduction and symbolic factorization� Numerical Fac�
torization using Gaussian elimination with partial pivoting� Forward and Backward
Elimination to solve the system using the triangular factors� and Iterative Re�nement�
In this paper� we describe some key algorithms that WSMP uses in its unsymmetric
symbolic and numerical factorization phases� These algorithms are crucial to WSMP�s
performance� which is signi�cantly better than other similar solvers �����

In the case of symmetric sparse matrices� an elimination tree is the task
 and data

dependency graph for the factorization process� However� for unsymmetric matrices�
the task
 and data
dependency graph are directed acyclic graphs 	DAGs
� Moreover�
the edge
set of the minimal data
dependency graph or data
DAG for unsymmetric
sparse factorization can be a superset of the edge
set of a task
dependency DAG or
task
DAG� In ����� Gilbert and Liu describe elimination structures for unsymmetric
sparse LU factors and give an algorithm for sparse unsymmetric symbolic factoriza

tion� These elimination structures are two DAGs that are transitive reductions of
the graphs of the factor matrices L and U � respectively� and can be used to derive a
task
DAG for sparse LU factorization� Some researchers have argued that computing
an exact transitive reduction can be too expensive ��� ��� and have proposed using
subminimal DAGs with more edges than necessary� Traversing unnecessary DAG
edges during numerical factorization can be a source of overhead� Moreover� in a
parallel implementation� extra DAG edges can be potential sources of unnecessary
synchronization or communication�

In this paper� we show how an easily implementable modi�cation to Gilbert and
Liu�s symbolic factorization algorithm enables an e�cient computation of the minimal
elimination DAGs� We also de�ne a set of edges that must be added to the task
DAG

�Mathematical Sciences Department� IBM T�J� Watson Research Center� P�O� Box 	�
� Yorktown
Heights� NY ����
 �anshul�watson�ibm�com��

�



� ANSHUL GUPTA

in order to generate a minimal data
DAG that is valid as long as partial pivoting with
dynamic row and column exchanges is not performed during factorization� Finally�
we describe how supplementing this data
DAG further with a small set of extra edges
can yield a near
minimal data
DAG that is su�cient to handle an arbitrary number
of pivot failures and the resulting row and column exchanges during numerical fac

torization� By means of experiments on a suite of unsymmetric sparse matrices from
real applications� we show that computing the �nal data
DAG is extremely fast� Fur

thermore� for the matrices in our test suite� this data
DAG has only a slightly higher
number of edges than the task
DAG constructed using complete transitive reduction�

The multifrontal method ���� ��� for solving sparse systems of linear equations
usually o�ers a signi�cant performance advantage over more conventional factoriza

tion schemes by permitting e�cient utilization of parallelism and memory hierarchy�
In ����� Du� and Reid describe a symmetric
pattern multifrontal algorithm for unsym

metric matrices that generates an elimination tree based on the structure of A�AT

to guide the numerical factorization� which works on symmetric frontal matrices�
This conventional multifrontal algorithm can incur a substantial overhead for very
unsymmetric matrices due to unnecessary data dependencies in the elimination tree
and due to extra zeros in the arti�cially symmetrized frontal matrices� Davis and
Du� ��� and Had�eld ���� introduced an unsymmetric
pattern multifrontal algorithm
that overcomes the de�ciencies of a symmetric
pattern algorithm� Our powerful sym

bolic phase enables us to use a much simpli�ed and computationally lean version of the
unsymmetric
pattern multifrontal algorithm with partial pivoting� We describe the
unsymmetric
pattern multifrontal algorithm that is used in WSMP and experimen

tally compare it with other state
of
the
art sparse unsymmetric factorization codes�

In Table ���� we introduce the suite of test matrices that we will use in experiments
throughout this paper� All matrices in our test suite arise in real
life problems and are
publicly available� Table ��� shows the size of each matrix� the number of nonzeros in
it� and the application area of the origin of the matrix� All experiments reported in
this paper were conducted on an IBM RS���� WH
� with a ��� MHz Power� CPU�
� Gbytes of RAM� � Mbytes of level
� cache� and �� Kbytes of level
� cache�

The organization of this paper is as follows� We introduce the terms� conven

tions� and notations used in the paper in x�� A symbolic factorization algorithm that
computes the structure of the triangular factors and minimal elimination structures is
described in x�� In x�� we give fast algorithms to compute near
minimal data
DAGs
for unsymmetric multifrontal factorization� The numerical factorization algorithm is
described in detail in x�� We �nish with concluding remarks in x�� The last sub

section of each of the major sections contains experimental results pertaining to the
algorithms in that section�

�� Terminology and conventions� We assume that the original n� n sparse
unsymmetric coe�cient matrix is irreducible and cannot be permuted into a block

triangular form� This is not a serious restriction� because a general matrix can �rst be
reduced to a block
triangular form and then only the irreducible diagonal blocks need
to be factored ����� We assume that the coe�cient matrix A is factored into a lower
triangular matrix L and an upper triangular matrix U � Multiple row and column
permutations may be applied to A during various stages of the solution process�
However� for the sake of clarity� we will always denote the coe�cient matrix by A and
the factors by L and U � The state of permutation of A� L� and U will usually be clear
from the context�

We denote the directed graph corresponding to an n � n matrix M by



UNSYMMETRIC SPARSE SYMBOLIC AND NUMERICAL FACTORIZATION �

Number Matrix N NNZ Application

� af����� ����� ������ Fluid dynamics
� av���	� ���	� ����	�� Finite element analysis
� bayer�� �

�� �



� Chemistry
� bbmat ��
�� �

�
�� Fluid dynamics
� comp�c ��
�� �
���� Linear programming
� e��r���� �
��� ���	�� Fluid dynamics

 e��r���� �
��� ���	�� Fluid dynamics
� ecl�� ��		� ������ Circuit simulation
	 epb� ����
 ������ Thermodynamics
�� �dap��� ����� ��	���� Fluid dynamics
�� �dapm�� ���	� ������ Fluid dynamics
�� invextr� ����� �
	���� Fluid dynamics
�� mil��� ������ �
����� Structural engineering
�� mixtank �		�
 �		���� Fluid dynamics
�� nasasrb ���
� ��

��� Structural engineering
�� onetone� ����
 ������ Circuit simulation
�
 onetone� ����
 ��
��� Circuit simulation
�� pre� ��	��� �	�	��� Circuit simulation
�	 raefsky� ����� ����
�� Fluid dynamics
�� raefsky� �	

	 ����
�	 Fluid dynamics
�� rma�� ����� ��
���� Fluid dynamics
�� tib ����� �����	 Circuit simulation
�� twotone ���
�� ������� Circuit simulation
�� wang� ����� �

��� Circuit simulation
�� wang� ����� �

�	� Circuit simulation

Table ���

Test matrices with their order �N�� number of nonzeros �NNZ�� and the application area of origin�

GM 	VM � EM 
� where VM � f�� �� � � � � ng� Although a graph may not always be asso


ciated with an explicitly de�ned matrix� but when it is� then an edge
�

ij � EM if and
only if mij is a structural nonzero entry in the sparse matrix M � The transpose of a

matrix M is represented by M �� If
�

ij � EM � then
�

ji � EM � � and vice
versa�

Struct	Mi��
 is the set of columns in M that have a structural nonzero entry in
row i� This is also the set of all vertices to which i has an outbound edge in GM �
Similarly� Struct	M��i
 is the set of rows in M that have a structural nonzero entry in
column i and is also the set of all vertices from which i has an inbound edge in GM �

A directed path from node i to node j in the directed graph GM is denoted by
�

ij�
The graph GMO is a transitive reduction of the graph GM if GMO has a directed path
�

ij if and only if GM has a directed path
�

ij and there is no other graph with fewer
edges than GMO that satis�es this condition� Since we are primarily dealing with the
nonzero structure of matrices rather than the actual values� we may also loosely refer
to MO as the transitive reduction of M if GMO is a transitive reduction of GM � The
leading i� i submatrix of M is denoted by Mi and the corresponding graph and its
transitive reduction by GMi

and GMO
i
� respectively�

The edges and paths in the some of the graphs used in this paper are labeled�
An edge can have one of the three labels�L� U� or LU� Depending on its label� an
edge can be an L
edge� a U
edge� or an LU
edge� L
� U
� and LU
edges from vertex i

to j are denoted by
L�

ij �
U�

ij � and
LU�

ij � respectively� An L
path from i to j� denoted



� ANSHUL GUPTA

for i � � to n do

�� Compute Struct	Li��
 from Struct	Ai��
 by traversing GUO
i��

and using the

fact that � j � i� j � Struct	Li��
 if and only if � k � j such that k �

Struct	Ai��
 and �
�

kj� EUO
i��

�

�� Transitively reduce Struct	Li��
 using GLO
i��

and extend it to GLO
i
�

�� Compute Struct	Ui��
 � 		�
j�
�

ji�E
L�O
i

Struct	Uj��

 � Struct	Ai��

 �

f�� �� � � � � i� �g�
�� Transitively reduce Struct	U��i
 using GU �O

i��
and extend it to GU �O

i
�

end for

Fig� ���� Gilbert and Liu�s unsymmetric symbolic factorization algorithm ���	�

by
L�

ij � is a directed path containing only L
 and LU
edges� Similarly� a U
path from

i to j� denoted by
U�

ij � is a directed path containing only U
 and LU
edges� If an

L
edge
L�

ij exists in the graph� then j � L
parent	i
� Similarly� if
U�

ij exists� then j �

U
parent	i
 and if
LU�

ij exists� then j � LU
parent	i
�

We de�ne� a supernode �q � r� as a maximal set of consecutive indices fq� q �
�� � � � � rg such that � i � �q � r�� Struct	L��i
 � Struct	L��q
 �fq� q � �� � � � � i� �g and
Struct	Ui��
 � Struct	Uq��
 �fq� q � �� � � � � i � �g� For n � n matrices L and U � we
de�ne m�m supernodal matrices L and U such that each supernode �q �r� in L and
U is represented by a single row and column g � S	�q � r�
 in L and U� Here m � n
is the total number of supernodes� Furthermore� if g � S	�q � r�
� h � S	�s � t�
� and
r � s� then g � h� i�e�� the column and row indices in L and U maintain the relative
order of supernodes in L and U �

�� Computing a task�DAG and the structures of L and U � In ����� Gilbert
and Liu present an unsymmetric symbolic factorization algorithm to compute the
structures of the factors L and U and their transitive reductions LO and UO� Fig� ���
summarizes Gilbert and Liu�s algorithm� The algorithm computes the structure of L�
U � and LO row by row and computes the structure of UO by columns�

The total time that the algorithm shown in Fig� ��� spends in Step � is bounded
by �ops	LUO
 ����� which is the number of operations required to multiply the sparse
matrices L and UO � Similarly� the time spent in Step � is bounded by �ops	ULO
�
The total computational cost of Steps � and � is O	n	jELO j� jEUO j

� This is because
transitive reduction is performed on n rows of U and columns of L� and the i
th step
could potentially traverse all edges in GLO

i
and GUO

i
� Steps � and � of Gilbert and

Liu�s algorithm are much costlier than steps � and �� The cost of these steps has
prompted researchers to seek alternatives� such as computing fast but incomplete
transitive reduction ��� ���� Such use of alternatives to GLO and GUO with more
edges than GLO and GUO � respectively� can increase the cost of Steps � and �� as well
as that of numerical factorization�

�Other de�nitions of supernodes in the context of unsymmetric sparse factorization have been
used in the literature �����



UNSYMMETRIC SPARSE SYMBOLIC AND NUMERICAL FACTORIZATION �

for i � � to n do

�� Transitively reduce Struct	Li��
 using GLO
i��

and extend it to GLO
i
�

�� Compute Struct	Ui��
 � 		�
j�
�

ji�E
L�O
i

Struct	Uj��

 � Struct	Ai��

 �

f�� �� � � � � i� �g�
�� Transitively reduce Struct	U��i
 using GU �O

i��
and extend it to GU �O

i
�

�� Compute Struct	L��i
 � 		�
j�
�

ji�E
UO
i

Struct	L��j

 � Struct	A��i

 �

f�� �� � � � � i� �g�
end for

Fig� ���� A modi
ed symbolic factorization algorithm�

���� A modi�cation to Gilbert and Liu�s algorithm� We now describe
a relatively simple modi�cation of the algorithm shown in Fig� ���� We start by
splitting the original coe�cient matrix into a lower triangular part stored by columns
and an upper triangular part stored by rows� In our modi�ed symbolic factorization
algorithm� we compute the structure of L by the columns 	i�e�� L� by rows
 and that
of U by the rows� This is achieved by simply reformulating the algorithm shown in
Fig� ��� to perform only Steps � and �� but twice for each i on two sets of identical
data structures�one corresponding to L� and the other corresponding to U � The
modi�ed algorithm is shown in Fig� ����

Note that Steps � and � of the algorithm shown in Fig� ��� are identical to Steps
� and �� respectively� The �rst two steps compute the i
th rows of LO and U and
the last two steps compute the i
th columns of UO and L� An actual code of this
algorithm can use the same pair of routines with di�erent arguments to implement
all four steps� The reduction in the size of the code by half� however� is a secondary
bene�t of the modi�ed algorithm� The primary advantage of this scheme is that
it allows immediate detection of supernodes during symbolic factorization� This� as
we shall explain in x���� allows us to avoid computing and storing GLO and GU �O

explicitly� Instead� we can work only with their supernodal counterparts GLO and
GU�O � respectively�

���� Use of supernodes to speed up transitive reduction� Most modern
sparse factorization codes rely heavily on supernodes to e�ciently utilize memory
hierarchies and parallelism in the hardware� Supernodes are so crucial to high perfor

mance in sparse matrix factorization that the criterion for the inclusion of rows and
columns in the same supernode is often relaxed ��� to increase the size of the supern

odes� Consecutive rows and columns with nearly same but not identical structures are
often included in the same supernode and arti�cial nonzero entries with a numerical
value of � are added to maintain identical row and column structures for all members
of a supernode� The rationale is that the slight increase in the number of nonzeros
and �oating
point operations involved in factorization is more than compensated for
by higher factorization speed�

WSMP�s LU factorization algorithm also works on the relaxed supernodes gener

ated by its symbolic factorization� In the symbolic factorization algorithm� as soon as
Struct	L��i
 and Struct	Ui��
 are computed in the i
th iteration of the outer loop� they
can be compared with Struct	L��i��
 and Struct	Ui����
 to determine if they belong
to the current supernode� A new row
column pair is added to the current supernode



� ANSHUL GUPTA

if its structure is either identical or nearly identical to the previous row
column pair�
If the i
th row
column pair fails to meet the criterion for membership into the current
supernode� then a new supernode is started at i�

The use of supernodes allows us to signi�cantly reduce the cost of computing
the transitive reductions� In Step � of the algorithm shown in Fig� ���� instead of
transitively reducing the entire Struct	Li��
� we only reduce the set fh � h � S	�q �r�
�
where �q � r� � Struct	Li��
g� Step � is treated similarly� As a result of working only
with supernodes� the upper bound on the cost of computing the transitive reduction
decreases from O	n	jELO j � jEUO j

 to O	n	jELO j � jEUO j

� This is because only
the supernodal DAGs GLO and GUO are searched during each of the n transitive
reduction steps� Strict supernodal graphs GLO and GUO would have at least n �m
fewer edges than GLO and GUO � wherem is the number of supernodes� This is because

UO and L�O do not contain any edges
�

ij� where j � i� �� q � i � r� and �q � r� is a
supernode� The use of relaxed supernodes reduces the number of edges even further�
As a part of the process of supernode
relaxation� a node i� � can be forced into the
same supernode that contains node i� even if row and column i � � contain indices
that are not present in row and column i� In order to accommodate node i��� these
extra indices are added to the supernode that is absorbing node i � �� As a result�

some potential edges of the form
�

ij� where j � i � �� may be eliminated from the
task
DAG�

���� Task�DAGs for LU factorization� We �rst de�ne a task
DAG TdagC in
terms of the conventional structures L�O and UO� The transpose matrix L� is used to

indicate that �
�

ij � ETdagC � j � i�

Theorem ���� TdagC is a task�DAG for LU factorization if its vertex set VTdagC
� f�� �� � � � � ng and its edge�set ETdagC � EUO �EL�O �

Proof� To prove that TdagC is a task
DAG� we show that ETdagC is su�cient to
represent a proper ordering of the n elimination tasks denoted by VTdagC � Struct	L��i

can contribute to Struct	L��j
 only if i � Struct	U��j
� and if this is the case� then the

symbolic factorization algorithm of Fig� ��� ensures that UO contains either
�

ij or
�

ij�
The same is true for Struct	Ui��
� Struct	Uj��
� and L

�O� Therefore� every row
column
pair i that updates row
column j� must be eliminated before j�

Theorem ��� can be easily extended to the supernodal case� A supernodal task

DAG TdagS is de�ned by a vertex set VTdagS � f�� �� � � � �mg and an edge set ETdagS

� EUO � EL�O � where m is the number of supernodes�

Although� in a practical implementation� we always work with supernodal DAGs�
we will often use conventional task
 and data
DAGs in the remainder of the paper
to keep the exposition simple� All results and descriptions presented in terms of the
conventional DAGs map naturally to the supernodal case�

���� Experimental results� In Table ���� we compare Gilbert and Liu�s sym

bolic factorization algorithm ���� with the supernodal symbolic factorization algorithm
described in x���� We report their CPU times TC and TS� respectively and the number
edges in task DAGs TdagC and TdagS generated by them�

The last column of Table ��� shows the factor by which the supernodal symbolic
factorization is faster than the conventional algorithm� The table also shows average
supernode size 	n�m
 and the ratio of edges in TdagC and TdagS for each matrix�
These two ratios are closely related� The ratio of TC and TS bears some correlation
to the ratio of edges in TdagC and TdagS� but the actual ratio is matrix dependent�



UNSYMMETRIC SPARSE SYMBOLIC AND NUMERICAL FACTORIZATION �

Matrix jV j Nsup

Conventional
Symbolic

Supernodal
Symbolic

�n
 �m
 T
C

jE
TdagC

j T
S

jE
TdagS

j
n
m

jE
TdagC

j

jE
TdagS

j

TC

TS

af����� ����� �
�� ��� ����� ��
 �
	� ��� ��	 ���
av���	� ����� �	��� ��� ���	
 ��� ��
�� ��� ��� ��

bayer�� ����� ���	� ��� ���	�� ��� �
��� ��� ��� ���
bbmat ��
�� ��

 ��� ����� ��
 ��

 
�	 ��� ��	
comp�c �
�� 		� ��� ���� ��� �
�� ��� ��� ���
e��r���� �
��� ���	 ��
 �	��� ��� ���� ��
 ��� ���
e��r���� �
��� �
�� ��� �	�	� ��� ���� ��� ��� ���
ecl�� ����� ����
 
�	 ��

	 ��� ����	 ��� ��� ���
epb� ����
 ����	 ��� �����
 ��� ����� ��� ��� ���
�dap��� ����� ���� ��� ����� ��� ���� ��� ��� ���
�dapm�� ���	� ���
 ��
 ����� ��� ���� 	�� ��
 ��

invextr� ����� ��	� ��� �
��� �	� ����� ��
 ��� ���
mil��� ������ ������ ��� �����
 ��� ������ ��� ��� ���
mixtank �		�
 �	�� 
�� ��	�	 ��� ���� ��� 	�
 ���
nasasrb ���
� ���� ��	 ����	 �	
 ���
 ��� ��� ���
onetone� ����� ����� ��� ����
 ��� ����� ��� ��	 ���
onetone� ����� ����� ��� ���
� ��� ��			 ��� ��	 ���
pre� ��	��� ����	� ��� 
����� ��� ��
��� ��� ��� ��

raefsky� ����� ���� ��� ���		 ��� ���� �
� �
� ���
raefsky� �	

	 ���	 ��	 �	

� ��� ���� ��� ��� ���
rma�� ����� ���� ��� �
��� ��� �	�� ��� ��� ���
tib �
��� 
��� ��� ��	�� ��
 ����� ��� ��� ���
twotone ���
�� ����� ��� ������ �	� ����� ��� ��� ��	
wang� ����� ���� ��� ����� ��� ���� ��� ��� ��

wang� ����� ���� ��� ����
 ��� ���� ��� ��� ��


Table ���

Comparison of conventional symbolic factorization �due to Gilbert and Liu ���	� with supernodal
symbolic factorization� jV j is the size of the largest diagonal block in the matrix on which symbolic
factorization is performed� Nsup is the number of supernodes� TC and TS are the times in seconds
of the two symbolic factorization algorithms� and� jETdagC j and jETdagS j are the number of edges
in the task�DAGs produced by the two algorithms�

Note that only the time of transitive reduction steps � and � of the algorithm in
Fig� ��� is reduced by the use of supernodes� the time of computing the structures of
L and U in steps � and � remains mostly unchanged 	other than some reduction in
the number of structures merged due to supernode relaxation
� Therefore� the actual
reduction achieved in symbolic factorization time depends on the relative amounts
of time spent in transitive reduction and computing L and U structures� Moreover�
Table ��� reports the number of edges in the task
DAGs� not the number of edges in
the actual lower and upper triangular transitively reduced graphs that are traversed
during symbolic factorization� Recall that the edge
set of a task
DAG is the union
of the edge
sets of the corresponding lower and upper triangular transitively reduced
graphs� The amount of structural symmetry in the matrix a�ects the number of
common edges between the upper and lower transitively reduced graphs� which in
turn determines the actual number of edges in the task
DAG�

In ����� Eisenstat and Liu present an alternative to complete transitive reduc

tion to reduce the cost of this step in sparse unsymmetric symbolic factorization�
They propose exploiting structural symmetry in the matrix to compute partial tran




� ANSHUL GUPTA

sitive reductions� Although they present experimental results on a di�erent set of
much smaller matrices� it appears that the use of supernodes� as proposed in x���
can achieve much higher speedups in symbolic factorization while computing exact
transitive reductions than the partial transitive reduction scheme proposed in �����

�� Data�DAGs for unsymmetric multifrontal LU factorization� The mul

tifrontal method ���� ��� for sparse matrix factorization usually o�ers a signi�cant
performance advantage over more conventional factorization schemes by permitting
e�cient utilization of parallelism and memory hierarchy� The original multifrontal
algorithm was describeed in the context of a symmetric
pattern coe�cient matrix
and has been applied to matrices with unsymmetric patterns by introducing zero

valued entries at appropriate locations to convert the original matrix into one with
the pattern of A�AT ���� �� ��� This can cause a substantial overhead for very unsym

metric matrices due to the extra computation performed on the introduced entries and
the resulting �ll
in� Davis and Du� ��� and Had�eld ���� introduced an unsymmetric

pattern multifrontal algorithm to overcome this shortcoming of the symmetric
pattern
multifrontal algorithm� In this section� we develop near
minimal data
DAGs for the
unsymmetric multifrontal algorithm�an aspect of unsymmetric multifrontal factor

ization that has not been well investigated in previous works� As we shall show in x��
the availability of a near minimal data
DAG aids an e�cient implementation of the
numerical factorization phase� It would also help minimize the synchronization and
communication overheads in a parallel implementation of the unsymmetric
pattern
multifrontal algorithm�

���� Outline of the symmetric multifrontal algorithm� The symmetric

pattern multifrontal algorithm is guided by an assembly or elimination tree ���� ��� ����
which serves as both the task
 and the data
dependency graph for the factorization
process� The data associated with each supernode of the elimination tree is a square
frontal matrix� A frontal matrix F g associated with a supernode g � S	�q � r�
 is
a dense matrix whose dimensions are equal to jStruct	L��q
j or jStruct	Uq��
j� The
contiguous local row and column indices in the dense frontal matrix correspond to
noncontiguous global indices of the matrix L�U � Each entry in a frontal matrix cor

responds to a structural nonzero entry in the global matrix� After a frontal matrix F g

is fully assembled or populated� the leading r�q�� rows and columns corresponding
to the supernode are factored and become parts of the factors U and L� respectively�
The remaining trailing part of the square matrix is now called the update or the
contribution matrix� denoted by Cg � The contribution matrix corresponding to a su

pernode is assembled completely into the frontal matrix of its only parent supernode�
and is never assessed again� This is because if h � S	�s �t�
 is the parent of supernode
g � S	�q � r�
 in the elimination tree� then Struct	L��r
 � frg 	 Struct	L��s
� The
same is true for columns of U due to symmetry� The task corresponding to the mul

tifrontal elimination at a supernode �rst recursively completes identical subtasks for
each of its children in the elimination tree� then assembles their contribution matrices
into its frontal matrix� and �nally performs the partial factorization on the frontal
matrix� Calling a recursive procedure to perform the task described above on the root
supernode of the elimination tree completes the factorization of a sparse matrix with
a symmetric structure�

���� Outline of the unsymmetric multifrontal algorithm� The overall
structure of an unsymmetric
pattern multifrontal algorithm is similar to its symmet

ric counterpart and can be expressed in the form of a recursive procedure starting at



UNSYMMETRIC SPARSE SYMBOLIC AND NUMERICAL FACTORIZATION �

the root 	the supernode with no outgoing edges
 of the task
DAG� However� there are
two major di�erences� The �rst di�erence is in the control
�ow� In the unsymmetric
multifrontal algorithm� before starting a subtask for a child� the task corresponding
to the parent supernode must check to see of the child supernode has already been
processed by another parent� Only the �rst parent to reach a child actually performs
the recursive computation starting at that child� The second di�erence is in the data

�ow� or the way contribution matrices are assembled into frontal matrices� This is
explained below in greater detail�

Recall that the edge
set ETdagC of the task
DAG TdagC is the union of the edge

set EL�O of the transitive reduction of L� and the edge
set EUO of the transitive
reduction of U � We now assign labels to the edges in TdagC � The edges contributed
to ETdagC solely by EL�O are labeled as L
edges� Similarly� edges contributed to
ETdagC solely by EUO are labeled as U
edges� The third type of label� the LU
label�

is assigned to the edges that belong to both EL�O and EUO � Finally� an L
edge
L�

ij is

converted to an LU
edge
LU�

ij if there is a U
path
U�

ij in TdagC and a U
edge
U�

ij is

converted to
LU�

ij if there is an L
path
L�

ij � The edges of the supernodal task
DAG
TdagS can be de�ned similarly�

Unlike the symmetric multifrontal algorithm� the frontal and contribution ma

trices in the unsymmetric multifrontal algorithm are� in general� rectangular rather
than square� Furthermore� a contribution matrix in the unsymmetric multifrontal
algorithm can potentially be assembled into more than one frontal matrices because a
supernode in the data
DAG can have more than one parent� As described in ����� the
assembly of contribution matrices into the parent frontal matrices in the unsymmetric
multifrontal algorithm proceeds as follows�

Let
L�

gh be an L
edge in the data
DAG� where g � S	�q � r�
 and h � S	�s � t�
� If
Struct	L��q
 and Struct	L��s
 have an index i in common� then all elements of row i

of U in Cg can potentially be assembled into F h� Similarly� if
U�

gh is a U
edge and
Struct	Uq��
 and Struct	Ls��
 have an index i in common� then all elements of column

i of L in Cg can potentially be assembled into F h� Finally� if
LU�

gh is a LU
edge� then
the entire trailing submatrix of Cg with global row and column indices greater than
or equal to s can be assembled into F h�

Certain entries of Cg may have potential destinations in the frontal matrices of
more than one parent of g even if the data
DAG contains no unnecessary edges� This
is because Cg can have common rows 	columns
 with the frontal matrices of more
than one among g�s LU
 and L
parents 	U
parents
� The unsymmetric multifrontal
algorithm must ensure that any entry of a contribution matrix is not used to update
more than one frontal matrices� Additionally� a correct data
DAG must have su�cient
outgoing edges from all supernodes so that each entry of a contribution matrix has a
potential destination in at least one frontal matrix�

���� Inadequacy of task�DAG for unsymmetric multifrontal algorithm�

By means of a small example in Fig� ���� we show that if the task
DAG de�ned in
x��� is used as a data
DAG� then all contribution matrices may not get fully absorbed
into their parent frontal matrices� The �gure shows a sparse matrix with factorization
�ll
in� the transitively reduced DAGs L�O and UO � and the task
DAG with its edges
labeled as described in x���� For the sake of simplicity� each supernode is of size ��
The �gure shows all frontal and contribution 	shaded portions
 matrices and the �ow



�� ANSHUL GUPTA

C1C

F5F4F3F2F1

43C2

1 2 3 4 5

1

2

3

4

5

X

X

C

X

intended destination

X

X

X

X

X

X X

X 4321

5 5

3

1

Matrix o

1 2 4

1

5

X X X

X

2 3

2

5

X X

X

3 4

3

5

X X

X

4

4

5

5

X X

XX

5

5 X

unassembled

4

Tdag

++ +

+ + + +

o

2

3

5

4

2

1

L U

U

LU

U
LU

LU

LU U

Fig� ���� An example to show the inability of a task�DAG to guide complete assembly of all
contribution matrices in the unsymmetric multifrontal algorithm� An �X� denotes a nonzero in the
coe
cient matrix and a ��� denotes a nonzero created due to 
ll�in�

of data from the contribution to frontal matrices along the edges of the task
DAG�

Note that all edges may not lead to a data transfer� e�g��
LU�

� � � It is easily seen that the

U
edge
U�

� � that is absent from the task
DAG 	because it is removed while transitively
reducing U to UO
 is necessary for the complete assembly of C��

���� A data�DAG for a prede�ned pivot sequence� Having shown that the
task
DAG cannot serve as the data
DAG for unsymmetric multifrontal factorization�
we now de�ne a data
DAG that is su�cient for the proper assembly of all contribution
matrices as long as rows and columns are not exchanged among di�erent supernodes
for pivoting� We will use DdagN to denote such a DAG� where the superscript N
stands for �no pivoting�� A data
DAG DdagP that can accommodate pivoting will be
described in x����

Theorem ���� If ��� j � Struct�Ui���	 �
� the LU�parent of i	 if it exists	 is
greater than j	 ��� none of i�s U�parents are in Struct�U��j�	 and �
� �k � Struct�L��i�

such that k � j	 then a U�edge
U�

ij is necessary for Ci to be completely assembled into
its parents� frontal matrices� The transpose of this theorem can be stated similarly�

Proof� The contribution matrix Ci has a column that contributes to L��j � because�
at the least� there is an element corresponding to Lk�j in Ci� At the same time� none
of i�s U
parents� frontal matrices have column j� so they cannot absorb L��j from Ci�
Since the LU
parent of i is greater than j� it too cannot absorb L��j from Ci� The

addition of
U�

ij makes it possible to contribute L��j from Ci to F j � The transpose
case can be proven similarly�

Theorem ��� captures the situation illustrated in Fig� ��� and prescribes the ad


dition of
U�

� � to ensure complete assembly of C��
Theorem ���� If DdagN is a DAG formed by adding all possible edges according

to Theorem 
�� to TdagC if these edges don�t already exist	 then DdagN is a data�



UNSYMMETRIC SPARSE SYMBOLIC AND NUMERICAL FACTORIZATION ��

dependency DAG for unsymmetric multifrontal algorithm without pivoting�

Proof� To show that DdagN is a data
DAG� we must show that its edge
set is
su�cient for the complete absorption of all contribution matrices into their parent
frontal matrices� We prove this by contradiction�

Without loss of generality� assume that an element corresponding to Lk�j in Ci

is not assembled� Note that i � j � k� If Lk�j is in Ci� then j � Struct	Ui��
 and

k � Struct	L��i
� Since j � Struct	Ui��
� either
U�

ij � ETdagC or there is a U
path
U�

ij in TdagC � If
U�

ij � ETdagC � then all entries with row indices greater than or
equal to j in column j of Ci will be absorbed by F j � and these entries include the

one corresponding to Lk�j � If
U�

ij �� ETdagC � then a U
path
U�

ij exists in TdagC and
there are two possibilities� either LU
parent	i
 � j or LU
parent	i
 � j� Let l �
LU
parent	i
� If l � j� then the entire trailing submatrix of Ci with row and column
indices greater than l� including Lk�j � will be assembled into F

l� If l � j� then consider
two further possibilities� either one of i�s U
parents is in Struct	U��j
 or not� If one
is� then its frontal matrix will absorb column j from Ci� If none of i�s U
parents is
in Struct	U��j
� then all conditions for the applicability of Theorem ��� are satis�ed�

Therefore�
U�

ij would have been added to DdagN and would have caused the entry
corresponding to Lk�j in Ci to be absorbed into F j � Thus� it is not possible for the
entry corresponding to Lk�j to be left unassembled in any Ci� Similarly� it can be
shown that the entry corresponding to any Uj�k cannot be left unassembled in any
Ci�

Having shown that the edge
set of DdagN is su�cient for unsymmetric multi

frontal factorization without pivoting� we now show that all edges thatDdagN inherits
from TdagC may not be necessary if pivoting is not performed during factorization�

Theorem ���� For LU factorization without pivoting	 an edge
U�

ij �
L�

ij � or
LU�

ij
in TdagC is redundant if the maximum index in Struct�L��i� �Struct�Ui���� is smaller
than j�

Proof� Recall that Struct	L��j
 � 		�
i�
�

ij�E
UO

Struct	L��i

 � Struct	A��j

 �

f�� �� � � � � j � �g� If the maximum index in Struct	L��i
 is smaller than j� then
Struct	L��i
 � f�� �� � � � � j��g and does not contribute to Struct	L��j
� The proof for
L�O and Struct	Ui��
 is similar�

Note that Theorem ��� is valid only if row and column exchanges are not per

formed during LU factorization� Otherwise� additional �ll
in caused by pivoting could
create an index greater than or equal to j in Struct	L��i
 or Struct	Ui��
� even if it is
not predicted by the symbolic factorization on the original permutation of the matrix�
Therefore� all edges in TdagC could potentially be used�

Supernodal versions of Theorems ������� for TdagS can be proven similarly� To
summarize the results of this subsection� we have shown how to construct a data

DAG for unsymmetric multifrontal factorization without pivoting from a task
DAG
and we have shown that although the task
DAG is derived from the strict transitive
reductions of L� and U 	or L� and U
� it may still pass on edges to the data
DAG
that are redundant if pivoting is not performed during factorization� Therefore� the
data
DAG is not minimal� However� if pivoting is performed� then potentially all the
edges could get used�

��	� Supplementing the data�DAG for dynamic pivoting� We will now
show that the edge
set of data
DAG DdagN constructed in x��� is not su�cient if piv




�� ANSHUL GUPTA

oting is performed during factorization and will describe how to supplement EDdagN

to generate a data
DAG DdagP whose edge
set is su�cient to handle any amount of
pivoting� We start with an overview of the pivoting methodology in the unsymmetric
multifrontal algorithm� which has been described in detail in �����

If a diagonal element Ai�i 	q � i � r
 in a supernode �q � r� fails to meet the
pivoting criterion� then �rst an attempt is made to exchange row and column i with
a row j and a column k such that i � j � r� i � k � r and Aj�k satis�es the
pivoting criterion� Such intra
supernode pivoting has no e�ect on the structure of
the factors and factorization can continue as usual� However� it may not always be
possible to �nd a suitable row
column pair within a supernode�s pivot block to satisfy
the pivoting criterion� In such a situation� inter
supernode pivoting is necessary� If
h � S	�s � t�
 is the LU
parent of g � S	�q � r�
 in the data
DAG and a suitable i
th
pivot cannot be found within the pivot block of F g � then all row
column pairs from i
to r are symmetrically permuted to new locations from s� 	r� i��
 to s� �� Thus�
e�ectively� supernode �q � r� shrinks to �q � i � �� and the supernode �s � t� expands to
�s� 	r� i��
�t�� As a side e�ect of this pivoting� there is additional �ll
in in all the
ancestors of g in the data
DAG that are smaller than h� In particular� the columns
of L of all of g�s U
ancestors smaller than h get extra row indices �i �r� and the rows
of U of all of g�s L
ancestors smaller than h get extra column indices �i �r��

In DdagN � whose construction is described in x���� all supernodes may not have
an LU
parent to support the symmetric pivoting method described above� Therefore�
as the �rst step towards deriving DdagP from DdagN � we alter the edge
set of the
latter as follows� For each g from � to m 	where m is the total number of supernodes
�

the smallest supernode h to which both
L�

gh and
U�

gh exist is designated as the LU


parent of g� i�e�� if an edge
�

gh does not exist� then an LU
edge
LU�

gh is added to the

data
DAG� or if an L
 or a U
edge
�

gh exists� then it is converted to an LU
edge� Then�

all edges
�

gk such that k � h are deleted� If the original matrix is not reducible to
a block
triangular form� then after this modi�cation� each supernode other than the
root supernode has an LU
parent ���� to accommodate row
column pairs that fail to
satisfy the pivoting criterion�

Fig� ��� shows how the failure of pivot row and column � is attempted in the
unsymmetric multifrontal factorization of a small �� � example matrix� Row
column
� is symmetrically permuted to a new location adjacent to ��s LU
parent � in the data

DAG� This results in an addition to row index � to ��s U
parent � and an addition of
column index � to ��s L
parent �� Additionally� after moving to their new location�
row � in U and column � in L get �ll
in in column and row positions where row � in
U and column � in L have nonzeros� i�e� U��	� L
��� and L	��� Fig� ��� also shows that
after pivoting� the new row � of C� cannot be fully assembled in the absence of an

L
edge
L�

� ��

Clearly� apart from adding LU
edges as described above� DdagN requires further
modi�cations in order to serve as a data
DAG for unsymmetric multifrontal algorithm
with dynamic pivoting� First� we present a modi�ed version of Theorem ��� for
supplementing the edge
set of TdagC to yield DdagN �

Theorem ���� If ��� j � Struct�Ui���	 �
� the LU�parent of i	 if exists	 is greater
than j	 ��� none of i�s U�parents are in Struct�U��j�	 and �
� there exists a k such

that there is a U�path
U�

ki in TdagC and LU�parent�k� � j	 then a U�edge
U�

ij is
necessary for Ci to be completely assembled into its parents� frontal matrices in the



UNSYMMETRIC SPARSE SYMBOLIC AND NUMERICAL FACTORIZATION ��

2

old
indices

F3 F4F

1F 2F 3F 4

Original matrix

Multifrontal factorization without any pivot failure

1 2 4

1 X X X

X

X

4

4

5

5

X X

XX

5

5 X

+ +3

2

2 X X 3

F

X

intended destination

X

X

5

3 X 4

3 4 5

+
X+

2 5

2

3

1

3 1 4 5

3

4

1 4 5

1

4

5

5

5X X

X

X

X

X

X X

XX

X X

X X

XX

X

+
+

+
+
+

0

0

F5

F5

Factorization with failure of pivot 1

Ddag

1 2 3 4 5

1

2

3

4

5

X

X

X

X X

X X

X

X X+ +
X

X

5

1

2
3

4

LUU
L

L

LU

LU

LU

X

Handling failure of pivot 1

X

2 3 1 4 5

2

3

1

4

5

X

X

X

X

X

X

X

X X +
+
+

X

X

X

0 0

1 2 3 4 5

5

4

3

1

2

indices
new

unassembled

Fig� ���� An example factorization to show how the failure of pivot � is handled by a symmetric
permutation of row and column � to merge them with their LU�parent supernode� �� An �X� denotes
a nonzero in the coe
cient matrix and a ��� denotes a 
ll�in� The circled �X� and ��� are created
due to pivoting� A ��� denotes a 
ll�in predicted by the original symbolic factorization that has a

value of zero due to pivoting� The 
gure also shows that the absence of
L�

	 � leaves the entry U���
unassembled from F ��

event of failure of pivot k� The transpose of this theorem can be stated similarly�

Proof� Note that Theorem ��� is very similar to Theorem ���� The only di�erence
is condition 	�
� If pivot k fails� then it will add a row in Struct	L��i
 that corresponds
to LU
parent	k
 ��� which is the new location of k and is greater than j� �� the new
index for j� Thus� the failure of pivot k transforms condition 	�
 of Theorem ��� into
condition 	�
 for the applicability of Theorem ���� which has already been proved�

Theorem ��� states that even if Struct	L��i
 does not have any index greater than

j but all other conditions for the applicability of Theorem ��� are satis�ed and
U�

ij
is not present in the DAG� then pivoting may result in incomplete assembly unless
this edge is added� In the light of Theorem ���� before proceeding further� we rede�ne



�� ANSHUL GUPTA

DdagN � First� instead of using Theorem ��� strictly to derive DdagN from TdagC �
we omit checking for condition 	�
� i�e�� �k � Struct	L��i
 such that k � j� Then�
as describe earlier� we add outgoing LU
edges to all nodes and remove the edges
rendered redundant as a result� In the remainder of this section� DdagN will denote
the data
DAG with these two modi�cations over the data
DAG de�ned in x����

Now� by means of Theorem ���� we will show that the data
DAG� even after
the modi�cations described above� is not su�cient to ensure complete assembly of all
contribution matrices in the event of inter
supernode pivoting� Theorem ��� alludes to
the exact same condition that is illustrated in Fig� ���� Finally� Theorem ��� will show
that supplementing the data
DAG with additional edges prescribed by Theorem ���
makes it su�cient to handle all contribution matrices in the face of inter
supernode
pivoting� As we did earlier in this paper� for the sake of clarity and simplicity� we
will state and prove Theorems ��� and ��� in the context of conventional DAGs with
single
node supernodes� The results naturally extend to supernodal DAGs�

Theorem ���� If h is the LU�parent of j and ��� there exists an L�path
L�

ji �a U�

path
U�

ji � such that i � h and LU�parent�i� � h	 �
� none of i�s U�parents �L�parents�
are in Struct�L��j� �Struct�Uj����	 and ��� either �k � Struct�L��i� �Struct�Ui���� such

that k � h	 or there is a U�path
U�

ki �an L�path
L�

ki � and LU�parent�k� � h	 then a

U�edge
U�

ij �an L�edge
L�

ih � is necessary for Ci to be completely assembled into its
parents� frontal matrices in the event that j fails to meet the pivot criterion in its
original location�

Proof� If pivot j fails� then� along with other failed LU
children of h� it occupies a

new position just before h� Since there is an L
path
L�

ji � column j is added to Ci after
the failure of pivot j� i�e�� in the new matrix after pivoting� j � Struct	Ui��
� We know
that the LU
parent of i is greater than the new j� because LU
parent	i
 � h� Since
none of i�s U
parents were in the old Struct	L��j
� they are not in the new Struct	U��j

either� Thus the �rst three conditions for the applicability of Theorems ��� and ��� are
satis�ed� Condition 	�
 of Theorem ��� is equivalent to condition 	�
 of Theorems ���

or ���� Therefore� a U
edge
U�

ij is needed for proper multifrontal factorization of the
new matrix after permuting j to its new location� Since� in its new location� j is

merged with h into a common supernode� a U
edge
U�

ih in the original matrix would
have su�ced� The transpose case can be proven similarly�

Theorem ���� If DdagP is a DAG formed by adding all possible edges according
to Theorem 
�� to DdagN 	 then DdagP is an adequate data�DAG for unsymmetric
multifrontal factorization with potentially unlimited inter�supernode pivoting�

Proof� We prove this by showing that with DdagP � it is not possible for any
element of a contribution matrix Ci to remain unassembled� Without loss of gener

ality� consider an element corresponding to Lk�j in Ci� If Lk�j is in Ci� then either
k � Struct	L��i
 and j � Struct	Ui��
 in the original L and U predicted by symbolic
factorization� or row k or column j or both were added to Ci due to pivoting� If row k
and column j are parts of the original structure of Ci� then Theorem ��� has already
shown that the edge
set of DdagN � which is a subset of the edge
set of DdagP � is
su�cient to assemble Lk�j � We now show that Lk�j will be absorbed from Ci by one
of i�s parents in DdagP when column j was added to Ci due to pivoting� irrespective
of whether row k belonged to the original Struct	L��i
 or if it too was added to Ci

due to pivoting�



UNSYMMETRIC SPARSE SYMBOLIC AND NUMERICAL FACTORIZATION ��

Let g � LU
parent	i
 and h � LU
parent	j
� We consider two cases� 	�
 g � h
and 	�
 g � h� If g � h� F g will have both row k and column j and will absorb
the element corresponding to Lk�j from Ci� If g � h� then the �rst condition for
the applicability of Theorem ��� has been satis�ed� Now we consider two further
scenarios� 	�a
 at least one of i�s U
parents is in the original Struct	L��j
 or 	�b
 none
of i�s U
parents is in the original Struct	L��j
� In case of 	�a
� after pivoting� at least
one of i�s U
parents is in the new Struct	U��j
 and the frontal matrix of this U
parent
will absorb column j from Ci� including the entry corresponding to Lk�j � In case of
	�b
� the second condition for the applicability of Theorem ��� has also been satis�ed�
Finally� whether row k was in the original Struct	L��i
 or was added to Ci due to the
failure of a U
descendent k� in its �nal location� k must be greater than h� This is
because if j � k � h 	i�e�� k�s new location is in the extended supernode h
� then h

will have to be an LU
ancestor of i because j � k � h implies that there are both
L�

ih

and
U�

ih in the data
DAG� But that is not possible because we are already working
under the assumption that the LU
parent g of i is greater than h� Therefore� k � h
and the third condition of Theorem ��� has also been satis�ed and Theorem ��� would

have ensured that a U
edge
U�

ih is present in DdagP to assemble column j from Ci

into F h�
Similarly� we can prove that no entry corresponding any Uj�k will be left unassem


bled in Ci�

��
� Experimental results� In x��� and x���� we showed how to supplement the
edge
set of the task
DAG to construct a data
DAG for the unsymmetric multifrontal
algorithm� Table ��� shows experimental results of WSMP�s implementation of the
procedures to generate the various DAGs� Three DAGs are considered in Table ����
the supernodal task
DAG TdagS� the supernodal data
DAG DdagN for unsymmetric
multifrontal factorization without pivoting� and the supernodal data
DAG DdagP for
unsymmetric multifrontal factorization with pivoting� The table shows the time to
compute each of the DAGs and the number of edges in them for the �� matrices in
our test suite�

TdagS is computed by the basic symbolic factorization described in x�� therefore�
TS is the basic symbolic factorization time� We refer to the process of computing
DdagN from TdagS as Supplement��� Supplement
� checks for the �rst three condi

tions of Theorem ��� or ��� to �nd the edges to be added to ETdagS and then adds out

going LU
edges from supernodes without LU
parents to yield EDdagN � Supplement�

is the process that adds edges based on the �rst two conditions of Theorem ��� to
EDdagN to yield EDdagP � T � and T � refer to the execution time of Supplement
�
and Supplement
�� respectively� Recall that all the edges in DdagN and DdagP are
not necessary� Furthermore� for the sake of computational speed� Supplement
� and
Supplement
� do not check for all the conditions of Theorems ��� and ��� while adding
edges� Condition 	�
 of Theorems ��� and ��� and condition 	�
 of Theorem ��� are
skipped� Therefore� the resulting DdagN and DdagP are not minimal DAGs� How

ever� as Table ��� shows� these DAGs do not have many more edges than TdagS for
most real
life matrices� The average excess edges in DdagP over TdagS is only about
�� for our test suite� The time required to construct DdagN and DdagP is also
fairly small compared to the basic symbolic factorization time� Thus� the method

ology described in this section for the construction of data
DAGs for unsymmetric
multifrontal factorization is e�cient in both time and the number of DAG edges� A
comparison of the TS �T ��T � column of Table ��� with the default WSMP column



�� ANSHUL GUPTA

Matrix Symbolic Supplement�� Supplement�� Total Time

TS jE
TdagS

j T� jE
DdagN

j T� jE
DdagP

j TS � T� � T�
jE

DdagP
j

jE
TdagS

j

af����� ��
 �
	� ��� �
	� ��� �
	� ���� ����
av���	� ��� ��
�� ��
 ����� ��� �
�	� ���� ���

bayer�� ��� �
��� ��� 	���� ��� 	���� ���� ����
bbmat ��
 ��

 ��� ���� ��� ���� ��
� ����
comp�c ��� �
�� ��� �	�	 ��� �	
� ���� ����
e��r���� ��� ���� ��� ���� ��� ���� ���� ����
e��r���� ��� ���� ��� ���� ��� ���
 ���
 ����
ecl�� ��� ����	 ��
 ����� ��� ����� ���
 ����
epb� ��� ����� ��� ���
� ��� ����� ���	 ����
�dap��� ��� ���� ��� ���� ��� ���� ���� ����
�dapm�� ��� ���� ��� ���� ��� ���� ���� ����
invextr� �	� ����� ��� ����� ��� ����� ���� ����
mil��� ��� ������ ��� ������ ��
 ������ ���� ����
mixtank ��� ���� ��� ���� ��� ���� ���� ����
nasasrb �	
 ���
 ��� ���
 ��� ���
 ���� ����
onetone� ��� ����� ��� ����� ��� ���	� ���
 ����
onetone� ��� ��			 ��� ����� ��� ��	�� ���� ����
pre� ��� ��
��� ��� ������ ��� ���	�� 
��� ����
raefsky� ��� ���� ��� ���� ��� ���� ���� ����
raefsky� ��� ���� ��� ���� ��� ���� ���� ����
rma�� ��� �	�� ��� �	�� ��� �	�� ���	 ����
tib ��
 ����� ��� ����
 ��� ����� ���� ����
twotone �	� ����� ��� ����� ��� ��	�� ���� ����
wang� ��� ���� ��� ���� ��� ���� ���
 ����
wang� ��� ���� ��� ���� ��� ���� ���� ����

Table ���

Time required for constructing TdagS � DdagN � and DdagP and the number of edges in each
DAG�

of Table ��� shows that the total symbolic time is usually signi�cantly less than the
numerical factorization time�

	� Implementation details of unsymmetric factorization� A brief outline
of the unsymmetric multifrontal algorithm based on Had�eld�s ���� and Davis and
Du��s ��� work is contained in x���� We now add some details to it and present a
complete algorithm that is implemented in WSMP� WSMP is geared towards multiple
factorizations of matrices with the same sparsity pattern but di�erent nonzero values�
The symbolic phase is performed only once�

A fundamental data
structure in our unsymmetric multifrontal algorithm is the
frontal matrix� A frontal matrix is associated with each supernode� Fig� ��� shows
the organization of a typical frontal matrix for a supernode g � 	�q � r�
� The core of
frontal matrix is a j Struct	L��q
 j � j Struct	Uq��
 j portion� where Struct	L��q
 and
Struct	Uq��
 are predicted by the symbolic factorization� In the absence of pivoting�
the �rst r � q � � rows and columns of this matrix would be factored and would
be saved as parts of U and L� respectively� The remaining trailing submatrix would
constitute the contribution matrix whose contents would be absorbed into the frontal
matrices of the parents of g in DdagP �

In the presence of pivoting� extra pivots as well as other rows and columns may be
added to the frontal matrix depending on the labels and pivot failures of the children



UNSYMMETRIC SPARSE SYMBOLIC AND NUMERICAL FACTORIZATION ��

Extra rows

F
[q:r]

P
i
v
o
t
s [q:r]

C

Extra columns

E x t r a

q - p q r

q - p

q

r

pivot block

pivot block

Fig� ���� Organization of a typical frontal matrix for a supernode g � S��q � r��� The p failed
pivots from the LU�children of the supernode are appended at the beginning of the frontal matrix
and the extra rows and columns inherited from U� and L�descendents� respectively� are appended at
the end�

of g in DdagP � Extra pivots 	rows
column pairs with the same indices
 are added to
F g if some of the pivots of g�s LU
children fail to satisfy the pivoting criterion� The
LU
children themselves may have inherited some or all these failed pivots from one of
their own LU
children� Therefore� failed pivots from any of the LU
descendents of g
can end up in its frontal matrix� If p such pivots are added� then the size of the pivot
block increases from r � q � � to r � q � p� ��

The frontal matrix F g can similarly inherit extra rows corresponding to failed
pivots in its U
descendents whose LU
parents are greater than g and extra columns
corresponding to failed pivots in its L
descendents whose LU
parents are greater than
g� Irrespective of their new indices� these extra rows and columns are always ap

pended at the end of the original rows and columns of F g and a sorted list of their
indices is maintained at each supernode� Eventually� these are assembled into the
extra pivots of the frontal matrices of the LU
parents of the supernodes where these
pivots failed� The row and column structures predicted by symbolic factorization are
kept intact for future factorizations of matrices with the same nonzero pattern� The
additions to these structures due to pivoting� which depend on the nonzero values in
the matrix being factored� are maintained separately and are discarded before each
new factorization�

The availability of a static data
DAGDdagP that is su�cient for handling an arbi

trary amount of dynamic pivoting is critical to our implementation of the unsymmetric
multifrontal algorithm� Fig� ��� gives a high
level pseudocode of our factorization al

gorithm� The algorithm starts with the root supernode of task
 and data
DAGs� At
any supernode� �rst� it recursively factors all the unfactored children of that supern

ode� Then it looks at the failed pivots 	if any
 of its children to �gure out the number
and indices of the extra rows� columns� and pivots� if any� and accordingly allocates
a frontal matrix of the appropriate size� In the next step� the contribution from the
original coe�cient matrix and the contribution matrices of the current supernode�s
children is accumulated in the appropriate locations inside the frontal matrix� Finally�



�� ANSHUL GUPTA

function uns mf 	root
 f
�� �� Recursive calls to root�s children ��
for each child k of root in TdagS do

if not already processed k then
Call uns mf 	k
�

end for

�� �� Collect pivoting info to determine size of F root ��
for each child k of root in DdagP do

if k is an L
child then
if k has failed pivots then

Add them to the sorted list of F root�s extra columns�
if Ck has extra columns then

Add those whose LU
parent is greater than root to the
sorted list of F root�s extra columns while checking for duplicates�

else if k is a U
child then
if k has failed pivots then

Add them to the sorted list of F root�s extra rows�
if Ck has extra rows then

Add those whose LU
parent is greater than root to the
sorted list of F root�s extra rows while checking for duplicates�

else if k is an LU
child then
if k has failed pivots then

Add them to the sorted list of F root�s extra pivots�
if Ck has extra columns then

Add those whose LU
parent is greater than root to the
sorted list of F root�s extra columns while checking for duplicates�

if Ck has extra rows then
Add those whose LU
parent is greater than root to the
sorted list of F root�s extra rows while checking for duplicates�

end if

end for

�� �� Initialize root�s frontal matrix ��
Allocate F root of appropriate size and �ll it with zeros�
Populate F root with entries from A corresponding to supernode root�
�� �� Assembly from children�s contribution matrices into F root ��
for each child k of root in DdagP do

Copy appropriate contribution from Ck into F root�
if root is the last parent of k to pick up Ck �s contribution then

Free the space occupied by Ck�
end for

�� �� Numerical factorization ��
Factor the pivot block of F root and compute Croot�

end function uns mf�

Fig� ���� A simple and e
cient unsymmetric multifrontal algorithm�



UNSYMMETRIC SPARSE SYMBOLIC AND NUMERICAL FACTORIZATION ��

the algorithm proceeds to factor the pivot block of the frontal matrix and updates the
remainder of the frontal matrix� The leading successfully factored rows and columns
are saved as portions of U and L for use during triangular solves� The remaining
contribution matrix is eventually assembled into the frontal matrices of its parents
and is released by the last parent to pick up its contribution�

The frontal matrix of the LU
parent of a supernode picks up all its failed pivot
row
column pairs as well as the entire trailing submatrix of its contribution matrix
with row and column indices greater than or equal to the �rst index of the parent
supernode� The remaining rows and columns of a supernode�s contribution matrix are
assembled into the frontal matrices of its L
 and U
parents in DdagP � It is possible
for more than one L
 or U
parents� frontal matrices to have the same row or column
indices in common with the childs contribution matrix� However� each element of
a contribution matrix must be added into exactly one frontal matrix� Some simple
bookkeeping to keep track of rows and columns that have been assembled su�ces to
ensure this condition for the relatively few rows and columns that have the potential
to be copied into the frontal matrices of multiple L
 and U
parents� respectively�

Fig� ��� and the description in this section shows that WSMP�s unsymmetric mul

tifrontal algorithm is fairly straightforward to implement� The apparent complexity
of the unsymmetric multifrontal algorithms described in ���� and ��� was probably
a deterrent to the development of commercial software packages based on this algo

rithm� despite its theoretical advantage over symmetric pattern multifrontal codes
such as MUMPS ��� �� for unsymmetric matrices� The algorithm of Fig� ��� is not
only relatively simple in description� but is also computationally lean because it can
handle pivot failures very e�ciently� A powerful and completely separate symbolic
phase that generates the data
DAG DdagP is the key to the simplicity and e�ciency
of our multifrontal LU factorization algorithm�

	��� Experimental results� We now compare the unsymmetric LU factoriza

tion time of WSMP with that of two state
of
the
art multifrontal sparse direct solvers�
namely� MUMPS version ����� ��� �� and UMFPACK version ��� ���� A detailed
comparative study that includes more solvers can be found in ���� ���� The soft

wares compared in this section employ di�erent variants of the multifrontal algorithm�
MUMPS contains a symmetric
pattern multifrontal factorization code based on the
classical multifrontal algorithm ����� UMFPACK contains an unsymmetric
pattern
multifrontal code ��� ���� Apart from the factorization algorithm� there are other
di�erences among the three softwares that a�ect their performance� First� they use
di�erent schemes for �ll
reducing ordering� By default� WSMP uses a symmetric
permutation based on a nested
dissection ordering ���� computed on the structure of
A�A�� MUMPS uses a symmetric permutation based on the approximate minimum
degree 	AMD
 algorithm ��� applied to the structure of A � A�� UMFPACK uses a
column approximate minimum degree algorithm ��� to prepermute only the columns
of A and computes a row permutation based on numerical and sparsity criteria during
factorization� The second di�erence is the use of a maximal matching algorithm ���� to
permute the rows of the coe�cient matrix to maximize the product of the magnitudes
of its diagonal entries� As shown in ��� ���� this can a�ect factorization times because
it changes the amount of structural symmetry and the amount of numerical pivoting
during factorization� WSMP uses this preprocessing on all matrices� MUMPS uses it
only if the structural symmetry in the original matrix is less than ���� and UMF

PACK does not use it at all� The third di�erence is that WSMP and UMFPACK
reduce the coe�cient matrix into a block triangular form� while MUMPS does not�



�� ANSHUL GUPTA

MUMPS UMFPACK � WSMP �default� WSMP �AMD�
Matrix time ops time ops time ops time ops

�sec�� ���� �sec�� ���� �sec�� ���� �sec�� ����

af����� ���� ���� 	��	 ���	 ���� ���� ���� ����
av���	� ���� ���� ���� ���� ���� ��	� 
��� ��	�
bayer�� ���� ���� ���� ���� ��	� ���� ���� ����
bbmat ���� ���� ���� �
�� ���� ���� ���� ����
comp�c ���
 ���� ���� ��
� ���� ��

 ���� �
��
e��r���� ���� ��
� ���� ���� ���� ���	 ���	 ��	�
e��r���� ���� ��
� ��
� ���� ��	� ���� ���� ����
ecl�� ���
 ���� �	�� ���� ���� ���� �	�� ����
epb� ��
� ���
 ���� ���� ��
� ���� ��
� ���

�dap��� ��
� 
��� �
�� ���� ��
� ���
 ���� ��
�
�dapm�� ���� 	��
 ���� �	�	 
��� ���� ���� ���

invextr� ���	 ���� �
�� ���� ���� 
��� ���� ����
mil��� ���� ���� ��
� ���� ���
 ���� �	�
 ����
mixtank ���� ���� �	�� ���� ���� �	�� ���� ����
nasasrb ���� 	��� ���� ���� ���� ���� ���� ��
�
onetone� ���� ���	 ���� ���	 ���	 ���� ���� ����
onetone� ���
 ���� ��

 ��
� ���� ���� ���� ����
pre� fail fail fail fail ���� ���� ���� ��
�
raefsky� ���� ��	� ���� 
��� ���� ���� ���� ���

raefsky� ���� ���	 �
�� ���	 ���	 ���� ���� 
���
rma�� ���� ���	 	��	 ���	 ���� ���� ���	 ���

tib ���� ���� ���� ���	 ���� ���� ���� ����
twotone ���� �	�� ���� ���� ���� 
��	 ���� ��	

wang� ���� ���� ���� ���� ���
 ���� ���� ����
wang� ���� ���� ���
 ���� 	��� 
��� ���� 
�	�

Table ���

LU Factorization times and operation counts of MUMPS� UMFPACK �� and WSMP� The best
time is in boldface and the second best time is underlined�

Table ��� shows factorization times and operation counts of MUMPS� UMFPACK�
and WSMP� To mitigate the di�erences due to ordering� we also include WSMP fac

torization statistics with AMD ordering� which is used in MUMPS 	symmetrically on
rows and columns
 and UMFPACK 	on columns only
� The fastest factorization time
for each matrix is in boldface and the second fastest time is underlined� Although
di�erences other than the factorization algorithm itself a�ect the performance of these
codes� it is easy to see the broad picture that emerges from Table ���� Most of the
boldface entries are in the column for WSMP with default ordering and the remaining
ones are in the WSMP column with AMD ordering� All but �ve underlined entries
are also in one of the WSMP columns� For many matrices� the a�ect of the algorith

mic choices of the softwares is evident in the factorization statistics� MUMPS usually
requires more �oating
point operations for factorization than WSMP with AMD or

dering because it uses arti�cially symmetrized frontal matrices padded with zeros�
For the same reason� UMFPACK beats MUMPS for very unsymmetric matrices such
as onetone
 and twotone� however� it is a lot slower for matrices with more struc

tural symmetry� WSMP� with its default nested
dissection ordering� is usually the
fastest code because nested
dissection is more e�ective in reducing �ll
in than AMD�
WSMP with AMD ordering is usually the second fastest code in Table ���� primarily
because of its e�cient unsymmetric multifrontal algorithm� For some matrices such



UNSYMMETRIC SPARSE SYMBOLIC AND NUMERICAL FACTORIZATION ��

as �dapm�� and raefsky� with highly symmetric structures� its performance is hurt
by the row
prepermutation to maximize the product of the magnitude of the diagonal
entries� which tends to destroy structural symmetry and increase the operation count�


� Concluding remarks� This paper describes sparse unsymmetric symbolic
and numerical factorization algorithms that are both simpler and faster than pre

vious similar algorithms� Our symbolic factorization phase� in particular� is more
powerful than others described in the literature� It inexpensively computes minimal
elimination structures that are transitive reductions of the upper
 and lower
triangular
factors of the original coe�cient matrix� In addition� it computes near
minimal data

dependency DAGs for unsymmetric multifrontal factorization with and without piv

oting� A data
DAG that has only a slightly higher number of edges than a minimal
task
DAG and that is capable of expressing all possible data
dependencies in the
face of dynamic pivoting is a key feature of our symbolic phase� We show how this
data
DAG aids a simple but very high
performance implementation of unsymmetric
multifrontal LU factorization algorithm� The static nature of this data
DAG would
also be a boon for potential parallel implementations of unsymmetric multifrontal
factorization where changing the data
DAG dynamically could be cumbersome and
ine�cient�

REFERENCES

��� Patrick R� Amestoy and Iain S� Du�� Vectorization of a multiprocessor multifrontal code�
International Journal of Supercomputer Applications� �������� ��
��

�	� Patrick R� Amestoy� Iain S� Du�� Jacko Koster� and J� Y� L�Execellent� A fully asynchronous
multifrontal solver using distributed dynamic scheduling� SIAM Journal on Matrix Anal�
ysis and Applications� 	����������� 	����

��� Patrick R� Amestoy� Iain S� Du�� and J� Y� L�Execellent� Multifrontal parallel distributed
symmetric and unsymmetric solvers� Computational Methods in Applied Mechanical En�
gineering� �
�������	�� 	����

��� Patrick R� Amestoy� Iain S� Du�� J� Y� L�Execellent� and Xiaoye S� Li� Analysis� tuning� and
comparison of two general sparse solvers for distributed memory computers� Technical Re�
port RT�APO����	� ENSEEIHT�IRIT� Toulouse� France� 	���� Also available as Technical
Report ����	 from Lawrence Berkeley National Laboratory�

��� Cleve Ashcraft and Roger G� Grimes� The in�uence of relaxed supernode partitions on the
multifrontal method� ACM Transactions on Mathematical Software� ������	������� ��
��

��� Timothy A� Davis� UMFPACK software for unsymmetric multifrontal method� NA Digest�
������� March �
� 	���� http���www�cise�u��edu�research�sparse�umfpack�

�
� Timothy A� Davis� Patrick R� Amestoy� and Iain S� Du�� An approximate minimum degree
ordering algorithm� SIAM Journal on Matrix Analysis and Applications� �
����

������
�����

�
� Timothy A� Davis and Iain S� Du�� An unsymmetric�pattern multifrontal method for sparse LU
factorization� SIAM Journal on Matrix Analysis and Applications� �
����������
� January
���
�

��� Timothy A� Davis� John R� Gilbert� Stefan I� Larimore� and Esmond G��Y� Ng� A column
approximate minimum degree ordering algorithm� Technical Report TR�������� Computer
and Information Sciences Department� University of Florida� Gainesville� FL� 	����

���� James W� Demmel� Stanley C� Eisenstat� John R� Gilbert� Xiaoye S� Li� and Joseph W��H� Liu�
A supernodal approach to sparse partial pivoting� SIAM Journal on Matrix Analysis and
Applications� 	�����
	��
��� �����

���� Iain S� Du�� A� M� Erisman� and John K� Reid� Direct Methods for Sparse Matrices� Oxford
University Press� Oxford� UK� �����

��	� Iain S� Du� and Jacko Koster� On algorithms for permuting large entries to the diagonal of
a sparse matrix� Technical Report RAL�TR���������� Rutherford Appleton Laboratory�
April ��� �����

���� Iain S� Du� and John K� Reid� The multifrontal solution of unsymmetric sets of linear equations�
SIAM Journal on Scienti
c and Statistical Computing� ������������� ��
��



�� ANSHUL GUPTA

���� Stanley C� Eisenstat and Joseph W��H� Liu� Exploiting structural symmetry in unsymmet�
ric sparse symbolic factorization� SIAM Journal on Matrix Analysis and Applications�
������	�	�	��� ���	�

���� John R� Gilbert and Joseph W��H� Liu� Elimination structures for unsymmetric sparse LU
factors� SIAM Journal on Matrix Analysis and Applications� ���	��������	� �����

���� Anshul Gupta� Recent advances in direct methods for solving unsymmetric sparse
systems of linear euqations� Technical Report RC 		��� ��
����� IBM T� J�
Watson Research Center� Yorktown Heights� NY� April 	�� 	���� �Available at
ftp�cs�umn�edu�users�kumar�anshul�solver�compare�ps��

��
� Anshul Gupta� Fast and e�ective algorithms for graph partitioning and sparse matrix ordering�
IBM Journal of Research and Development� �����	���
���
�� January�March� ���
�

��
� Anshul Gupta� WSMP� Watson sparse matrix package �Part�II� direct solution of general
sparse systems�� Technical Report RC 	�


 ��
�
	�� IBM T� J� Watson Research Center�
Yorktown Heights� NY� November 	�� 	���� http���www�cs�umn�edu��agupta�wsmp�html�

���� Anshul Gupta� George Karypis� and Vipin Kumar� Highly scalable parallel algorithms for sparse
matrix factorization� IEEE Transactions on Parallel and Distributed Systems� 
������	�
�	�� May ���
�

�	�� Anshul Gupta and Yanto Muliadi� An experimental comparison of some direct sparse solver
packages� In Proceedings of International Parallel and Distributed Processing Symposium�
	����

�	�� Steven M� Had�eld� On the LU Factorization of Sequences of Identically Structured Sparse
Matrices within a Distributed Memory Environment� PhD thesis� University of Florida�
Gainsville� FL� �����

�		� Joseph W��H� Liu� The role of elimination trees in sparse factorization� SIAM Journal on
Matrix Analysis and Applications� ��������
	� �����

�	�� Joseph W��H� Liu� The multifrontal method for sparse matrix solution� Theory and practice�
SIAM Review� ���
	����� ���	�


