
RC 22166 (W0105-017) May 23, 2001
Mathematics

IBM Research Report

A Column Generation Approach for Combinatorial Auctions

Brenda L. Dietrich, John J. Forrest
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A column generation approach for combinatorial
auctions

Brenda Dietrich, John J Forrest
Mathematical Sciences Department
IBM T. J Watson Research Center

Yorktown Height, NY

Abstract
A column generation approach is used to determining the set of winning bids in a
combinatorial auction for multiple, unique items. This approach is appropriate for
auctions in which an individual agent places bids on multiple combinations, and will
accept, subject to some restrictions, one or more of the specified combinations.
Preliminary computational results appear promising.

Introduction

Auctions have been used in the sale of items for many years. Auctions provide a means
of making scare items available to a large audience, and of ensuring that the seller
receives the maximum revenue for the items. Many forms of auctions exist, including
open-cry auctions, silent auctions, ascending bid auctions and descending bid auctions.
With the advent of the Internet and other forms of electronic communications, auctions
are becoming increasingly common.

Most auctions are for single items, or for multiple copies of the same item. Auctions for
related items are often held simultaneously. There are numerous instances where the
value to a buyer (or, in our terminology, an agent) of a set of items may not equal the sum
of the value (to that agent) of the individual items. In some cases the value of a collection
of items, such as an airline ticket, a hotel room, and theater tickets, may be higher than
the sum of the value of the individual items. In this case the items (airline ticket, hotel,
theater tickets) are said to complement one another. In other cases the sum of the values
of the individual items, such as theater tickets and concert tickets for the same time and
date, may be higher than the value of the combination. In this case the items are said to
substitute for one another. Therefore an agent, attempting to obtain a collection of items,
or to obtain one collection from a set of specified collections, through participation in
several single item auctions is faced with a dilemma. She may bid on all the items in her
desired collection, and obtain some, but not all, of the items in that collection. Even if the
total amount she bids does not exceed her value for the collection, she may end up paying
more for the items she receives than she values that subset of the collection. Similarly, if
she bids for items that substitute for one another, such as the theater tickets and concert
tickets, she may end up with both items, at a cost greater than her value for the pair, even
if the amount she bids for each item does not exceed her value for that item.

1

Combinatorial auctions, in which an agent can bid for combinations of items, are
beginning to be used. Unfortunately, whereas determining the winner of a single item
auction is trivial, even when the auction is held over the Internet with thousands of
participating agents, determining the winner of a combinatorial auction, even a relatively
small combinatorial auction, is far more difficult. For n items, there are 2n

� 1 possible
combinations. Of course, it is not expected that bids will be placed on every possible
combination. However, the problem of finding from among a large set of bids, each for a
different combination of items, the set of bids that includes each item at most once is
known to be computationally difficult. That is, it is a member of a collection of problems
called NP-complete, which means that there are no known computational methods that
are guaranteed to solve the problem in a number of computations that is bounded by a
polynomial in the size of the input data. In practice, exact solution methods for NP
complete problems typically require computation resources that grow very rapidly with
the problem size, rendering them impractical for all but the smallest instance of the
problem. Rothkopf [MR] provides an excellent survey of combinatorial auctions,
including a discussion of particular forms of auctions that can be efficiently solved

For combinatorial auctions, where bidding is typically either continuous or in rounds, and
each agent requires information about whether each of his bids is “currently” a winning
bid, the set of winning bids must be computed quickly, and re-computed as new bids are
added or the value bids are increased. We propose a column generation approach for
determining the set of winning bids for combinatorial auctions. Our method allows for
the use of certain forms of side constraints, and allows for rapid calculation of minimum
bid values and the determination of tie solutions. Our formulation also allows for rapid
updates as new bids are submitted, and provides a natural means for fast calculation of
approximate feasible solutions rapidly. Preliminary computational experience is
promising.

Our column generation approach supports two forms of combinatorial bidding, arbitrary
conjunctions (ands) and a limited set of disjunctions (ors). Research in the area of
combinatorial bid representation remains active. Nisan provides a lucid discussion of bid
representations in [NN]. We illustrate our column generation approach with a
representation chosen specifically to allow an agent to limit his total liability while
placing bids on an arbitrary number of arbitrary combinations. Alternate representations
can be accommodated by appropriately modifying the column generation procedure.

Each agent is allowed to place an arbitrary number of bids. Each bid can contain any
combination of items. A bid consists of the following data elements: agent id, bid value,
and items included in the bid. Each player can also specify a set of bid types, and can
assign one or more type to each of his bids. Preference for combinations of items is
expressed by placing the items in the same bid. Substitution of bids (that is, the desire to
have one, but not both, or a pair of bids) is expressed by assigning the bids different
types. A winning combination of bids will satisfy the following properties:
(A) each item is included in only one winning bid.
(B) all of the winning bids belonging to each agent must be included in a single type.

2

Furthermore, among all combinations of bids satisfying these two constraints, the
winning combination must maximize total revenue, given as the sum of the values of the
winning bids.

To understand property (B), note that we allow a bid to be assigned to more than one
type. If a player has a bid b1 that is assigned to type t1, a bid b2 that is assigned to t1 and
to t2, and a bid b3 that is assigned to t2, then a winning combination can include b1 and
b2, because they both belong to type t1. A winning combination could also include b2
and b3, because they both belong to type t2. The pair b2 and b3 cannot appear in any
winning combination because there is no type that includes both of these bids.

Standard combinatorial auctions as described in Rothkpopf’s paper correspond to the
case where each player assigns all of his bids the same type. Exclusive-or auctions,
where each player is allowed to win only one combination, correspond to the case where
each player assigns each bid a unique type.

We note that this specification can easily be converted to the case where each bid is
assigned to only one type, through the use of duplicate bids. In the example above, bid b2
would be submitted twice by the player, once assigned type t1 and once assigned type t2.
Allowing multiple types to be assigned to a bid allows for a smaller optimization
problem, and may allow for more compact user interfaces.

We first present an obvious integer programming formulation of the winning bid
selection program. This formulation is an extension, incorporating the type constraint, of
the formulation given by Rothkopf.

Formulation
Let I denote the set of items, P denote the set of agents, and B denote the set of bids.
For each Bk � let ISk � denote the set of items in the bid, 0�kv denote the value of
the bid, and Pkp �)(denote the agent. We let T denote the set of types, and for each
agent Pp� and each type Tt � we let tpB , denote the set of bids of type t made by
agent p . Note that, as remarked above, for a pair of types 'tt � , and an agent p the sets

tpB , and ',tpB need not be disjoint (that is, a bid made by an agent can be of more than
one type), but that for a pair of agents pp �' the sets of bids submitted by the agents,

tpB , and ',' tpB are disjoint. That is, each bid is associated with one or more types, but with
only one agent. We note that because of the type constraint, it is not possible to filter the
bids so as to include, for each set of items, only a single bid or a single agent.

To designate whether a bid Bk � is included in the winning combination of bids, we use
decision variables kx , each of which must take either the value 0 (indicating that the bid
is not in the winning combination) or the value 1 (indicating that the bid is in the winning
combination). We also introduce additional 0-1 variables to indicate which type is

3

selected for each agent. For each Pp� and Tt � we let tyy , be 1 if the selected bids of
agent p are from type t , and 0 otherwise.

The set of winning bids can be determined by solving the following integer program:

 �
�Bj

jj xvMax

Subject to 1��
� jSi

jx for all Ii� (1)

 1, ��
�Tt

tpy for all Pp� (2)

 0
,

, �� �
� tpBj

tpj yx for all Jj � (3)

 �� 1,0�jx for all Jj � (4)
 � �1,0, �tpy for all TtPp �� , (5)

Constraint (1) says that each item is in at most one winning bid. If it is required that each
item be in exactly one winning bid (that is, that all of the items be sold) then the
inequality should be changed to an equality. In this case, if there is an item for which no
bids are submitted, the integer program may be infeasible. To prevent infeasibility and to
also represent a minimum value for each item, one can include a dummy bid for each
individual item, with the value being the reserve value for that item. Constraint (2) says
that at most one type is selected for each agent, and constraint (3) says that if a bid is
selected, then for that agent a type that includes that bid has also been selected.
Constraints (4) and (5) enforce integrality on the decision variables. If each agent uses
only one type of bids, then the y variables for that agent are not required and constraints
(2), (3) and (5) are deleted. Similarly, if for agent p each type includes at most one bid
and each bid has a unique type, then the y variables for agent p are not required. We
use pB to designate the bids from agent p , delete constraint (3) for agent p and replace
constraint (2) for agent p by the following, simpler constraint:

 1��
� pBj

jx (2’)

In the case where each bid is assigned to one type, there will be a single y variable in
constraint (3).

The integer program (1)- (5) is easy to formulate from the auction data. Any integer
programming solver, such as OSL or CPLEX can be used to solve problems of this form.
However, the computation time and the amount of computer memory required to solve

4

even moderate sized auctions with this formulation may be excessive, as the number of
items or bids increases.

We use a column generation formulation that, for small to moderate sized problems,
appears to require remarkably little computation time and computer memory to solve the
problem. We expect that these computational advantages will carry over to some larger
problems, where it may not be necessary to specify the full optimization problem in order
to find the winning combination. Furthermore, this approach permits a wide variety of
side constraints on permissible combinations of bids form any one agent.

Rather than consider each bid individually, and use a number of constraints to indicate
which combinations of bids can be selected simultaneously, we generate, for each agent,
the combinations of that agent’s bids that can be simultaneously accepted. We call such
combinations proposals, because each represents a “proposed” set of bids to be awarded
to the agent. Requirement (A) says that the bids belonging to a proposal can have no
items in common. Requirement (B) says that the bids belonging to a proposal must all be
included in a single type.

Various methods can be used to generate the set of proposals. If tpB , contains only a few
bids, an enumeration and elimination process is very fast. For each Pp� and Tt � ,
enumerate all subsets of tpB , . From this collection of sets of bids, eliminate all sets C
such that there exists Cjj �', with ��� 'jj SS . Denote the collection of remaining sets
of bid by tp,� . When tpB , contains many bids the following algorithm can be used to
construct tp,� . We may assume that the bids in tpB , are labeled .,...,3,2,1 n . For each

positive integer nk ,...,3,2,1� let k
tp,� denote the collection of subsets of },...,3,2,1{ k such

that for each ���Cjj ', , ��� 'jj SS . Note that }}1{,{1
, ��� tp is trivial to construct,

and note that the set }..}{{ 1
,

1
,, ����������

��

kC
k

tp
k

tp
k

tp SSandCtskC can be

constructed from 1
,
�

�
k

tp by copying 1
,
�

�
k

tp and determining whether the bid k can be

added to each element of 1
,
�

�
k

tp .

For each tpC ,�� we use CS to denote the set of items in the bids in proposal C , that is,

kCkC SS
�

�� . The amount that player p would pay for the proposal C is denoted Cw
and is equal to the sum of the value of the bids in C , given by �

�

�

Cj
jC vw . Once the sets

tp,� are computed, the winning combination of bids can be determined by selecting at
most one proposal for each agent, while requiring that each item is in at most one
selected combination.

We let tptp ,���� be the proposals for agent p and we let pp���� be the set of
all proposals. For each ��C we use a 0-1 decision variables Cz which indicates

5

whether the proposal is selected (1) or not (0). We include constraints that allow only
one proposal to be selected from each agent. However, since the type restrictions are
satisfied by all of the generated proposals, we do not need to include constraints to
enforce this restriction. Although each proposal is generated so that each item is
contained in at most one bid in that proposal, proposals from different agents may include
the same items. Therefore we require a constraint that ensures that the winning
combination of proposals includes each item at most once. We let CS be the set of items
in the bids in proposal C , that is, kCkC SS

�
�� .

The set of winning bids can be determined by solving the following integer program:

 �
��C

CC zwMax

Subject to 1��
�� pC

Cz for all Pp� (6)

 1
,

��
��� CSiC

Cz for all Ii� (7)

 � �1,0�Cz for all ��C (8)

Constraint (6) says that at most one proposal from each agent is in the winning
combination. Constraint (7) says that each item is in at most one selected proposal. If
each item must be sold, then the inequality in (7) should be changed to an equality.
Potential infeasibility is addressed as in the previous formulation, by including a dummy
agent and a dummy proposal for each individual item. Constraints (8) enforces integrality
on the decision variables. Although this formulation may potentially have far more
decision variables than the original formulation, our computational experience with this
new formulation indicates that for moderate size problems it can be solved with minimal
computational effort. This faster computation time may be due in part to the fact that all
of the constraints have the same structure (sum of a set of variables is less than or equal
to 1), and that the variables partition naturally in to sets of variables associated with each
player. This partition, into so-called “special ordered sets,” can be taken advantage of in
commercial integer programming software.

Once a winning combination ��Q has been determined, we can extend this
formulation to check to see whether another solution with equal revenue exists by adding
a constraint to the model to prevent the proposals in Q from all being selected
simultaneously.

 1���
�

Qz
QC

C (9)

In the case of duplicate proposals of differing types, we augment the set

6

Q to form }'.{' '' QCsomeforwwandSStsCQQ CCCC ������� by adding
proposals that have the same underlying sets and values, and replace Q by 'Q in
constraint (9). If the objective function value of this augmented integer program is the
same as the objective function value of the original integer program, then we have a tie
solution. Otherwise the winning solution is unique. Alternatively, we can use the “find all
optimal solutions” function of OSL to find all optimal integer solutions to the original
problem.

For any bid that is not in the winning solution, we can determine surrogate value for the bid by
solving an integer program in which the bid is forced in to the winning solution. Let b be the bid
in question, and let p be the agent placing the bid. To formulate this integer program IP(b), we
restrict p� to proposals containing the bid b , and we change the special ordered set inequality
for agent p to equality. We also eliminate all other proposals from all other agents that contain
any of the licenses in the bid b . The surrogate value for the bid b is the optimal value of the
original IP, minus the optimal value of IP(b). The resulting IPs have far fewer constraints than the
original IP and solve relatively quickly; however there are a large number of them. The reason for
the fast solution time is, at least in part, attributable to the fact that the number of non-integer
elements in a solution is bounded by the number of constraints. The solution to one IP may
provide a lower bound on the solution of other IPs, but beyond this obvious connection we have
not found a way to speed the solution of this collection of problems.

Our limited computational experience to date is based on sample data obtained from the
FCC to test a solver for their upcoming auction 31. The FCC provided seven data sets,
four of which appeared designed to test specific features of the solver, and two of which
appeared to represent realistic bidding. We used the largest data set to synthesize
additional data, by increasing the number of agents and items, and by increasing the
density of items per bid.

Problem id #agents #items # types Avg # bid
/player/type

Bid value
Deviation

Easy1 27 12 1 8 0.199
Easy2 28 12 2 9.27 0.455
Easy4 29 12 4 7.86 0.599
Easy10 29 12 10 4.55 0.626
Easy16 29 12 16 3.12 0.622
Base1 16 12 1 9.81 0.146
Base2 18 12 2 8.28 0.181
/6/0/0.5 24 12 2 7.17 0.188
/12/0/0.5 30 12 2 6.37 0.196
/18/0/1.0 36 12 2 5.64 0.199
/6/0/1.0 24 12 2 7.9 0.199
/12/0/1.0 30 12 2 7.97 0.189
/18/0/1.0 36 12 2 8.03 0.178
/18/16/1.0 36 16 2 8.03 0.483
/18/24/1.0 36 20 2 8.03 0.487

7

For these problems we generated all valid proposals. Surprisingly, the LP relaxation of
the IP formulation yielded integer solutions in all instances. The column labeled LP solve
time indicates the total CPU time to set up and solve the IP on a 500Mhz Intel-based
laptop computer using Version 3.0 of OSL. For each losing bid, we also solved the LP
obtained by forcing that bid into the solution. The number of these surrogate problems
ranged from 7 to 266 for the different data sets. A very large percentage of the surrogate
problems also yielded integer solutions to the LP relaxation, and those for which the LP
solution was fractional typically required remarkably few branch and bound nodes to
reach the optimal integer solution.

Problem
id

proposals LP cpu sec Surrogate
value
problems

Avg cpu
Per
surrogate

% non
int

Easy1 36722 1.5 205 1.58 0
Easy2 49777 2.4 235 1.83 0
Easy4 57799 2.8 169 1.95 0
Easy10 60003 2.7 36 2.19 0
Easy16 60004 2.1 7 3.29 0
Base1 23845 1 152 1.04 18.42
Base2 29116 1.4 135 1.60 33.33
/6/0/0.5 19531 1.2 156 1.21 39.1
/12/0/0.5 13761 0.9 178 0.85 35.97
/18/0/1.0 13640 0.9 185 0.81 29.19
/6/0/1.0 30485 1.9 180 1.79 32.11
/12/0/1.0 33324 1.9 226 2.26 20.35
/18/0/1.0 38570 2.3 266 2.62 26.69
/18/16/1.0 38570 3 260 2.04 0
/18/24/1.0 38570 3.2 260 2.59 13.46

These small problems were surprisingly easy to solve. Additional examination of these
and other data sets is required to understand whether the ease of solution is a result of the
proposal–based formulation, or due to some other aspect of the problem.

Larger problems
For larger auctions, we propose a column generation approach in which only a subset of
the feasible proposals are considered. The bids are used to generate an initial set of
proposals. This initial set of proposals should, if possible include at least one proposal for
each agent and at least one proposal for each item. In general, the initial set of proposals
should include proposals that are of high value, relative to their contents. If information
about the relative value of each item is available, this can be used to select combinations.
Otherwise, one can make various estimates for the value of an item based on the value
and number of items of each bid that contains the item. For each item Ii� let in be the

8

number of bids that contain i . If 0�in , then there are no bids that contain the item and
clearly its value can be estimated to be 0. Otherwise one can estimate the value of i ,
denoted i� , by averaging the value per item ratio of the bids that contain i :

 �
��

�

kSiBk k

k

i
i S

v
n ,

1
�

Using such an estimate for the value of each item, and defining the “excess” value of a
bid to be the value of the bid minus the sum of the estimated value of the items in the bid,
we compute “excess values” of a bid as �

�

��

kSi ikk vv �
~ . Using these values, together

with a greedy algorithm, one can quickly compute an initial set of proposals that have
high “excess” value. Various methods can be used to ensure that there is at least one
proposal for each item (that has a bid) and at least one proposal for each agent or agent-
type combination. If each item must be sold, then for each item select the bid containing
that item that has highest excess value, and add the proposal consisting of only that bid to
the set � of proposals. If at least one proposal from each player must be considered, then
for each player (or for each player, type combination) we generate the proposal consisting
of the bid from that agent (or agent-type combination) with the highest excess value and
add that proposal to � . To generate additional high value proposals, consider only the
bids with positive excess cost. For each agent p and each type t , sort the positive excess
value bids in tpB , in order of decreasing excess cost,)(),...,2(),1(nlll . Generate the
proposal)}1({lC � and add it to the set of proposals. For each bid nk ,...,3,2� such that

���)(klC SS , set)}({ klCC �� and add the proposal C to the set � . If additional
bids are required, a randomized greedy strategy, in which the bids are considered in other
orders, or in which eligible bids are added to the proposal according to some probability
distribution, can be used.

Once a sufficient number of proposals have been generated, the IP corresponding to these
proposals are constructed. We solve only the linear programming relaxation of this IP,
and retrieve the dual variables associated with each constraint. For an item i , we can use
the dual variable i� of the corresponding constraint (7) as an estimate of the value of the
item. Using these new estimates, we can again compute the “excess” value of bids. We
use the dual variables p� associated with the agent constraints as a threshold for the
acceptance of a new proposal. A proposal C for agent p can increase the objective
function value of the linear programming relaxation of the integer program if and only if

p
Si

iC
C

w �� ���
�

 . (10)

Expanding Cw according to its definition, we can rewrite this condition in terms of the
“excess” value of the bids.

p
Ck Ck

k
Si

ik
Si

iC vvw
kC

��� ����� � ���
� ���

~)(. (11)

9

Intuitively, since we can select only one proposal per agent, and a large dual variable
p� would indicate that there are many “good” proposals for that agent already being

considered, we should give preference to agents for whom the dual variable p� is small.
 Determining whether for a given agent p and type t such a proposal exists is equivalent
to determining whether there is a disjoint collection of bids in the set tpB , that has total
excess value greater than p� . Since the sets tpB , will typically contain a fairly small
number of bids, and can be expected to involve only a small set of the items in the
auction, the existence of such a collection can be, if necessary, verified by complete
enumeration of the bids having excess value greater than }0,{ pMin � . Various efficient
search strategies can also be used. In many cases, if such a collection exists it can be
quickly found by applying a greedy algorithm.

If a new proposal C is found, it may also be desirable to generate additional proposals
that “complete” C , especially if some, or all of the items must be sold. Clearly, since
only one proposal per agent can be selected, the additional proposals to “complete” C
should be for agents other than the agent p associated with C . Various strategies can be
used to generate these additional proposals. A simple strategy would be to increase the
excess value of bids from agents other than p that do not contain any items in CS , and
then apply the usual proposal generation strategy. Additionally, computational experience
with column generation methods for other large problems has taught us that it is often
helpful to add randomly generated columns (in this case, proposals) to the restricted
problem. Computational experiments, preferably with real auction data, are required to
determine the most promising strategies.

If no proposal that satisfies (11) exists, then the current set of columns is used to
formulate the integer program and the solution process continues as in the case of
complete proposal enumeration. If proposals satisfying (10) are found, then the
corresponding columns are added to problem, the LP is solved, and the column
generation process continues.

If all possible proposals are generated, then the approach is guaranteed to find the
mathematically proven optimal solution. If only a subset of the possible columns are
generated, linear programming duality theory proves that the linear programming
relaxation of the integer program is solved to optimality. However, the fact that there are
no additional columns that can improve the linear programming objective function does
not imply that there are no additional columns that can improve the integer programming
objective function value.

In many cases, such as in the early rounds of an auction, it may be sufficient to provide a
near optimal solution. In later rounds, branch-and-price method can be used to identify
additional columns in the course of searching for an integer solution. However, since we
need to determine the existence of tie solutions, and surrogate values for bids not in a
winning combination, we suggest the following approach, which uses information about

10

the solution to restricted IPs (containing only a subset of the columns) to either identify
additional columns, or to prove optimality of the solution to one of the restricted IPs..

Once a our column generation procedure stops with a set of optimal (LP) columns and an
integer solution has been found for this set of columns, we add constraint (9), which was
used to detect the presence of a tie solution, to the LP and resolve. Adding this constraint
cuts off the optimal solution to the restricted IP. It may or may not cut off the optimal
solution to the LP. If it does cut of the optimal solution to the LP, then the column
generation process, applied to this new IP may identify additional columns. It is also
possible, that no new columns are found, but the LP objective is decreased enough to
prove optimality of the IP solution. Finally, it is also possible that adding this constraint
changes the LP optimal solution, but does not aid in either identifying new proposals or
in proving optimality of the current solution.

For each losing bid b , we determine a feasible integer solution that selects the bid. For
the agent p placing the bid, we consider only proposals containing bid b , while for other
agents, we consider only proposals that do not intersect with bid b . We use the set of
known proposals to formulate the IP, solve its LP relaxation, and apply column
generation, with the restriction that any proposals for agent p must contain bid b , while
any proposals for other agents must not intersect with bid b . These problems can all be
solved in parallel. If solution time is critical, especially in the early rounds of an auction,
it may not be essential to solve each of the problems to optimality. We add all proposals
generated in this manner to the original IP and resolve. Then for each losing bid
associated with this new solution, we compute an estimate of the surrogate cost as the
value of the (new) IP minus the largest value among the feasible solutions that select the
bid.

References
Nisan, N., “Bidding and Allocation in Combinatorial Auctions,” presented at the 1999
Conference “Northwestern's Summer Workshop in Microeconomics.”

Rothkopf, M., “Computationally Manageable Combinatorial Auctions,” Management
Science, 44, 1998, 1131-1147.

Tsukiyama, Ide, Ariyoshi and Shirakawa in “A New Algorithm for Generating all the
Maximal Independent Sets,” Siam Journal on Computing, 6, 1977, 505-517.

11

