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Overlap Matching

Amihood Amir∗ Richard Cole† Ramesh Hariharan‡

Moshe Lewenstein∗ Ely Porat∗

Abstract

We propose a new paradigm for string matching, namely structural matching. In structural
matching, the text and pattern contents are not important. Rather, some areas in the text and
patterns are singled out, say intervals. A “match” is a text location where a specified relation
between the text and pattern areas is satisfied.

In particular we define the structural matching problem of Overlap (Parity) Matching. We
seek the text locations where all overlaps of the given pattern and text intervals have even
length. We show that this problem can be solved in time O(n log m), where the text length is
n and the pattern length is m.

As an application of overlap matching, we show how to reduce the String Matching with
Swaps problem to the overlap matching problem. The String Matching with Swaps problem is
the problem of string matching in the presence of local swaps. The best known deterministic
upper bound for this problem was O(nm1/3 log m logσ) for a general alphabet Σ, where σ =
min(m, |Σ|).

Our reduction provides a solution to the pattern matching with swaps problem in time
O(n log m log σ).

1 Introduction

The last few decades have prompted the evolution of pattern matching from a combinatorial solution
of the exact string matching problem [12, 16] to an area concerned with approximate matching of
various relationships motivated by computational molecular biology, computer vision, and complex
searches in digitized and distributed multimedia libraries [11, 7]. To this end, two new paradigms
were needed – “Generalized matching” and “Approximate matching”.

In generalized matching the input is still a text and pattern but the “matching” relation is defined
differently. The output is all locations in the text where the pattern “matches” under the new
definition of match. The different applications define the matching relation. Examples are string
matching with “don’t cares” [12], parameterized matching [8, 4], less-than matching [3], and
swapped matching [21, 2, 9]. Lower bound results on generalized matching can be found in [22].

Even under the appropriate matching relation there is still a distinction between exact matching and
approximate matching. In the latter case, a distance function is defined on the text. A text location
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is considered a match if the distance between it and the pattern, under the given distance function,
is within the tolerated bounds. Below are some examples that motivate approximate matching. In
computational biology one may be interested in finding a “close” mutation, in communications one
may want to adjust for transmission noise, in texts it may be desirable to allow common typing
errors. In multimedia one may want to adjust for lossy compressions, occlusions, scaling, affine
transformations or dimension loss.

The earliest and best known distance functions are Levenshtein’s edit distance [19] and the Hamming
distance. Let n be the text length and m the pattern length. Lowrance and Wagner [20, 24] proposed
an O(nm) dynamic programming algorithm for the extended edit distance problem. In [13, 17, 18]
O(kn) algorithms are given for the edit distance with only k allowed edit operations. Recently, Cole
and Hariharan [10] presented an O(nk4/m +n+m) algorithm for this problem. Amir, Lewenstein
and Porat [6] presented faster algorithms for the Hamming distance case.

Both above paradigms have an important trait in common – matching is dependent on the alphabet
symbols in the respective pattern and text locations. In this paper we propose a new paradigm –
Structural Matching. In this model, the content of the pattern and text is not important. What
is important is the structure of these strings. Certain areas in the text and pattern are identified
and a “match” of the pattern in the text is a location where these special areas satisfy a required
relation. Structural Matching is motivated by two reasons. The first one is an “end” and the second
one is a “means”.

In molecular biology, it has long been a practice to consider special areas by their structure.
Examples are repetitive genomic structures [14] such as tandem repeates, LINEs (Long Interspersed
Nuclear Sequences) and SINEs (Short Interspersed Nuclear Sequences) [15]. Many problems in
biology can be expressed as structural matching problems, thus streamlining and identifying the
combinatorial nature of the problem.

The second reason is a functional one. The rich repertoire of relations between areas in the text
and pattern can offer interesting tools for the solution of hitherto unresolved problems. In this
paper we demonstrate such a use of structural matching for providing the fastest known algorithm
for swap matching.

The Pattern Matching with Swaps problem (the Swap Matching problem, for short), defined by
Muthukrishnan [21], requires finding all occurrences of a pattern of length m in a text of length n.
The pattern is said to match the text at a given location i if adjacent pattern characters can be
swapped, if necessary, so as to make the pattern identical to the substring of the text starting at
location i. All the swaps are constrained to be disjoint, i.e., each character is involved in at most
one swap.

The importance of the swap matching problem lies in recent efforts to understand the complexity of
various generalized pattern matching problems. Until recently there were no known upper bounds
better than the naive O(nm) algorithm for the swap matching problem.

Amir et al [2] obtained the first non-trivial results on this problem. They showed that the case when
the size of the alphabet set Σ exceeds 2 can be reduced to the case when it is exactly 2 with a time
overhead of O(log2 σ). (The reduction overhead was reduced to O(log σ) in the journal version [1].)
They then showed how to solve the problem for alphabet sets of size 2 in time O(nm1/3 log m), which
is the best deterministic time bound known to date. Amir et al. [5] also give certain special cases for
which O(mpolylog(m)) time can be obtained. However, these cases are rather restrictive. In their
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TR [9] Cole and Hariharan provide a first step toward the current result by giving a randomized
algorithm that solves the swap matching problem over a binary alphabet in time O(n log n). We
note that the technical report is now subsumed by this result.

In this paper we define a structural matching problem – the Overlap (Parity) Matching Problem –
as follows.
INPUT: Text T of length n with marked intervals (substrings), and pattern P of length m with
marked intervals (substrings).
OUTPUT: The text locations � for which all overlaps of the marked intervals of T and marked
intervals of P have even-length overlap.

We present a deterministic algorithm that solves the overlap matching problem in time O(n log m).

We then reduce the swap matching problem over binary alphabet to the overlap parity problem.
Coupled with the alphabet reduction of [1] it gives an algorithm for swap matching over general
alphabet whose running time is O(n log m log σ).

There are three main contributions in this paper.

1. The introduction of a new model in pattern matching, that of structural matching.

2. An efficient solution of the overlap matching problem.

3. The surprising time complexity of O(n log m) for solving the swap matching problem over
binary alphabets. Until recently it was open whether the problem had a o(nm) solution.

Roadmap. In section 2 we give basic definitions. In sections 3, 4, 5 and 6 we solve the overlap
matching problem. In section 7 we define the swap matching problem. In section 8 we prove a key
lemma and show how to utilize this lemma in order to reduce swap matching to overlap matching.

2 Problem Definition

Consider a linear structure composed of contiguous units, called segments. Each segment has
an associated length. A segment can be either marked or unmarked. A structural string is a
concatenation of (marked and unmarked) segments. See fig. 1 for an example.

Overlap Matching is defined as follows:

Input: A structural string, P , which we will call the pattern, of length m units (i.e. the sum of
the segment lengths), and a structural string, T , which we call the text, of length n ≥ m units.

Output: All text locations k, where, when P is aligned to start at k, each pair of marked text
segment-marked pattern segment that overlap have even-length overlap.

Alternatively, we can replace the even-length overlap requirement with an odd-length overlap re-
quirement. Since this problem can be reduced to the even-length case without much difficulty, we
will only consider the even-length case.

Another way to visualize the pattern and the text is as regular strings partitioned into ”segments”
with several segments marked. Thus we can consider P to be p1p2...pm and T to be t1t2...tn, the
usual way of viewing a pattern and a text in string matching. However, it must be noted that
the Overlap Matching problem is a structural problem and not a character dependent problem,
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whereas, the usual problems in string matching are character dependent rather than structural.
Therefore, even though we use the standard string matching notation for P and T the individual
characters are irrelevant to the problem.

We note that our current problem derives from a character-based string matching application, and
as a result the unary encoding of lengths in our complexity measure is appropriate.

3 Algorithm Outline for Overlap Matching

At a given location the pattern matches when each overlap of marked segments is of even-length.
Restated, we have the following property:

Overlap parity property: P matches at location i of T iff, when P is aligned at location i, no
pair of (pattern, text) marked segments has odd-length overlap.

This allows us to consider pairs of marked segments separately. As soon as a pair is found with
odd-length overlap, it immediately leads to the conclusion that there is no match in that location.

The main idea of the algorithm is to separate the marked segments of the text and pattern into
a small number of groups. In each of these groups it will be possible to check for the overlap
parity property in time O(n log m) using polynomial multiplications (which can be done in time
O(n log m) using FFT in a model with word length m bits). In the following sections we handle
the different cases. Some of these cases necessitate new and creative uses of convolutions.

3.1 Grouping Text Segments by Parity of Starting and Ending Location

It will be important for us to know whether the marked segment we are dealing with starts at an odd
or even text location. We also would like to know whether it ends at an odd or even text location.
Consequently, we define new texts where each text has exactly those marked segments of a given
start and end parity, with all other text elements defined as φ (don’t care) and never contribute an
error. (In the polynomial multiplication there will always be a 0 in these text locations.)

Definition: T oo is a string of length n where for every location i, if ti is in a marked segment
whose first element is in an odd location and whose last element is in an odd location, T oo[i] = 1.
In all other locations j, T oo[j] = φ.

In a similar fashion define T oe, T eo, T ee.

Example:
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Figure 1: An example text.

T oo = φφ11111φφφφφφφ1111111φφφφφφφ
T ee = φφφφφφφφφ111φφφφφφφφφφφφφφφφ
T oe = φφφφφφφφφφφφφφφφφφφφφφ1111φφ
T eo = φφφφφφφφφφφφφφφφφφφφφφφφφφφφ.
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Note that the segments of T oo are exactly the marked segments of T that start and end at an
odd location. Thus, it is clear that in every location where none of the above four text strings
(T oo, T oe, T eo, T ee) violate the parity property there is a match.

3.2 Grouping the Pattern Segments

The pattern segments are defined in exactly the same way as the text segments and we would like
to group them in the same way. However, there is a difficulty here in “nailing down” the parity of a
location, since the pattern is shifted and compared to every text location. However, since the only
property we have used in our grouping was the parity of the text location, it is clear that in all the
pattern alignments that start in odd locations, the parity of the start and end segment locations
will be the same. Similarly, these parities will be the same for all pattern alignments that start in
even text locations.

Thus we limit ourselves to two cases. The Odd Result Case and the Even Result Case. The Odd
Result case is simply the pattern alignments starting in odd text locations. The Even Result case
is pattern alignments starting in even text locations.

When we fix an alignment result case it is possible to define the parity of the starting and
ending locations of each pattern segment. Thus we can get, for the odd result case, patterns
POoo, POoe, POeo and POee. Similarly, for the even result case we consider patterns PEoo, PEoe, PEeo

and PEee. We are now ready for the algorithm.

Algorithm

for X = O,E do:
for ti = o, e do

for tj = o, e do
for pi = o, e do

for pi = o, e do
check Odd Overlap property for T ti,tj and PXpi,pj

{ Note that when X = O we only consider the results in the odd text locations
and when X = E we only consider the results in the even text locations. }

In the subsequent sections we will show how to implement the check for odd-length overlap (the
forbidden property) for each of the cases in time O(n log m). The intrepid reader will realize that
there are 32 cases to consider. Don’t panic! Because of symmetry reasons, there are only three
cases we need to describe. All others are similar.

The cases we describe are the following. First fix the result parity to the Odd Result case. It is
clear that the the Even Result case is symmetric. Since we don’t need the X parameter in the
algorithm, we will henceforth ignore it for the sake of a simpler notation. We are now down to the
combinations T ti,tj and P pi,pj. This gives us 16 cases. We will handle separately only the following
three types of cases:

1. T ti,tj and P pi,pj where either ti = pi or tj = pj. (This type covers 12 cases.) These situations
are handled in section 4.

2. T ti,tj and P pi,pj where ti, tj = oe and pi, pj = eo; or where ti, tj = eo and pi, pj = oe. These

4



cases are handled in section 5.

3. T ti,tj and P pi,pj where ti, tj = oo and pi, pj = ee; or where ti, tj = ee and pi, pj = oo. These
cases are handled in section 6.

4 Segments with Equal Parity Start

Consider the case T ti,tj and P pi,pj where ti = pi.

Observation 1 : For every two segments, St in T ti,tj , starting at location x and Sp in P pi,pj,
starting at location y, |x − y| is always even. See all possibilities in figure 2 below.
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Figure 2: The cases of both text and pattern segments starting in locations with the same parity.

We are interested in the length of the segment overlaps (the shaded areas in figure 2). A segment
overlap has odd length iff the property of lemma 2 holds. We now show a convolution for which
the resulting value at location i is 0 iff there does not exists an odd-length segment overlap.

The Convolution: Construct a pattern P ′ = p′1 · · · p′m where

p′i =
{

0, if P pi,pj[i] = φ;
1, otherwise.

.

Construct a text T ′ = t′1 · · · t′n where every φ in T ti,tj is replaced by 0; and every segment in T ti,tj

is replaced by an alternating segment of 1 and −1, starting at 1.

It is clear that for all cases where the starting location of a pattern segment is smaller than the
starting location of a text segment the result of the convolution will be 1 if the length of the overlap
is odd and 0 if it is even (since every text segment starts with a 1 and then alternates between −1
and 1). Because of observation 1, even when the text segment starts at a smaller location than the
pattern segment, the difference between the starting locations has even length. Therefore in the
area of the overlap, the text starts with a 1 and alternates between −1 and 1. Thus the convolution
gives us the desired result.

This solves all eight cases of T ti,tj and P pi,pj where ti = pi. For the additional four cases where
tj = pj simply reverse the text and pattern and achieve the case considered above.

5 The Odd-Even Even-Odd Segments

Consider the case T oe and P eo (the case of T eo and P oe is symmetric).
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Terminology: Let St be a text segment whose starting location is s1 and whose ending location
is f1. Let Sp be a pattern segment being compared to the text at starting position s2 and ending
position f2. If s1 < s2 < f2 < f1 then we say that St contains Sp. If s2 < s1 < f1 < f2 then we
say that Sp contains St. If s1 < s2 < f1 < f2 then we say that St has a left overlap with Sp. If
s2 < s1 < f2 < f1 then we say that St has a right overlap with Sp. We will sometimes refer to a
left or right overlap as a side overlap.

Observation 2 : For every two segments, St in T oe and Sp in P eo if either Sp is contained in St

or St is contained in Sp then the overlap is of even length. If the overlap is a left overlap or right
overlap then it is of odd length. See all possibilities in figure 3 below.
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Figure 3: The cases where the text segment starts at an odd location and ends at an even location;
the pattern segment does the opposite.

The correctness of the observation is immediate. Segments of these types have even length thus if
one contains the other the overlap is necessarily of even length. Conversely, in case of a left or right
overlap then the overlap starting and ending locations have the same parity, making the length of
the overlap odd.

We will now show a convolution where segments that are contained in each other contribute a 0,
and side overlaps contribute positive numbers. This convolution will be more complex than the
previous one. The reason is that there is some inherent relation between text segments that start
within a pattern segment. Likewise, there is a commonality between text segments that end within
a pattern segment. Our problem is that we need to differentiate between cases that are naturally
easier handled together.

Consider the following case. Let St be a segment of T oe starting at text location s1 and having
length �t. Assume that the pattern P eo of length �p is aligned to start at the text location such
that the first symbol of segment Sp occurs at location s2. Further assume that one of the segments
is contained in the other. If we replace St by s11�t−2 − s1 and Sp by s21�p−2 − s2 (and φ by 0) then
multiplication of these two segments will yield k−2, where k is the size of the overlap. See figure 4.

l -21 l -22

S2   1 . . 1   1  1  . . . . . 1  1   1 . . . 1 -S2

S1  1  1  1  . . . 1  1 -S1

S2  1  1  1  . . . 1  1 -S2

S1  1  1 . . . 1  1  1 . . .  1  1  . . . 1  1 -S1

Multiplication: S +l -2-S =l -2                               S +l -2-S =l -21 1 1 22221

Figure 4: Containment cases for text T oe and pattern P oe.

Conversely, if there is a side overlap of St with Sp then the multiplication will yield max(s1, s2) −
min(s1, s2) + k − 2, where k is the size of the overlap. See figure 5.
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Multiplication: S +l -2-S                         S +l -2-S1 1

S1  1  1  1  . . . 1  1 -S1

S2  1 . . . 1   1  1  1 -S2 S2  1  1  1  . . . 1  1 -S2

S1  1 . . .  1  1  1  1 -S1

2 2

1l -2 2l -2

21

Figure 5: Edge intersection cases for text T oe and pattern P eo.

If we could solve the following two problems, we are done.

1. Remove the size of the overlap −2 from the result. (This will make the multiplication result
be 0 when all overlaps are containments.)

2. Be able to actually replace every segment by its starting point, 1’s and the negation of
its starting point. (This will make the multiplication result positive when there exist side
overlaps.) Being able to insert the starting point of the segment for the sake of multiplication
is not at all simple to do since the same segment has n − m different starting points!

However, if the above two problems could be solved by a convolution, then the result would be 0
iff all overlaps are containments iff all overlaps have even length (by observation 2).

In the Appendix, section 9.1, we show how to check both by using novel convolutions.

6 The Odd-Odd Even-Even Segments

Consider the case T oo and P ee (the case of T ee and P oo is symmetric).

Observation 3 : For every two segments, St in T oo and Sp in P ee if either Sp is contained in St

or St is contained in Sp then the overlap is of odd length. If the overlap is a left overlap or right
overlap then it is of even length. See all possibilities in figure 6 below.
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Figure 6: Every containment has odd length; every side overlap has even length.

The correctness of the observation is immediate. Segments of these types have odd lengths thus if
one contains the other the overlap is necessarily of odd length. Conversely, in case of a left or right
overlap then the overlap starting and ending locations have the opposite parity, making the length
of the overlap even.

Definition: Let T be a text with segments St1, . . . , Stx starting at locations s1, . . . , sx, respectively.
Let P be a pattern such that, when placed at location i0, its segments Sp1, . . . , Spy start at locations
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v1, . . . , vy. Let {si1 , . . . , siz} be the starting locations of text segments that have a left overlap with
pattern segments or that contain a pattern segments, and let {vj1 , . . . , vjz} be the starting location
of the corresponding pattern segments. Similarly let {sk1, . . . , skw} be the starting locations of
text segments that have a right overlap with pattern segments or that are contained in pattern
segments, and {v�1 , . . . , v�w} be the starting locations of the corresponding pattern segments.

The external overlap length of the pattern at location i0 is
y∑

r=1

(vir − sjr) +
z∑

r=1

(skr − v�r).

Note that unlike the external side length, containments also contribute to the external overlap
length. See figure 7 for an illustration.
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Figure 7: The sum of the shaded areas is the external overlap length:
(v1 − s1) + (v2 − s2) + (v3 − s4) + (s2 − v1) + (s3 − v2).

Note that (s3 − v2) + (v3 − s4) would not be counted in the external side length.

We need a method to indicate whether there exist any overlaps. We will show that the external
overlap length can be calculated by two convolutions. Since we know from section 5 how to compute
the external side length, it suffices to see the difference between these two values. If it is 0 then there
are no containments (and therefore no odd-length overlaps), otherwise there are containments.

The sum of the following two convolutions gives the external overlap length.

The External Contained and Right Length Convolution: Replace every segment of length � in the
pattern by 0123 · · · � − 1, and every segment of length � in the text by 10�−1. Replace every φ by
0. Multiply.

The resulting value at every location i0 is precisely the external length of the right overlaps and of
the text segments contained in pattern segment overlaps. Left overlaps and text containing pattern
give a 0. The next convolution computes precisely the remaining external lengths.

The External Containing and Left Length Convolution: Replace every segment of length � in the
text by 0123 · · · � − 1, and every segment of length � in the pattern by 10�−1. Replace every φ by
0. Multiply.

Adding the results of the above two convolutions gives the external overlap length.

Lemma 1 It is possible in time O(n log m) to provide, for every text location i, a value that is 0
if there are no containments either of text in pattern segments or of pattern in text segments, and
positive otherwise.

Proof: Subtract the external side length from the external overlap length. If there is a containment,
we will get a positive number, otherwise we get 0. ��
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7 Swap Matching

Definition: Let S = s1 . . . sn be a string over alphabet Σ. A swap permutation for S is a permu-
tation π : {1, . . . , n} → {1, . . . , n} such that

1. if π(i) = j then π(j) = i (characters are swapped).

2. for all i, π(i) ∈ {i − 1, i, i + 1} (only adjacent characters are swapped).

3. if π(i) �= i then sπ(i) �= si (identical characters are not swapped).

For a given string S = s1 . . . sn and swap permutation π for S we denote π(S) = sπ(1)sπ(2) . . . sπ(n).
We call π(S) a swapped version of S.

For pattern P = p1 . . . pm and text T = t1 . . . tn, we say that P swap matches at location i if
there exists a swapped version P ′ of P that matches T starting at location i, i.e. p′j = ti+j−1 for
j = 1, . . . ,m.

The Swap Matching Problem is the following:
INPUT: Pattern P = p1 . . . pm and text T = t1 . . . tn over alphabet Σ.
OUTPUT: All locations i where P swap matches T .

We note that the definition in [2] and the papers that followed is slightly different, allowing the
swaps in the text rather than the pattern. However, it follows from Lemma 1 in [2] that both
versions are of the same time complexity.

In general the alphabet Σ can be very large, however this can be reduced to swap matching over a
binary alphabet in O(log |Σ|) time. See Appendix, section 9.3.

8 Reducing Swap Matching to Overlap Matching

Following the reduction to a binary alphabet, we assume that the text and the pattern both have
only a’s and b’s. An alternating segment of a string S ∈ {a, b}∗ is a substring alternating between
as and bs. A maximal alternating segment, or segment for short, is an alternating segment such that
the character to the left of the leftmost character x in the alternating segment, if any, is identical
to x, and similarly, the character to the right of the rightmost character y, if any, is identical to y.

We now show the key property necessary to reduce swap matching to overlap matching. To this
end we partition the text and pattern into segments.

Lemma 2 The pattern does not match in a particular alignment if and only if there exists a
segment A in the text and a segment B in the pattern such that (1) the characters of A and B
misalign in the overlap and (2) the overlap is of odd-length.

Proof. In appendix, section 9.2.

Following Lemma 2, we would like to check each location whether there are overlapping segments
with properties (1) and (2). To this end we will separate the segments of the text and pattern into
two groups each, similar to what we did in the algorithm for the overlap matching.
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We create these groups in such a way that the characters always misalign (property (1)) in the
comparison of group vs. group. Moreover, the comparisons cover all possible misalignments of
overlapping segments. Therefore, the necessary comparison is to check that the length of the
overlap is odd (property (2)). We now describe the grouping.

8.1 Odd a and Even a Text Segments

The first two categories of text segments we consider are the Even a segments, where all the a’s
fall on even text locations, and the Odd a segments, where all the a’s fall on odd text locations.
We construct two new text (structural) strings, Todd−a and Teven−a, each of them having length n.
Todd−a is a text whose marked segments are all the odd a segments of T in their exact locations.
The text locations where there are even a segments are marked segments. Similarly, Teven−a is
the (structural) text string whose marked segments are all the even a segments of T in their exact
locations and the other segments are unmarked. In fact Teven−a and Todd−a complement each
other in the sense that they are exactly the same strings where each marked segment in one is the
unmarked in the other.

Example: Let T = ababbbaaabababbaababbaaabababa.
The segments are: abab b ba a ababab ba abab ba a abababa
The odd a segments are the first, third, fifth, seventh, and ninth. Thus
Todd−a = marked length 4, unmarked length 1, marked length 2, unmarked length 1, marked length
6, unmarked length 2, marked length 4, unmarked length 2, marked length 1, unmarked length 7.

8.2 Odd a and Even a Pattern Segments

The pattern segments are defined in exactly the same way as the text segments and we would like
to group them in the same way. However, as in the overlap matching, the problem is to “nail down”
the parity of a location, since the pattern is shifted and compared to every text location. However,
since the only property we have used in our grouping was the parity of the text location, it is clear
that in all the pattern alignments that start in odd locations, the parity of the a occurrences will
be the same. Similarly, these parities will be the same for all pattern alignments that start in even
text locations. Thus, we define Podd−a and Peven−a in the same way we defined Todd−a and Teven−a.
The following lemma shows how to utilize the reduction to overlap matching and follows directly
from the discussion.

Lemma 3 P swap matches at an odd location, 2i + 1, of T iff Podd−a overlap matches Teven−a at
location 2i + 1 and Peven−a overlap matches Todd−a at location 2i + 1.
P swap matches at an even location, 2i, of T iff Podd−a overlap matches Todd−a at location 2i and
Peven−a overlap matches Teven−a at location 2i.

Therefore, for swap matching we can state the following.

Theorem 1 Swap Matching can be solved in O(n log m log σ) for a general alphabet Σ, where
σ = min(m, |Σ|).

10
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9 Appendix

9.1 Completing the Odd-Even Even-Odd Segments Case

Solution 1. The first problem can be easily solved. The convolution below provides, for every text
location i, the sum

∑
j(kj − 2), where kj are all the overlap lengths. All that is necessary, then, is

to subtract the result of this convolution from the value obtained for each text location.

The Overlap Length Convolution: Replace every segment of length � in both text and pattern by
01�−20. Replace all φ’s by 0’s. Multiply.

Solution 2. The starting locations of all text segments are known in advance and thus the
substitution of the segment by s11�t−2 − s1 can be done in linear time for the entire text. The
pattern segment is problematic since it has n − m different alignments. Therefore, we treat the
pattern segments as if they all start relative to location 1.

The Zero Containment Convolution: Replace every segment of length �t starting in location s1 of
the text by s11�t−2 − s1. Replace every segment of length �p starting at location sp1 of the pattern
by sp11�p−2 − sp1. Replace all φ’s by 0’s. Multiply.

The problem is that now the result of the multiplication of side overlaps (after subtraction of the
overlap length convolution) may sometimes be positive and sometimes be negative. This may cause
the zero containment convolution result to be a 0 even for overlaps that are not contained, i.e. of
odd length. We will then not be able to distinguish between them and the cases of all overlaps
being containments.

We now show how to adjust the zero containment convolution to give the desired result. The zero
containment convolution (after subtracting the result of the overlap length convolution) causes all
contained segments to give the result 0. Thus in location i0 we get the value

∑
�∈A

sp� −
∑
k∈B

spk +
∑
i∈C

si −
∑
j∈D

sj ,

where A is the the set of pattern segments that have text segments overlapping them from the left,
B is the the set of pattern segments that have text segments overlapping them from the right, C
is the set of text segments that have right overlap with pattern segments and D is the set of text
segments that have left overlap with pattern segments.

The problem is that the result we really want is
∑
�∈A

s� −
∑
k∈B

sk +
∑
i∈C

si −
∑
j∈D

sj.
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In other words, we want the starting positions of the aligned pattern segments, rather than their
starting positions relative to location 1. However, note that for location i0, sx = i0 + spx. This
means that the value we want in location i0 is

∑
�∈A

(sp� + i0) −
∑
k∈B

(spk + i0) +
∑
i∈C

si −
∑
j∈D

sj

This equals ∑
�∈A

sp� −
∑
k∈B

spk +
∑
i∈C

si −
∑
j∈D

sj +
∑
�∈A

i0 −
∑
k∈B

i0.

We conclude that the desired value will be obtained if we add to the result of the zero containment
convolution at every location i0 the value

∑
�∈A i0 −

∑
k∈B i0. These values can be obtained by the

following convolution.

The Shifting Convolution: Replace every pattern segment of length �p by 10�p−2 − 1 and every text
segment of length �t by 01�t−20. Replace every φ by 0. Multiply.

It is easy to see that the result of this convolution in location i0 is
∑

�∈A i0 − ∑
k∈B i0.

Definition: Let T be a text with segments St1, . . . , Stx starting at locations s1, . . . , sx, respectively.
Let P be a pattern such that, when placed at location i0, its segments Sp1, . . . , Spy start at locations
v1, . . . , vy. Let {si1 , . . . , siz} be the starting locations of text segments that have a left overlap
with pattern segments, and let {vj1 , . . . , vjz} be the starting location of the corresponding pattern
segments. Similarly let {sk1 , . . . , skw} be the starting locations of text segments that have a right
overlap with pattern segments, and {v�1 , . . . , v�w} be the starting locations of the corresponding
pattern segments.

The external side length of the pattern at location i0 is
y∑

r=1

(vir − sjr) +
z∑

r=1

(skr − v�r).

Note that containments do not contribute to the external side length. See figure 8 for an illustration.
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Figure 8: The sum of the shaded areas is the external side length:
(v1 − s1) + (v2 − s2) + (v3 − s4) + (s2 − v1).

Note that we are not counting external lengths of containments.

Lemma 4 It is possible in time O(n log m) to provide, for every text location i, a value that is 0
if all overlaps of the pattern and text segments are containments, and positive otherwise.

Proof: Add the results of the shifting convolution and the zero containment convolution and
subtract from it the result of the overlap length convolution. We get the external side length which
is 0 if all overlaps are containments and positive, otherwise. ��
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9.2 Proof of Lemma 2

Proof. First, we show the if part. For any overlap of segments that is of even length the overlapping
portions of A and B can be made identical by swapping, if necessary. Note that these swaps stay
within the overlapping portion so other segments are not affected. If the overlap is odd and the
overlapping portions match exactly then nothing needs to be done. So clearly, if the pattern does
not match it must be the case that there exists a segment A in the text and a segment B in the
pattern that overlap with odd-length overlap and with misaligning characters in the overlap.

Consider the only if part now. Suppose A and B overlap such that the overlap is of odd length and,
without loss of generality, the overlap has u = (ab)∗a in the text and v = (ba)∗b in the pattern.
Then, for a match to occur, either the leftmost b in v must be swapped with the character to the
left or the rightmost b in v must be swapped with the character to the right.

Clearly, the portion of B overlapping A cannot be a prefix of B for the above swap to be effective
(the character preceding B, if any, is a b). It follows that the portion of B overlapping A must be
a prefix of A. Once again the above swap is ineffective (the character preceding A is an a). Thus
it follows that the pattern does not match at this alignment. ��

9.3 Reducing Large Alphabets to Binary Alphabets

In [2] it was shown how to reduce the swap matching problem over unbounded alphabets to the
problem over a two letter alphabet with an O(log2 |Σ|) multiplicative overhead. Here we outline
a reduction requiring only an O(log |Σ|) factor detailed in [1]. Another unpublished O(log |Σ|)
reduction appears in [9].

Definition: A (Σ, 3)-universal set is a set S = {χ1, . . . , χk} of characteristic functions, χj : Σ →
{0, 1} such that for every a, b, c ∈ Σ, and for each of the eight possible combinations of 0−1s, there
exists χj such that χj(a), χj(b), χj(c) equals this combination.

We extend the definition of the functions χj to strings in the usual manner, i.e. for S = s1 . . . sn,
χj(S) = χj(s1)χj(s2) . . . χj(sn).

Theorem 2 [2] Let P be a pattern, T a text, both over an arbitrary alphabet Σ, and let S =
{χ1, . . . , χk} be a (Σ, 3)-universal set. P swap matches T at location i iff for all j, χj(P ) swap
matches χj(T ) at location i.

In [23] it was shown how to construct a (Σ, 3)-universal set of cardinality k = O(log |Σ|) yielding
the following.

Corollary 1 A solution of the Swap Matching problem over alphabet {a, b} of time O(f(n,m))
implies a solution of time O(log |Σ|f(n,m)) over a general alphabet Σ.
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