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Abstract

Precedence-inclusion patterns, a generalization of constituent structure trees
in computational linguistics, possess a significant theory of pattern generalization
that can be applied to the problem of relational learning in many settings, including
learning from text, images, and video. When specialized to posets, the result is a
new theory of poset generalization that may be applied to ontologies and hierar-
chical classification systems.

1 Introduction

We are interested in the problems of determining when a structure is an instance of
a general pattern, as well as devising new methods for solving problems of relational
learning. While we don’t intend to consider these problems in complete generality, we
do want methods that have a wide range of possible applications including extraction
of information from text.

To be clear about it, by relational learning we mean the induction from examples
of some number of assertions that certain elements ��� ��� � � � of a structure � are in
some particular relation ����� ��� � � �� to one another when the structure � is a specific
instance of a more general pattern. Relational learning, then, is pattern generalization
but with the aim of identifying those elements of a particular pattern that bear a special
relationship to one another.

In text, we find two primary relations between linguistic elements: (1) an element
may precede another one, or (2) an element may include or contain another one. Our
goal has been to develop a theory of patterns based on these two relations. Of course,
in computational linguistics there are constituent structure trees [6], which are already
based on these relations. However, constituent structure trees are defective from the
standpoint of generalization: there is no codified way of saying that one tree is more
general than another, and there is certainly no way of computing a tree that is a best
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generalization of a set of trees. We will show how to remedy these defects by defining
precedence-inclusion patterns of which the concept of a constituent structure tree is
special case. While we won’t be able to compute trees as best generalizations of sets
of trees, we will be able to compute finite patterns as best generalizations of finite sets
of finite patterns.

We want the notion of the best generalization – actually, the concept is called the
minimal most specific generalization – of a set of patterns to have a mathematically
compelling definition. Additionally, we want the minimal most specific generalization
to be another pattern, not just a logical summation of properties common to all the
elements of the set. For this reason, we do not approach pattern generalization from
the point of view of inductive logic programming (see [2] or the seminal paper [7]),
because then, on the face of it, all we would get is what it is designed to produce,
namely, a logical summation of common properties.

Precedence-inclusion patterns are based on axiomatizing the interactions between
one object coming before another, perhaps in time, and one object being contained
in another. These interacting relationships can be seen everywhere, so we expect the
theory laid out in this paper to have many applications beyond text. For instance, in
video, the ordering of the frames determines precedence, while within frames different
picture elements can be components of larger elements. One can also apply it to the
analysis of images, as should be clear from the examples we present.

Since the theory of pattern generalization we describe can be specialized to give
a new theory of generalization for partially ordered sets, we believe this work can
be applied in the future to the generalization of ontologies, including classification
hierarchies for documents or webpages.

This paper is about giving a feeling for what precedence-inclusion patterns are and
how to compute with them. We will also state and explain the main theorem under-
lying possible applications to relational learning. It asserts that any finite set of finite
precedence-inclusion patterns has a minimal most specific generalization that is unique
up to isomorphism. The space allocated is too little to give proofs of mathematical re-
sults. These will be presented elsewhere.

2 Motivating Problems

Here’s an example of the kind of generalization situation we’d like to analyze in a
principled way: The pattern shown by the sentence

(A) Mary went to the store.

is found in

(B) Mary went to the store today.

and is also found in

(C) Mary went quickly to the store.

but that pattern is not found in
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Figure 1: The pattern � , in which ����� ��� holds.
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Figure 2: The pattern � , in which ����� ��� holds.

(D) Mary went to the movies after the store closed.

To do this, we need a theory of pattern generalization that goes beyond word order,
and that can make use of the results of partial parsing, but does not necessarily require
that sentences be fully parsed. The approach we have in mind would say that there are
pattern-preserving maps from (A) to (B) and from (A) to (C), but there is no pattern-
preserving map from (A) to (D). Working out the details can be a fairly easy exercise for
the reader once we define precedence-inclusion patterns and pattern-preserving maps.

As for a motivating problem for our approach to relational learning, the fact is
that geometric examples are the most accessible, while at the same time providing
easily stated problems with nonobvious solutions, so that is what we will give. Also,
geometric examples also serve to demonstrate that precedence-inclusion patterns have
a potential use in extracting information from images.

So, consider the arrangements of picture elements shown in Figures 1 and 2. In both
of these patterns, the dimensions of the picture elements don’t matter. The arrangement
of the elements is what counts. Specifially, we are interested in whether or not an
element � strictly precedes another one � (notation: ���) by being entirely to the left
of it in one of the figures, or whether or not � strictly includes � (notation: ���).
Also, we pay attention to the gross properties of picture elements. In this case, these
properties state whether an element is circular or retangular, and if it is rectangular,
whether its boundary is a dashed line or a solid line. In each of � and �� two elements
are identified as being in the relation � to one another. The problem is this:

On the basis of the evidence provided by � and � , can we claim in a
principled way that another instance of the relation� occurs in the pattern
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Figure 3: The pattern 
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Figure 4: The pattern � , in which �������� holds.


 shown in Figure 3?

To answer this question, later we will compute the pattern �� represented in Figure 4,
from � and � . In the pattern �� the relation �������� holds. and � is a minimal
most specific generalization of � and � . Note that � is really a pattern, not just a
logical clause (although we were somewhat lucky that we could make a such a nice
drawing portraying it). Why do we even say that � is a generalization of, say, �?
The reason is that there is a pattern-preserving map from � into � . Think of it as
a movement and distortion of picture elements. This is a mapping that preserves the
gross properties of picture elements and that does not break any precedence or inclusion
relations present in � . In this case, the mapping is not one-to-one. Because � has
more elements than either � or �� � can’t be obtained by discarding elements of,
say, � that are incompatible with � . By constructing a pattern-preserving map from
(a pattern essentially the same as) � into 
 that sends �� to 	� and �� to 	�, we
can assert that ��	�� 	�� holds on the basis of generalizing from � and � . However,
generalization from � and � does not permit us to assert ��	�� 	�� because there is
no pattern-preserving map that sends �� to 	� and �� to 	�. Determining whether
��	�� 	�� holds on the basis of � and � is left as what should now be an easy exercise
for the reader.

Note that the patterns of precedence and inclusion in our relational learning exam-
ple could have been presented diffently to make them look more as though they were
based on partially parsed strings. Thus, we could have written � more opaquely, but
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Figure 5: The lattice � for our geometric examples.

quite compactly, as
� � ���

�
�����

�
���

�
��������

�
��

Here the exponents �� � and � stand for “dashed rectangle,” “solid rectangle,” and
“circle,” respectively, while � and � name the arguments that make � true. Similarly,
the pattern � can be expressed linearly as

� � ���
�
�����

�
������

�
���

�
����

However, it can be proved that the pattern � cannot be expressed in such a linear
fashion. We can’t get out of this bind by picking a different minimal most specific
generalization. As patterns, they are all isomorphic. Since constituent structure trees
are linear in the sense that they correspond to parses of strings, this example illustrates
the root cause of why constituent structure trees form an unsatisfactory setting for a
theory of generalization.

3 Basic Definitions

Let � be a complete lattice, whose elements correspond to sets of properties that may
be possessed by the elements of patterns. (Recall that a complete lattice is a partially
ordered set every subset of which has a greatest lower bound. In this paper we will
use almost no lattice theory, but as a lattice theory reference, we recommend [3].) The
complete lattice � is called the property lattice. The power set of a set, ordered by set
inclusion, is a complete lattice. In the degenerate case, a complete lattice may have a
single element; it can arise as the power set of the empty set. The degenerate case is the
sole case in which the top and the bottom of a complete lattice can coincide. The reason
� taken to be a complete lattice instead of just a lattice is to be able to prove arbitrary
products exist (for the definition, see [4], p. 69) in categories of precedence-inclusion
patterns.

For the examples ���� 
� and � we will take � to be the complete lattice whose
Hasse diagram is shown in Figure 5. Here the lattice elements �� � � and � signify
“dashed rectangle,” “solid rectangle,” “circle,” and “rectangle,” respectively, where the
presence of the property � allows us to support patterns in which an element can be in-
stantiated in an example by rectangle with either kind of boundary. The lattice element
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� is the label applied to a pattern element to which no other property is attributed. For
example, in a particular pattern, the presence of an element labeled � might signify
simply that something whose properties are immaterial must precede or must include
something else. The lattice element� is the label assigned to a pattern element having
all properties, but in these particular examples, some properties are inconsistent with
others, so � won’t be used as an actual pattern element label.

Let � be a set of argument names, and let �� the relation of interest, be an �-
relation defined over a set of objects that may appear in patterns. In our geometric
examples, � is binary, so for those examples we take � � ��� ��. We will map el-
ements of � to elements of a structure that exemplifies a pattern in order to indicate
those elements of the structure for which the relation of interest holds. Sometimes
the mapping will only be defined for some elements of �. Keeping in mind that the
aim of relational learning is often to support template filling, we use partial functions
defined on � to support partial template filling. For instance, in text one might be
looking to extract the name of a company matched with the company’s law firm and
the company’s auditor. But maybe only two of these three items would be found in a
particular example, in which case we would like to extract as much information as we
can through partial template filling.

By a strict partial order we mean an irreflexive, transitive, binary relation. (The
definition is fairly standard, but not universal. For instance, since asymmetic and transi-
tive is equivalent to irreflexive and transitive, the same concept is termed a strict partial
order in [9], p. 72.) Strict partial orders are closely related to partial orders: the union
of a strict partial order on a set with the identity relation on that set yields a partial
order, while subtracting the identity relation from a partial order yields a strict partial
order ([9], p. 73).

The following definition offers a nontrivial extension of the concept of a transitive,
binary relation to an ordered pair of binary relations. Let’s say that an ordered pair
���� ��� of binary relations on a set � is interactively transitive if both �� and �� are
transitive and, for all �� �� 	 � ��

1. ���� and ���	 implies ���	� and

2. ���� and ���	 implies ���	�

We will say a set � is a precedence-inclusion pattern when it is provided with with
two strict partial orders �� � called strict precedence, and �� � called strict inclusion,
along with a partial function �� � � �	� , called the argument naming function, and
a total function �� � � 	 �� called the labeling function, such that the ordered
pair of relations ��� ��� � is interactively transitive. Normally, we will just call a
precedence-inclusion pattern simply a pattern. When there is no chance of confusion,
we will dispense with the subscripts naming the pattern �� writing, for instance ���
instead of ��� �.

The definitions permit the set �� the lattice �� and prcedence-inclusion patterns
themselves all to be infinite. However, we anticipate that finite patterns will find the
most applications. When � is empty, we will call a pattern a classification pattern
because the issue of identifying elements within the pattern becomes moot and the
pattern can only be used to determine membership of the structure as a whole in a class
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of interest. When � is the degenerate one-point complete lattice, then we call a pattern
purely positional because the labeling of elements does not count. In this case only the
arrangement of elements matters.

Note that the relation� is only in the background because it did not explicitly enter
into the definition of precedence-inclusion pattern. This is because we make no use of
the logical properties of �� and because we assume that there is only one relation of
interest. (If there were more than one, we might have to worry about how they interact,
and we want to avoid the complexity that would entail.)

4 Constituent Structure Trees

Constituent structure trees give examples of classification patterns. Since the defini-
tions of the two concepts bear some similarity, it is worth looking at the differences.
As a reference on mathematical concepts in computational linguistics, see [6]. With
slight notational modification, we will take our definition of constituent structure tree
from that source.

Given a finite set � of labels, a constituent structure tree is a finite set � together
with a strict partial order� (the precedence relation) on �� a partial order
 (the dom-
inance relation) on �� and a labeling function � � � 	 � such that, the following
conditions hold:

Single Root Condition

����������
��

Exclusivity Condition

������������� or ����  ���
� and � �
���

Nontangling Condition

��������������	������ and �
� and �
	�	 ��	�

where �� �� �� 	� and � range over ��
There is nothing corresponding to �� the�-ary relation of interest, in the preceding

definition. However, the following important, but fairly obvious, theorem holds.

Theorem 1 Every constituent structure tree gives rise to a classification pattern by
keeping the precedence relation as what we have called strict precedence, by taking
the strict inclusion relation to be the dominance relation minus the identity relation, by
letting � be the power set of �, and by letting ���� � �������

It is worth reflecting on the small differences between the definitions of classifi-
cation patterns and constituent structure trees, and on the fairly large consequences of
those differences:

1. Dominance is a partial order, whereas a pattern requires strict inclusion to be a
strict partial order. This is just a nit.
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2. Constituent structure trees have a requirement of finiteness. Letting precedence-
inclusion patterns be infinite is needed to argue convincingly that the category of
patterns generalizes the category of sets because then one can prove that category
of sets is isomorphic to a full, coreflexive subcategory (see [4], p. 89) of the
category of patterns.

3. Constituent structure trees have a finite set of labels, as opposed to an arbitrary
complete lattice of properties. For patterns, the lattice of properties comes into
its own when analyzing when one pattern is a generalization of another, a con-
sideration that seems not to have arisen for constituent structure trees.

4. Constituent structure trees are rooted, but there is no analagous requirement on
patterns. Removing the Single Root Condition results in the existence of arbi-
trary coproducts (see [4], p.62) in categories of classification patterns.

5. This the most subtle difference: only the left-to-right implication in the bicondi-
tional Exclusivity Condition holds in general for patterns. This loosens things
up greatly by permitting patterns with a geometric flavor. The relaxation of the
Exclusivity Condition is key to being able develop our theory of pattern general-
ization.

Finally, we remark on a similarity between precedence-inclusion patterns and con-
stituent structure trees: the Nontangling Condition for constituent structure trees is, for
transitive relations, basically the same as what we earlier termed interactive transitiv-
ity. We like our term better because a pattern can satisfy this condition while still being
fairly tangled, as evidenced by the pattern � shown in Figure 4.

5 Mathematical Theory of Patterns

If � � � �	� is a partial function from a set � to a set � , then let dom � be the domain
of definition of �� i.e., dom � � �� � � � ���� is defined��

Let � and � be patterns. We say that a precedence-inclusion pattern � is a subpat-
tern of a pattern � if

1. as sets, � � ��

2. dom�� � � � �dom���, and

3. for all �� � � � and for all � � dom�� �

(a) ��� � iff �����

(b) ��� � iff �����

(c) �� ��� � ������

(d) �� ��� � ������
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Pattern generalization is based on the concept of a pattern-preserving map. A
pattern-preserving map shows how to find all of the structure in its domain in its
codomain. In more detail, if dom�� �� dom��� then there are no pattern-preserving
maps from � to �� If dom�� � dom��� then a pattern-preserving map � � � 	 �

from � to � is a (total) function from � to � satisfying, for all �� � � � and for all
� � dom�� ,

1. ��� � implies �����������

2. ��� � implies �����������

3. �� ��� � ��������� and

4. ���� ���� � ������

We say � is a generalization � if there exists a pattern-preserving map � � � 	
�. Suppose � � ��� � � � �� is an �-indexed family of patterns. We say � is a
generalization of � if, for all � � �� � is a generalization of � �. We say � is a most
specific generalization of � if � is a generalization � and any generalization of � is
a generalization of � . We say � is a minimal most specific generalization of � if �
is a most specific generalization of � and no proper subpattern of � is a most specific
generalization of �.

Theorem 2 Every finite set of finite patterns has a minimal most specific generaliza-
tion, which is unique up to isomorphism.

The procedure for computing the minimal most specific generalization of a finite
set of finite patterns depends on a refinement of the concept of a pattern-preserving
map. A pattern-preserving map � � � 	 � is a retraction of � if it is idempotent, i.e.,
for all � � �� ������� � �� A subpattern � of � is said to be a retract of � if it is the
image of a retraction of � . By a proper retract of �� we mean a retract of � that is a
proper subset of � . These concepts have analogs in topology (see [5], p. 216) and in
domain theory (see [1] or [8]).

The other ingredient for computing minimal most specific generalizations is the
product of a set of patterns. We shall give the details the construction of products only
for an ordered pair of patterns, but the same idea works for any size index set. As a set,
� �� is the Cartesian product of the sets of elements of � and of �. The relations of
strict precedence and strict inclusion are defined componentwise, so

1. ���� ����������� ��� iff ���� �� and ������� and

2. ���� ����������� ��� iff ���� �� and ������.

For the labeling function, we use the greatest lower bound operation of the lattice:

��������� ���� � �� ���� � �������

For the argument naming function, we let dom���� � dom�� �dom�� � and, where
defined, we let

������� � ��� ���� �������
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Figure 6: Directed acyclic graph representation of � .

We can now give a very simple procedure that returns the minimal most specific
generalization of a finite set ���� ��� � � � � ��� of finite patterns:

Minimal Most Specific Generalization Procedure

� := �� � �� � � � � � ��;
while there exists a proper retract � of �

do � := �;
return � ;

Finding proper retracts of patterns, the main step in the procedure, is not hard in
practice. Our experience indicates that almost always a finite pattern of cardinality �
that has a proper retract also has a proper retract of cardinality �� �. In other words,
in executing the procedure usually we can get a sequence of ever-smaller retracts by
using retractions that move only a single point. Such pattern-preserving maps are easy
to find. However, algorithmic details will be a subject for future research.

The patterns ��� � � � � �� that provide the input to the procedure are generally un-
stripped, i.e., their argument naming functions are nonempty because they contain in-
stances of the relation of interest. A pattern � to which we wish to apply the results
of the procedure is initially stripped, i.e., has an empty argument naming function.
Any pattern � can obviously be turned into an stripped pattern � �. For each pattern-
preserving map � � � � 	 � that we can construct, we can define an argument naming
function on �, which makes a pattern �	 such that ��	 � � and � � � 	 �	 is
pattern-preserving, which results in the identification of an instance of the relation� in
the pattern �. When we introduced the motivating examples and referred to “(a pattern
essentially the same as) � ,” we were referring to � �.

6 The Minimal Most Specific Generalization of � and
�

To actually determine that �� shown in Figure 4, is the minimal most specific gen-
eralization of � and �� the procedure tells us to start with � � � . Observe that we
can represent � as a directed acyclic graph with two varieties of edges, as shown in
Figure 6. In the graph, thicker, double-headed arrows indicate strict precedence and
thinner, single-headed arrows indicate strict inclusion. Similarly, we depict � by the
graph shown in Figure 7. From these graphical representations of � and �� we can
obtain a representation of ��� as shown in Figure 8. Note that some of the elements
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Figure 7: Directed acyclic graph representation of � .
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Figure 8: Directed acyclic graph representation of � � � .
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Figure 9: Directed acyclic graph representation of ��.

of � � � have the label � � � � � and others have the label � � � � � � � � .
Since � � �, observe that mapping ���� ��� to ���� ���, while leaving all other points
fixed, is a retraction of �� � � � � whose image is ��. There is a retraction of ��

that moves ���� ��� to ���� ���, and leaves all other points fixed, whose image is ��.
Moving ���� ��� to ���� ��� gives the next retract ��, and moving ���� ��� to ���� ���
gives the retract ��, shown in Figure 9. We have now eliminated all the “isolated”
elements of � � � . Since � � �, and since ���� ��� is related by the same relations
to the all of the elements to which ���� ��� is related, �� has a retraction that moves
���� ��� to ���� ���, and leaves all other points fixed. The image of this retraction is
��, shown in Figure 10. Then�� comes from moving ���� ��� to ���� ���. �� comes
from moving ���� ��� to ���� ���. �� comes from moving ���� ��� to ���� ���. ��	

comes from moving ���� ��� to ���� ���. ��� comes from moving ���� ��� to ���� ���.
(Note that moving ���� ��� to ���� ��� and leaving all other points fixed is not a retrac-
tion of our original pattern � � � , so new opportunities for finding simple retractions
can open up as the process continues.) ��� comes from moving ���� ��� to ���� ���.
Then � �� ��� has no proper retracts, and is pictured in Figure 11. One can easily
see that the patterns represented in different ways in Figures 4 and 11 are isomorphic.
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Figure 10: Directed acyclic graph representation of ��.
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