
RC 22275 (Log# W0112-022) (12/05/2001)
Computer Science/Mathematics

IBM Research Report

Scalable Web Request Routing with MPLS

A. Acharya, A. Shaikh, D. Verma

IBM Research Division
Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

R. Tewari

IBM Research Division
Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publica-
tion. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright
to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and
specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article
(e.g., payment of royalties). Some reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home. Copies
may be requested from IBM T.J. Watson Research Center, 16-220, P.O. Box 218, Yorktown Heights, NY 10598 or send
email to reports@us.ibm.com.

IBM
Research Division
Almaden · Austin · Beijing · Delhi · Haifa · T.J. Watson · Tokyo · Zurich



This page intentionally left blank.



Scalable Web Request Routing with MPLS

Arup Acharya, Anees Shaikh, Renu Tewari, Dinesh Verma

IBM T.J. Watson Research Center
Hawthorne, NY 10532

Abstract

High-volume Web server and cache installations achieve scalability and reliability by using a front-end dis-
patcher to route incoming client requests among a cluster of server machines. Dispatchers typically operate at
layer-4, using transport-layer information (e.g., IP address/port), or at layer-7 using application-layer informa-
tion (e.g., HTTP headers), to direct clients to the appropriate server. Layer-7 dispatchers, while more flexible
than layer-4 approaches, suffer from limitations on scalability and performance since they must perform TCP
connection termination and management for a large number of clients. In this article we describe an approach
that, when combined with an intelligent client-side proxy, can implement a dispatcher using commercial, high-
performance, off-the-shelf switching hardware, while also providing the flexibility of a content-aware router.
We leverage the growing migration of networks to Multiprotocol Label Switching (MPLS) in order to provide
more flexible routing, but rather than using labels to express routing and forwarding policies, our scheme
maps application-layer information onto labels to enable high-performance Web request routing. Unlike con-
ventional schemes, our technique assigns some of the dispatch function to an MPLS-aware client-side proxy
that applies the appropriate label for a given connection. This approach removes the main bottleneck from the
system (i.e. TCP connection termination at the dispatcher), and lends itself to realization in a standard MPLS
switch, thus obviating the need for costly, specialized layer-7 Web switch hardware while providing the same
functions at a much improved price-to-performance ratio.

Introduction

Current high-volume, high-availability, Internet data centers use clusters of Web servers or caches to achieve

scalability and reliability. To serve a large and diverse client population, content can be replicated across servers,

or partitioned with a dedicated server for particular content or clients. In such environments a front-end dispatcher

(or router) directs incoming client requests to one of the physical server machines, as shown in Figure 1. The

physical servers often share one or more virtual IP addresses so that any server can respond to client requests.

In other scenarios, the servers have only private addresses, so the dispatcher accepts all connections destined for

the site virtual address. The request-routing decision can be based on a number of criteria, including server load,

client request, or client identity.

Dispatchers (also called “Web switches” or “content switches”) are typically required to perform several

functions related to the routing decision:

• monitor server load and distribute incoming requests to balance the load across servers

• examine client requests to determine which server is appropriate to handle the request

• identify the client to maintain session affinity with a particular server for e-business applications



dispatcher

server cluster

clients

Figure 1: A server-side dispatcher directs incoming client Web requests to one of the physical servers in the
cluster.

In addition, most commercial dispatchers provide functions important in a production data center environ-

ment. These include:

• failover to a hot standby to improve availability

• detection and avoidance of many common denial-of-service attacks

• SSL acceleration to improve the performance of secure applications

• simplified configuration and management (e.g., Web browser-based configuration interface)

A variety of networking equipment and software vendors offer dispatcher products, including Cisco Sys-

tems [1, 2], Nortel Networks [3], IBM [4], Intel [5], Foundry Networks [6], and F5 Networks [7].

Web Dispatcher Technology

Dispatchers may be broadly categorized into two types: layer-4 dispatchers which base decisions on information

in the TCP and IP headers alone, and layer-7 dispatchers which use application layer information (e.g., HTTP

headers) to direct client requests. Request-routing may be done primarily in hardware, completely in software,

or with a hardware switch combined with control software. For example, several of the vendors mentioned above

offer dedicated hardware solutions consisting of multiple fast microprocessors, several Fast Ethernet and Gigabit

Ethernet ports, and plenty of memory and storage. Others offer software-only solutions that can be installed on a

variety of standard platforms.

In this article we begin with an overview of layer-4 and layer-7 dispatcher technology. We focus in particular

on scalability issues in layer-7 dispatchers, and describe various techniques that have been proposed to solve

them. The second part of the article describes a new approach to implement Web switches that overcomes many

of the scalability problems of dedicated layer-7 dispatchers.

2



Layer-4 dispatchers

The use of layer-4 or layer-7 dispatchers depends on the request-routing goal. Load-balancing across replicated

content servers, for example, typically does not require knowledge about the client request or identity, and thus

is well-suited to a layer-4 approach. Simple session affinity based on client IP address, or directing requests to

servers based on application (e.g., port 80 traffic vs. port 110 traffic) is also easily accomplished by examining

layer-3/4 headers of packets while in transit through the dispatcher. For example, the dispatcher may peek

at the TCP header flags to determine when a SYN packet arrives from a client indicating a new connection

establishment. Then, once a SYN is identified, the source and destination port numbers and IP addresses may

be used to direct the request to the right server. This decision is recorded in a table so that subsequent packets

arriving with the same header fields are directed to the same server.

Layer-4 dispatchers, due to their relative simplicity, are often implemented as specialized hardware since they

need not perform any layer-4 protocol processing or maintain much per-connection state. Although traffic from

the clients must be routed via the dispatcher, the response traffic from the server, which accounts for the bulk of

the data in HTTP transactions, can bypass the dispatcher, flowing directly back to the client. This is typically

done by configuring each server to respond to traffic destined for the virtual IP address(es), using IP aliasing, for

example.

Although layer-4 dispatchers are usually deployed as front-end appliances, an alternative is to allow back-end

servers to perform load-balancing themselves by redirecting connections to relatively underloaded machines [8].

However, even without such an optimization, hardware-based layer-4 dispatchers are able to achieve very high

scalability and performance.

Layer-7 dispatchers

Request-routing based on the URL (or other application-layer information), on the other hand, requires the dis-

patcher to terminate the incoming TCP connection and receive enough information to make a routing decision.

In the case of Web traffic, for example, the dispatcher must accept the incoming TCP connection and then wait

for the client to send an HTTP request in order to view application-layer information such as the requested URL,

or HTTP cookie. Once enough information to make a routing decision is received, the dispatcher can create a

new connection to the appropriate server and forward the client request. The server response is then passed back

to the client via the dispatcher on the client’s original connection. Figure 2 outlines these steps.

In the simplest realization, a layer-7 dispatcher may be implemented as a software application-level gateway

that transparently accepts incoming client connections (destined for port 80 to the server virtual IP address)

and reads the HTTP GET requests. After deciding which server should handle the request, the application can

forward it on a new or pre-established connection to the server. The dispatcher serves as a bridge between the

two connections, copying data from one to the other. From a networking point of view, the dispatcher behaves

much like a forward Web proxy installed at an enterprise site, though the forward proxy’s primary function

lies primarily in filtering and content caching, rather than request routing. In this approach, the dispatcher can

quickly become a bottleneck, since it must perform connection termination and management for a large number

of clients [9, 10]. This limits the overall scalability of the data center in the number of clients it can support

3



establish TCP conn.
GET /index.html

establish TCP conn.

(a) (b)

GET /index.html

HTTP response

(c) (d)

Figure 2: The dispatcher accepts the TCP connection transparently) from the client (a). Next, in (b) the client
sends aGETrequest on the established connection, prompting the dispatcher to open a new TCP connection
to the appropriate server. In (c) the dispatcher forwards the client request to the server, and, in (d), returns the
response to the client.

simultaneously.

Improvements to layer-7 request routing scalability

Several techniques have been proposed to improve the performance and scalability of application-level gateways

used in various contexts, including as HTTP proxies. TCP connection splicing is one such optimization in which

packets are forwarded from one connection to the other at the network layer, avoiding traversal of the transport

layer and the user-kernel protection boundary [11, 12, 10]. TCP splicing mechanisms are usually implemented

as kernel-level modifications to the operating system protocol stack with an interface to allow applications to

initiate the splice operation between two connections. Once the TCP splice is completed, data is relayed from

one connection to the other without further intervention by the application. Figure 3(a) depicts the operation of

TCP splicing. With splicing, care must be taken to ensure that TCP header fields such as sequence numbers,

checksums, and options, are correctly relayed. TCP splicing has been shown to improve the performance of

application-layer gateways to the level of software IP routers. Variations to the kernel-based implementation

include implementation in the kernel socket library (as opposed to the network layer) [13] and in a hardware

switch [14].

Though TCP splicing can improve the scalability of a layer-7 dispatcher it is still limited by the fact that a cen-

tralized node must terminate incoming connections, examine application-layer information, and make request-

routing decisions before initiating a splice. In addition, all traffic to and from the servers must pass through

the dispatcher to allow the header translation to occur. To address these limitations, an alternate scheme using

connection handoff was proposed [15, 9]. In this approach, each back-end server can function as a dispatcher, ef-

fectively distributing the content inspection and request-routing operations to multiple nodes. Client connections

are initially routed to any one of the servers, perhaps using a fast hardware switch. If the initial server decides

that another server is better suited to handle the request, it transfers the TCP connection state to the alternate

4



HTTP response

client conn.

server A

server B
splice

server conn. HTTP response

client conn.

server A

server B

handoff

server conn.

(a) (b)

Figure 3: With TCP splicing (a), the dispatcher splices the two connections after determining that server B should
handle the request. The response must be sent back through the dispatcher. In the TCP handoff approach (b),
the dispatcher, a simpler layer-4 device, initially forwards the connection request to server A. After receiving the
request, server A hands off the connection state to server B. The response traffic can then flow directly back to
the client, bypassing the dispatcher. Client acknowledgements, however, still come through the dispatcher, and
must be forwarded to the server B.

server. Using the transferred state, the new server can resume the connection with the client without requiring

that data pass through a front-end dispatcher. Figure 3(b) shows the operation of TCP connection handoff.

While the connection handoff approach does remove the bottleneck of connection termination at a single

front-end, its scalability and performance are ultimately limited by the number and overhead of TCP handoff

operations. Furthermore, it still requires a special front-end layer-4 dispatcher, since incoming packets (e.g., TCP

acknowledgements) must be forwarded to the appropriate server after the connection is handed off. Finally, TCP

handoff requires kernel modifications to the server operating systems to support handoff. The splicing approach,

on the other hand, is transparent to both servers and clients.

As Web application requirements evolve, there will be a need for more sophisticated dispatching, based on a

variety of application information. This trend implies that the layer-4 approach of examining only transport-layer

headers provides insufficient functionality. But layer-7 dispatchers, while more sophisticated, suffer from the

limitations on scalability and performance described above.

Ideally, a dispatcher should provide the flexibility of layer-7 forwarding, while maintaining performance

levels comparable with layer-4 hardware switches. In the remainder of this article we describe an approach

that, when combined with an intelligent client-side proxy, can implement a dispatcher using commercial, high-

performance, off-the-shelf switching hardware, while also providing the flexibility of a layer-7 dispatcher.

MPLS-based Solution Overview

In our proposed solution, we leverage the growing migration of networks to Multiprotocol Label Switching

(MPLS) to provide flexible routing and the ability to perform network traffic engineering [16, 17]. MPLS pro-

vides a circuit-switching service in a hop-by-hop routed network [18]. It achieves this by grouping related packets

by assigning them a common, fixed-size label. Packets sharing a label belong to the same forwarding equiva-

lence class (FEC) and can be routed and treated the same way in the network. Standard usage of MPLS involves

establishment of arbitrary label-switched paths (LSPs) for forwarding particular classes of traffic. LSPs may also

be nested by stacking MPLS labels where an outer label might be used to assign traffic to a common network-

wide path, while an inner label could be used to demultiplex traffic among classes of traffic on that path. An

5



forward
proxy

MPLS
switch

servers

LSR

LSP

control connection

MPLS-enabled network

Figure 4: The MPLS-based Web switching architecture consists of an MPLS-enabled client-side proxy, an MPLS
network, and an MPLS switch acting as a dispatcher at the server cluster. The dashed line shows a connection re-
quest created by a client, terminated and examined by the proxy, and switched through the network and dispatcher
directly to the appropriate server.

MPLS label (routing)

MPLS label (content)

IP header

TCP header

HTTP header
Web content

MAC header

Figure 5: With an Ethernet link layer, an MPLS label stack resides between the MAC layer header and the
packet’s IP header. The remainder of the packet (TCP and HTTP headers) remains unchanged.

MPLS-enabled network consists of label-switched routers (LSRs) that implement the MPLS protocols. Several

major network service providers recently announced deployments of MPLS, and most core network router ven-

dors support MPLS in their products [19]. In addition, next generation optical networks are likely to use MPLS

in the control plane [20].

Figure 5 illustrates the structure of packets containing MPLS labels. In an Ethernet link layer, the labels are

inserted between the layer 2 MAC header and the layer 3 IP header. Other link layer technologies use different

labeling mechanisms. For example, in ATM the labels are placed in the VPI/VCI fields in each cell.

An attractive feature of MPLS is that labels do not have a built-in semantic, as with transport-layer port

numbers or network-layer addresses. That is, labels are used only to map a packet from an LSR input port to an

output port. Our scheme takes advantage of this flexibility by mapping application-layer information onto labels

to enable high-performance Web switching, rather than using labels to express routing and forwarding policies

(as is customary). Figure 4 shows the overall architecture, which consists of an MPLS-enabled client proxy, an

MPLS network, and a server cluster fronted by a dispatcher which consists of a software controller and a standard

MPLS switch.

The proxy is responsible for mapping labels onto packets belonging to client connections. The label applied

6



IP pkt IP pkt LA IP pkt LA LR IP pkt LA IP pkt

ingress
LSR

egress
LSR

forward
proxyclient

MPLS
switch

servers

MPLS-enabled network

LR

Figure 6: MPLS label stacking allows the use of a application-layer label (LA) that is visible only to the endpoints
along with a separate label (LR) for routing in the core network.

by the proxy is used at the dispatcher to choose which server should handle the request. The label stacking

feature of MPLS allows this inner label to be independent of any outer labels used to route the request through

the network. As shown in Figure 6, for example, the client sends its request to the Web proxy as a standard

IP packet. When the MPLS-aware proxy makes a corresponding connection to the server cluster, it pushes an

appropriate label (LA) onto the label stack. As packets enter the network, the ingress LSR pushes another label

(LR) onto the label stack to facilitate routing through the MPLS network. This routing label is popped off at

the egress LSR leaving onlyLA for the dispatcher. Finally, based onLA, the dispatcher routes the packet to the

corresponding server using IP routing. If the server network (including the servers) is also MPLS-enabled, the

dispatcher need not route the packet using IP; it can simply switch the packet all the way to the server.

The mapping of client connections to labels is communicated by the dispatcher to the proxy using a persistent

control connection. Depending on the mapping, the dispatcher can support a variety of functions without having

to terminate TCP connections:

• content-based routing

• client-server affinity

• client-specific service differentiation

• server load balancing

The approach has several key advantages over competing solutions that use a front-end Web switch. First, it

removes the main bottleneck from the system, namely the single point where all TCP connections are terminated

and application-layer information is examined. Second, it lends itself to realization in a standard off-the-shelf

MPLS switch, thus obviating the need for specialized, layer-7 dispatcher hardware. Finally, using this approach,

many of the functions typically available only with layer-7 Web switches, are provided at a much improved

price-to-performance ratio.

Unlike conventional schemes, this technique assigns some of the dispatch function to the proxy, since the

proxy must apply the correct label for a given connection. This requires that the proxy is MPLS-aware and that

it implements the protocol to receive mapping information from the dispatcher. Below we describe briefly how

this protocol could be implemented, along with a discussion of how each of the four functions mentioned above

may be realized in this architecture.

7



Label distribution to proxies

We assume that the dispatcher maintains persistent connections with each of the MPLS-enabled proxies accessing

the server (e.g., using HTTP). The proxy initiates the communication by first contacting a well known server ad-

dress for label distribution (label.server.com )or a well known port on the server (www.server.com:8090 ).

This control connection is kept-alive and the commands from the dispatcher to the proxy are sent as User exten-

sions to the HTTP header.

The dispatcher can distribute labels that are shared across proxies, or send each proxy a unique label set. If

labels are shared, it is difficult to identify requestors in order to determine which clients are contributing the most

traffic to the site, or to provide service differentiation. On the other hand, if the number of participating proxies

is very large, providing non-overlapping labels results in inflation of the label mapping table at the dispatcher.

Hence, we adopt a hybrid approach that assigns unique labels to proxies that require service differentiation and

common labels to other proxies.

The dispatcher directs the proxy to insert labels according to some policy, depending on the functionality

required. In the following sections we describe some details of the information communicated to the proxy to

facilitate the request-routing functions.

Content-based routing

Content-based routing is useful when content is partitioned across the server cluster such that only a subset of

servers can respond to a given request. In this case the proxy assigns a label based on the client request. The

dispatcher can provide the request-to-label mappings in a number of ways, depending on how much flexibility is

required.

One mechanism is to distribute the labels along with a hash function to the proxy. The proxy can apply the

hash function to the URL being requested to determine which label to use. In practice it may be sufficient to

divide content among servers in a coarser fashion. For example if content is partitioned based on directory paths,

the dispatcher could send (path, label) pairs such as<(/, L1),(/pc,L2),(/linux, L3)> to the proxy.

Another possibility is to serve Web pages with hyperlinks that encode labels based on the URL. For example

the first request forhttp://www.example.com/index.html could be served from any Web server, using

a default label. But the links on theindex.html page could be transformed into a form likehttp://www.

example.com/<image_content_label>/image.gif . The forward proxy, on seeing such a URL,

could strip the label from the URL and insert it in the request packets. The dispatcher then switches the request

to the appropriate server.

Client affinity

In e-business applications a single transaction may consist of multiple requests and responses before the trans-

action is completed. Once a client is directed to a particular server where some session state is established, it is

desirable to direct the client to the same server for the duration of the transaction. In this case, the label attached

by the proxy is used to identify which server earlier serviced the client for the ongoing session.

8



To handle persistence, the proxy assigns the same label (from a set of labels provided by the dispatcher) to

a given client for the duration of a session. In this case a client will always use the same label and be directed

to the same server. One problem is that the proxy has to be able to identify the start and end of a session. One

simple approach is to use a fixed timeout value (e.g., corresponding to SSL session timeout). However, this

does not guarantee that ongoing sessions will not be prematurely transferred to another server. We also consider

other approaches, such as designating specific URLs as indications of the beginning and end of a transaction.

The proxy could then assign labels based on whether client affinity is active or not. Still another way is to use

cookies. The server sets a “session-on” cookie when a particular URL is accessed. As long as the cookie is

set, the proxy checks for cookies in the HTTP header and labels it as an ongoing session. If the cookie is reset

or absent the proxy assigns labels without regard for affinity. This requires that the proxy be informed of the

“session-on” cookie by the label distributor.

Service differentiation

It may be desirable to provide different classes of service to clients based on service level agreements or other

administrative arrangements. The dispatcher can provide different label sets for the different classes of service.

The proxy then assigns labels to clients based on the type of service they require. For example, the dispatcher

could provide the proxy with three labels corresponding to gold, silver, and bronze service. At the dispatcher,

requests can be dispatched to servers based on the service class, with gold-labeled packets switched to the best

performing server, for example. Label stacking can also be used to identify the organization and then class within

the organization to provide hierarchical classes of service.

Load balancing

For load balancing the proxy assigns labels to client requests such that the load across all the servers is approxi-

mately equal, assuming that each request can be serviced by more than one (or all) servers. The dispatcher sends

a list of labels to the proxy, along with an associated weight for each label and a selection policy. For example the

dispatcher could send a tuple<{(L1, w1), (L2, w2), . . .}, WRR> listing labels and their corresponding weights

to be used in a weighted round robin fashion. This scheme will achieve coarse-grained (i.e., not per-connection)

load balancing, but temporary load imbalances may arise from the random nature of the requests.

If a load imbalance occurs, the dispatcher can send the proxy a new set of weights for the label assignment

such that incoming connections are shifted away from a heavily loaded server until the load is back within limits.

In the case when a server becomes unavailable, sending a weight of zero for the corresponding label(s) implicitly

removes the server from operation. During the transition, however, the proxy may initiate new connections

labeled for the unavailable server. To prevent these new connections from failing, the original label can be

remapped at the server side by modifying the switching table in the MPLS dispatcher.

It is worth noting that providing client affinity and load balancing together requires some additional consid-

eration. If the dispatcher wishes to correct a load imbalance with a new set of labels, the proxy must continue to

use the old label set for all ongoing sessions. Only when they complete can the proxy transition to use the new

label set. In the interim new client sessions may be initiated using the new labels.

9



DNS-based MPLS L-4 dispatcher L-7 dispatcher
load-balancing
granularity

per name resolution
request (subject to
caching)

per-connection at
proxy

per-connection at
dispatcher

per-connection
at dispatcher

location of
request-routing
decision

authoritative
nameserver

split between proxy
and dispatcher

server side server side

scalability limits number of name
resolutions

layer-2 switching
operations and
number of
participating
proxies

layer-4 switching
operations

TCP connection
terminations and
layer-7 switching
operations

deployment modified
nameservers and
possibly modified
content

MPLS-enabled
proxies

layer-4 dispatcher
in front of server
cluster

layer-7 dispatcher
in front of server
cluster

Table 1: Comparision of approaches for request-routing in server clusters.

Request routing trade-offs

In Table 1 we summarize some trade-offs between the MPLS request-routing approach and layer-4 and layer-7

dispatchers for several criteria. Load balancing granularity refers to how quickly incoming connections can be

shifted away from overloaded servers in the cluster. The request routing decision location is which entity in the

system decides which server will handle a request. The scalability limits column lists which functions ultimately

limit the ability to handle a growing number of client requests. Finally deployment refers to network elements that

must be modified to support each approach. We also include in the table a comparison with DNS-based request

routing. Though DNS is primarily used for wide-area request routing, it can also be used for load balancing

within a server cluster, for example using round-robin DNS.

Deployment Issues

As with any proposal involving changes to established network infrastructure, there are several deployment issues

that arise. Below we comment on some of these.

Proxy participation scenarios

As discussed earlier, our scheme relies on two primary assumptions:

• wide deployment of MPLS in service provider networks

• proxies at the edges of the network will be modified to implement MPLS and support the protocol to
communicate with dispatchers in server installations.

The first assumption reflects our belief regarding MPLS acceptance and deployment, and is supported by

reports from some large ISPs and equipment vendors [16, 17, 19]. The second assumption is appropriate in

10



settings where proxies and Internet data centers are under a single administrative control. For example many

ISPs also offer Web hosting service. In these cases, it is in the interest of the service provider to deploy such

proxies because they contribute to improving the capacity of the provider’s installations. Service providers are

already able to provide MPLS-based VPN and firewall services as an alternative to enterprises installing these

proxies on their premises [21, 22].

Scalability is still a concern if we assume that every forward proxy accessing a web site participates in this

scheme. Instead, we expect that in many cases a relatively small set of proxies contributes the bulk of the traffic

to a site, and it is feasible to modify only those proxies. Another scenario that justifies proxy participation is one

in which the Web hosting provider wants to provide service level agreements to particular clients. In this case the

hosting provider requires proxy participation from those clients as part of the agreement.

Interim solutions

The benefits of MPLS-based request-routing can be fully realized only after the conditions described above are

satisfied. Our proposed scheme can, however, be decoupled from MPLS by viewing it simply as a way to encode

application layer information in lower-layer network headers. In the case of MPLS, we map layer-7 information

onto layer-2 labels. Instead, we could encode layer-7 information about the connection onto the transport layer

or network layer in port numbers or IP addresses, respectively. For instance, rather than distributing labels to

the proxy, the dispatcher can distribute port numbers along with corresponding URL paths to achieve content

routing. At the server-side, a network address translation (NAT) device or layer-4 dispatcher could examine

the port number in the incoming TCP header and direct the packet to the appropriate server without having to

terminate the connection.

This alternative approach is attractive in that it does not immediately require MPLS-enabled forward proxies.

Moreover, Web proxy software can be configured to rewrite port numbers in Web requests, though proxies would

still need to be modified to support the protocol to communicate with the dispatcher. This scheme overloads

the port number semantics, however, which may cause additional complications. For example, the dispatcher

cannot re-map port numbers independently of servers, since servers must be listening on those ports to respond

to requests. Also, if the dispatcher re-maps the port number, the return path must go through the dispatcher if the

target server was not listening on the original port.

Summary

In this article, we surveyed the state-of-the art in Web switch technology, identifying the primary issues that limit

scalability for sophisticated layer-7 dispatchers. We proposed a novel architecture to improve the Web request-

routing capacity of server and cache clusters. We capitalize on the growing deployment of MPLS by mapping

application-layer information onto layer-2 labels to facilitate sophisticated request-routing functions without the

bottleneck of TCP connection termination. We require client-side proxies to participate by applying appropriate

labels to client requests, and can use off-the-shelf MPLS switches to perform the dispatching. This approach

allows the dispatcher to perform key functions including content-based routing, server load-balancing, client

affinity, and service differentiation, at hardware switching speeds.

11



References

[1] “Cisco LocalDirector 400 series,”http://www.cisco.com/warp/public/cc/pd/cxsr/400/ .

[2] “Cisco CSS 1100,”http://www.cisco.com/warp/public/cc/pd/si/11000/ .

[3] “Alteon ACEdirector,”http://www.nortelnetworks.com/products/01/acedir .

[4] “Websphere edge server,”http://www.ibm.com/software/webservers/edgeserver/ .

[5] “Intel NetStructure 7175 traffic director,”http://www.intel.com/network/idc/products/
director_7175.htm .

[6] “Foundry ServerIron,” http://www.foundrynet.com/products/webswitches/
serveriron .

[7] “BIG-IP controller,” http://www.f5.com/f5products/bigip/ .

[8] Azer Bestavros, Mark Crovella, Jun Liu, and David Martin, “Distributed packet rewriting and its application
to scalable server architectures,” inProceedings of IEEE International Conference on Network Protocols,
Austin, TX, October 1998.

[9] Mohit Aron, Darren Sanders, Peter Druschel, and Willy Zwaenepoel, “Scalable content-aware request
distribution in cluster-based network servers,” inProc. of USENIX Annual Technical Conference (USENIX
2000), San Diego, CA, June 2000.

[10] Ariel Cohen, Sampath Ragarajan, and Hamilton Slye, “On the performance of TCP splicing for URL-
aware redirection,” inProc. of Symposium on Internet Technologies and Systems (USITS ’99), Boulder,
CO, October 1999.

[11] David Maltz and Pravin Bhagwat, “TCP splicing for application layer proxy performance,” Tech. Rep. RC
21139, IBM TJ Watson Research Center, 1998.

[12] Oliver Spatscheck, Jorgen S. Hansen, John H. Hartman, and Larry L. Peterson, “Optimizing TCP forwarder
performance,”IEEE/ACM Transactions on Networking, vol. 8, no. 2, pp. 146–157, April 2000.

[13] Marcel Rosu and Daniela Rosu, “Evaluation of TCP splice benefits in Web proxy servers,” Tech. Rep. RC
22159, IBM Research Report, August 2001.

[14] George Apostolopoulos, David Aubespin, Vinod Peris, Prashant Pradhan, and Debanjan Saha, “Design,
implementation and performance of a content-based switch,” inProceedings of IEEE INFOCOM, March
2000.

[15] Vivek S. Pai, Mohit Aron, Gaurav Banga, Michael Svendsen, Peter Druschel, Willy Zwaenepoel, and
Erich M. Nahum, “Locality-aware request distribution in cluster-based network servers,” inProc. of Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS VII), October 1998.

[16] Denise Pappalardo, “UUNET’s massive MPLS deployment underway,”Network World Fusion, July 1999,
http://www.nwfusion.com/news/1999/0721mpl.html .

[17] David Rohde, “MPLS finds its way deeper into access services,”Network World Fusion, February 2001,
http://www.nwfusion.com/edge/columnists/2001/0212edge1.html .

[18] Eric C. Rosen, Arun Viswanathan, and Ross Callon, “Multiprotocol label switching architecture,” Internet
Request for Comments (RFC 3031), January 2001.

[19] The MPLS Resource Center, “MPLS Vendor Information,”http://mplsrc.com/vendor.shtml ,
2001.

12



[20] Peter Ashwood-Smith et al., “Generalized MPLS – signaling functional description,” Internet Draft (work
in progress), March 2001.

[21] Teleglobe, “Teleglobe partners with innovatia to offer managed cpe router program,” Corporate news re-
lease, November 2001,http://www.teleglobe.com .

[22] CoSine Communications, “MPLS VPNs,”http://www.cosinecom.com/solutions/mpls_
vpns.html .

13


