
RC22340 (W0205-208) May 29, 2002
Computer Science

IBM Research Report

Stack Allocation and Synchronization Optimizations
for Java Using Escape Analysis

Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano,
Vugranam C. Sreedhar, Samuel P. Midkiff

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Stack Allocation and Synchronization Optimizations
for Java Using Escape Analysis

JONG-DEOK CHOI, MANISH GUPTA, MAURICIO J. SERRANO, VUGRANAM C.

SREEDHAR and SAMUEL P. MIDKIFF

This article presents a framework for escape analysis for Java to determine (1) if an object

is not reachable after its method of creation returns, so that the object can be allocated on the
stack, and (2) if an object is reachable only from a single thread during its lifetime, allowing

unnecessary synchronization operations on that object to be removed. We introduce a new

program abstraction for escape analysis, the connection graph, that is used to establish reachability
relationships between objects and object references. We show that the connection graph can be

succinctly summarized for each method such that the same summary information may be used
in different calling contexts without introducing imprecision into the analysis. We present an
interprocedural algorithm that uses the above property to efficiently compute the connection

graph and identify the non-escaping objects for methods and threads. We prove the correctness
of this algorithm. Finally, we describe additional analysis (not yet incorporated in our current
implementation) that can be used to eliminate redundant storage synchronization operations
associated with locks in Java. The experimental results, from a prototype implementation of our
framework in the IBM High Performance Compiler for Java, are very promising. The percentage

of objects that may be allocated on the stack exceeds 70% of all dynamically created objects in
the user code in three out of the ten benchmarks (with a median of 19%), 11% to 92% of all
mutex lock operations on objects created in user code are eliminated in those ten programs (with
a median of 51%), and the overall execution time reduction ranges from 2% to 23% (with a median
of 7%) on a 333 MHz PowerPC workstation with 128 MB memory.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers;
optimization; E.1 [Data]: Data Structures—graphs; trees

General Terms: Algorithms, Languages

Additional Key Words and Phrases: Connection graphs, escape analysis, points-to graph

1. INTRODUCTION

Java has become an important language for general-purpose computing and for
server applications. Performance is an important issue in these application envi-
ronments. In Java, each object is conceptually allocated on the heap and can be
deallocated only by garbage collection. Also, each object has a lock associated with
it, which is used to ensure mutual exclusion when a synchronized method or state-
ment is invoked on the object. In this paper we present a technique for identifying
objects that are local to a method invocation and/or local to a thread. Once we
identify those local objects we can perform two important optimizations for Java
programs.

(1) If an object is local to a method invocation it can be allocated on the method’s

Authors’ address: IBM T. J. Watson Research Center; P. O. Box 218, Yorktown Heights, NY
10598; {jdchoi, mgupta, mserrano, vugranam, smidkiff}@us.ibm.com.

A preliminary version of this paper appears in the proceedings of the OOPSLA ’99 Conference.

A shorter version of this report has been submitted to ACM TOPLAS

2 · Jong-Deok Choi et al.

stack frame. Stack allocation reduces garbage collection overhead, since the
storage on the stack is automatically reclaimed when the method returns (al-
though unconstrained stack allocation can lead to additional memory pressure,
since the stack frame itself is not garbage collected). Also, by allocating objects
on the local stack, we reduce the occasional synchronization that the heap allo-
cator has to do with other threads competing for memory chunks. Besides stack
allocation, the knowledge about an object being local to a method can enable
further optimizations, such as, more aggressive code reordering in spite of the
precise exception semantics of Java [Gosling et al. 1996] by allowing writes of
method-local variables to be moved across potentially excepting instructions in
a method without any exception handler [Chambers et al. 1999]. As well, with
further analysis, the object accesses can be strength-reduced, and the creation
of the object may be eliminated.

(2) If an object is local to a thread, then no other thread can access the object. This
has several benefits, especially in a multithreaded multiprocessor environment.
First, we can eliminate the synchronization operations that ensure mutual ex-
clusion on this object. Note that Java memory model still requires that we flush
the Java local memory at monitorenter and monitorexit statements in byte-
code (inserted for synchronized statements and method calls). Second, objects
that are local to a thread can be allocated to improve data locality. Third,
with further analysis that we shall describe, some operations to flush the local
memory can be safely eliminated. Finally, more aggressive code reordering op-
timizations that move writes across potentially excepting instructions (similar
to those described above, but for the case when there is no user-defined excep-
tion handler for the given thread) can be enabled by identifying thread-local
objects [Gupta et al. 2000].

The term escape analysis has been used in the literature [Park and Goldberg 1992]
for the analysis to determine the set of the objects that escape a method invocation.
If an object escapes a method invocation (thread), we say it is not local to that
method invocation (thread). We introduce a framework for escape analysis, based
on a simple program abstraction called the connection graph. The connection graph
abstraction captures the “connectivity” relationships among heap allocated objects
and object references. For escape analysis, we perform reachability analysis on the
connection graph to determine if an object is local to a method or local to a thread.
Different variants of our analysis can be used either in a static Java compiler, a
dynamic Java compiler, a Java application extractor, or a bytecode optimizer. To
evaluate the effectiveness of our approach, we have implemented various flavors
of escape analysis in the context of a static Java compiler [International Business
Machines Corporation 1997; Seshadri 1997], and have analyzed ten medium to large
benchmarks.

The main contributions of this paper are:

—We present a new, simple interprocedural framework (with flow-sensitive and
flow-insensitive versions) for escape analysis in the context of Java.

—We demonstrate an important application of escape analysis for Java programs
– that of eliminating unnecessary lock operations on thread-local objects. It
leads to significant performance benefits even when using a highly optimized

A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 3

implementation of locks, namely, thin-locks [Bacon et al. 1998]. We also describe
additional analysis that allows redundant memory update and flush operations
associated with Java locks to be eliminated.

—We describe how to handle exceptions in the context of escape analysis for Java,
without being unduly conservative. These ideas can be applied to other data
flow analyses in the presence of exceptions as well.

—We introduce a simple program abstraction called the connection graph, which
is well suited for the purpose of escape analysis. It is different from points-to
graphs for alias analysis whose major purpose is memory disambiguation. In the
connection graph abstraction, we also introduce the notion of upwards-exposed
objects and phantom nodes, which allow us to summarize the effects of a callee
procedure independent of the calling context. This succinct summarization helps
improve the overall speed of the algorithm.

—We present extensive experimental results from an implementation of escape anal-
ysis in a Java compiler. We show that in the user code (not including the class
libraries), the compiler is able to detect more than 19% of dynamically created
objects as stack-allocatable in five of the ten benchmarks that we examined (find-
ing higher than 70% stack-allocatable objects in three programs). We are able
to eliminate 11%-92% of lock operations (that ensure mutual exclusion) on the
objects created in the user code in those ten programs. The overall performance
improvement ranges from 2% to 23% on a 333 MHz IBM PowerPC workstation
with 128 MB memory.

The rest of this paper is organized as follows. Section 2 presents our connection
graph abstraction. Section 2.3 formalizes the notion of escape of objects. Sections 3
and 4 respectively describe the intraprocedural and interprocedural analyses, to
build the connection graph and to identify the objects that do not escape their
method or thread of creation. Section 5 elaborates on our handling of special
Java features like exceptions and object finalizers. Section 6 describes an extension
(not yet incorporated in our current implementation) to detect cases in which the
storage synchronization operations associated with Java locks can be eliminated.
Section 7 describes the transformation and the run-time support for the optimiza-
tion, and Section 8 presents experimental results. Section 9 discusses related work,
and Section 10 presents conclusions. Appendix A proves the correctness of our
algorithm, and Appendix B derives the complexity of our algorithm.

2. CONNECTION GRAPH REPRESENTATION FOR ESCAPE ANALYSIS

In Java, objects are run-time instances of classes. Run-time objects in Java are
created via new statements1 and objects are referenced by object references. A run-
time object is composed of a collection of named fields. A field can be either a
reference to another object or a non-reference (non-pointer) value. During escape
analysis, we abstract the run-time objects and represent them as compile-time
objects. In this article, we use the term concrete objects for run-time objects and
the term abstract objects for compile-time objects.

1In Java, a cloning site is also an allocation site, and is handled similarly by our analysis.

A shorter version of this report has been submitted to ACM TOPLAS

4 · Jong-Deok Choi et al.

2.1 Access Paths

Access paths are used to represent reachability relationships among concrete ob-
jects. We formalize this as follows:

Definition 2.1. An access path, p.α, is a pair consisting of a reference variable p
and a sequence of field reference names, α = f1.f2 . . . fn.

Definition 2.2. The destination of an access path dest(p.f1.f2 . . . fn) is the con-
crete object referenced by the field reference fn.

Note that access paths, a term we use for a concrete graph, should not be confused
with compile-time reference expressions, a term we use for an abstract graph.

Definition 2.3. A concrete object O′ is said to be reachable from another con-
crete object O if there exists an access path p.f1.f2 . . . fn (n ≥ 0) such that
dest(p.f1.f2 . . . fi) = O, dest(p.f1.f2 . . . fj) = O′, and 0 ≤ i ≤ j ≤ n.

We shall use the notion of an access path and its static abstraction in developing
our escape analysis algorithm and in proving the correctness of the algorithm.

2.2 Connection Graph

A Connection Graph (CG) is a finite, labeled, directed graph, which has nodes
representing (abstract) objects, fields, and object references, and edges represent-
ing reachability relationships among them. In our framework, we use a 1-limited
naming scheme for objects, which creates one abstract object for each allocation
statement and at most one abstract object (called a phantom object) for each non-
allocation statement in the program.

Definition 2.4. A connection graph is a directed graph CG = (No ∪ Nr ∪ Na ∪
Nf ∪Ng, Ep ∪ Ed ∪ Ef), where

—No represents the set of abstract objects.
—Nr represents the set of reference variables (those locals and formals that are

object references) in the program.
—Na represents the set of actual parameters, including return values, which are ob-

ject references. Actuals are implicit in the program and the nodes corresponding
to actuals are constructed during interprocedural analysis.

—Nf represents the set of non-static fields that are object references. These are
called field reference nodes.

—Ng represents the set of static fields, i.e., all global variables, that are object
references. (All nodes in the set Nr ∪ Nf ∪ Na ∪ Ng are collectively referred to
as the reference nodes.)

—Ep is the set of points-to edges. A points-to edge exists from a reference node r
to an object node o if the object reference corresponding to r may point to the
object corresponding to o. If p → q ∈ Ep, then p ∈ Nr ∪ Na ∪ Nf ∪ Ng and
q ∈ No.

—Ed is the set of deferred edges. A deferred edge from a node p to a node q signifies
that p points to whatever q points to. If p→ q ∈ Ed, then p, q ∈ Nr∪Na∪Nf∪Ng.

A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 5

gf h

Pa S1

F
FF

gf

b

h

Pa S1

F
FF

S1: T a = new T(...) S2: T b = a

D

Fig. 1. A simple connection graph. Boxes indicate object nodes and circles indicate
reference nodes (including field reference nodes). Solid edges indicate points-to
edge, dashed edges indicate deferred edges, and edges from boxes to circles indicate
field edges.

—Ef is the set of field edges. A field edge from o to f signifies that f represents a
field of object o. If p→ q ∈ Ef , then p ∈ No and q ∈ Nf ∪Ng.

We handle arrays in Java like other objects. Conceptually, an array object con-
tains a number of variables, called the components of the array. The components
of the array are referenced via integer-typed indices from 0 to n − 1 inclusively,
where n is the number of the components (or size) of the array. In our analysis,
we do not apply any array-index analysis: we do not distinguish between different
components of the same array.

Figure 1 illustrates an example of a connection graph. In figures, we represent
each abstract object as a tree with the root representing the object and the children
of the root representing the reference fields within the object.2 Also, in our figures,
a solid-line edge represents a points-to edge or a field edge, and a dashed-line edge
represents a deferred edge. In the text, we use the notation p

P→ q to represent a
points-to edge from node p to node q, p D→ q to represent a deferred edge from p to
q, and p

F→ q to represent a field edge from p to q.
Given an object node Oa, we define a mapping AllocSite(Oa) that returns the

program point (i.e., allocation site) where Oa is created. We define a mapping
ObjMap : Oa → Oc from an abstract object Oa to a set of concrete objects Oc.
The range Oc = ObjMap(Oa) is the set of all concrete objects allocated at the site
AllocSite(Oa).

Given a reference node p ∈ Nr∪Na∪Nf∪Ng, the set of abstract object nodesO ⊆
No that it (immediately) points-to can be determined by traversing the deferred
edges from p until we visit the first points-to edge in the path. The destination
node of the points-to edge will be in O. This generalizes to the notion of points-to
path as follows:

Definition 2.5. Let p ∈ Nr ∪ Na ∪ Nf ∪ Ng. A points-to path of length n,

denoted as p +n→ q, is a sequence of edges p = p0 → p1 → . . .
P→ q that terminates

in a points-to edge and contains exactly n points-to edges in the path.

2Since Java does not allow nested objects, the tree representation of an object consists of only

two levels – the root and its children.

A shorter version of this report has been submitted to ACM TOPLAS

6 · Jong-Deok Choi et al.

p
ByPass(p)

p

Fig. 2. Illustrating ByPass(p) function

Definition 2.6. Given a points-to path of length n, p
+n→ q, we define

PointsTo(p +n→ q) = {q|q is the destination node of the last edge in the path}.

We use the shorthand notation PointsTo(p) to refer to the nodes immediately
pointed to by p:

Definition 2.7. Let p ∈ Nr ∪ Na ∪ Nf ∪ Ng, then the set of object nodes that
nodes p points-to is:

PointsTo(p) = {q|p +1→ q}.

We use deferred edges to model assignments that merely copy references from one
variable to another. Deferred edges defer computations during connection graph
construction, and thereby help in reducing the number of graph updates needed
during escape analysis. Deferred edges were first introduced for flow-insensitive
pointer analysis in [Burke et al. 1995]. One can always eliminate deferred edges
by redirecting incoming deferred edges to the successor nodes. In other words, we
define a bypass function ByPass(p) that when applied to a reference node p redirects
the incoming deferred edges of p to the successor nodes of p. The type of redirected
edge is the same as the type of edge from p to the corresponding successor node. It
also removes any outgoing edges from p. Figure 2 illustrates the ByPass(p) function.
More formally, let R = {r|r D→ p}, S = {s|p P→ s}, and T = {t|p D→ t}. ByPass(p)
removes the edges in the set {r D→ p}∪{p P→ s}∪{p D→ t} from the connection graph
(CG) and adds edges in the set {r P→ s|r ∈ R and s ∈ S}∪{r D→ t|r ∈ R and t ∈ T}
to the CG. Note that ByPass(p) can always be applied to a reference node to
eliminate its incoming deferred edges.

2.3 Escape Property of Objects

We now formalize the notion of escape of an object from a method or a thread.

Definition 2.8. Let O be a concrete object and M be a method invocation. O is
said to escape M , denoted as Escapes(O,M), if the lifetime of O may exceed the
lifetime of M .

Definition 2.9. Let O be a concrete object and T be a thread (instance). O is
said to escape T , again denoted as Escapes(O, T), if O is visible to another thread
T ′ 6= T .
A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 7

Alternatively, we say that a concrete object O is stack-allocatable in M
if ¬Escapes(O,M), and that a concrete object O is local to a thread T if
¬Escapes(O, T).

Let M be a method invocation in a thread T . The lifetime of M is, in that case,
bounded by the lifetime of T . If another thread object, T ′, is created in M , we
conservatively set Escapes(O′,M) to be true for all objects O′ (including T ′) that
are reachable from T ′ (since the thread corresponding to T ′ may continue executing
even after M returns). Thus, we ensure that a concrete object, whose lifetime is
inferred by our analysis to be bounded by the lifetime of a method, can only be
accessed by a single thread.

For static escape analysis, we map concrete objects to nodes in the CG, and
access paths to paths in the CG. For each CG node, we can identify an allocation
site in the program where the concrete object instances are created for that CG
node. Each node in CG has an escape state associated with it. For marking escape
states, we define an escape lattice consisting of three elements: NoEscape (>),
ArgEscape, and GlobalEscape (⊥). The ordering among the lattice elements is:
GlobalEscape < ArgEscape < NoEscape. NoEscape means that the object does not
escape the method in which it was created. ArgEscape with respect to a method
means that the object escapes that method via the method arguments or return
value, but does not escape the thread in which it is created. Finally, GlobalEscape
means that the object is regarded as escaping globally (i.e., all methods and its
thread of creation). Let EscapeSet = {NoEscape,ArgEscape,GlobalEscape}, and
let es ∈ EscapeSet . We define the escape state merge as follows:

es ∧ es = es

es ∧NoEscape = es

es ∧GlobalEscape = GlobalEscape

We conservatively assume that each static field and thread object3 outlives every
method in the program. Hence, we initialize the escape state of nodes representing
static fields (i.e., nodes in Ng) and thread objects to GlobalEscape. As discussed in
Section 4, the escape state of placeholder nodes representing actual parameters of a
method is initialized to ArgEscape. All other nodes are marked NoEscape initially.

In order to compute the escape state of an abstract object, we perform reach-
ability analysis on the CG. Consider an object node o = PointsTo(p) and a field
node q of o (i.e., o F→ q). We ensure, using our analysis, that:

EscapeState(o) ≤ EscapeState(p)
EscapeState(q) = EscapeState(o)

Note that even though a thread object (which can be accessed in both the creating
and the created thread) and all objects reachable from it are marked GlobalEscape,
it does not mean that all objects created during the execution of a thread will be
marked GlobalEscape.

3We regard any run-time instance of a class that implements the Runnable interface as a thread

object.

A shorter version of this report has been submitted to ACM TOPLAS

8 · Jong-Deok Choi et al.

At the completion of escape analysis, all concrete objects that are allocated at
an allocation site whose escape state is marked NoEscape are stack-allocatable in
the method in which they are created. Furthermore, all concrete objects that are
allocated at an allocation site whose escape state is marked NoEscape or ArgEscape,
are local to the thread in which they are created, and so we can eliminate the syn-
chronization in accessing these concrete objects without violating Java semantics.

2.4 Connection Graph versus Points-To Graph

The connection graph has some similarities to, but also a few important differences
with, the points-to graph representation that has been proposed in the literature
for pointer analysis [Sagiv et al. 1998]. (The compact alias set [Choi et al. 1993]
is also equivalent to the points-to graph representation in the context of Java.)
Unlike a points-to graph, a connection graph does not approximate the shape of
the concrete storage, but approximates the relevant paths in the concrete storage.
For every path from a variable to an object in the concrete storage, there exists a
corresponding path in the connection graph from a reference node with the same
or lower escape state to that object.

A major difference between points-to graphs such as those used in [Choi et al.
1993; Sagiv et al. 1998] and our connection graph is that the former in general have
the following uniqueness property that our connection graph does not:

Property (Uniqueness Property). Let Gc be the concrete (dynamic) stor-
age graph during execution of a program and Ga be an abstract (static) graph rep-
resenting Gc. Then, a concrete object Oc in Gc has a unique abstract object Oa in
Ga that Oc maps to.

A concrete object, however, can be mapped to multiple abstract objects in the
connection graph. Thus, the connection graph lacks the uniqueness property. The
connection graph, however, can still be used for computing certain static properties
of the program such as computation of escaping objects. We now describe an
example program segment that illustrates how this non-uniqueness arises and how
that does not affect the computation of escaping objects.

Figure 3 shows a program segment to illustrate the connection graph construction
and the difference between the points-to graph and the connection graph. Figure 4
shows the points-to graph and the connection graph at various points of the program
in Figure 3. Abstract objects are named after their allocation site. Figure 4(A)
shows the points-to graph holding at the entry of method T(). Static variables x
and y, and formal parameters f1 and f2 of T() all point to object S0.

Figure 4(B) shows the points-to graph holding after statement S4, with two ad-
ditional objects S3 and S4 created at statements S3 and S4, respectively. From the
points-to graph in Figures 4(B), we can identify data dependences from statement
S5 to statement S6 because f1.data and f2.data refer to the field data of the
same object (S0). Figure 4(C) shows the points-to graph holding after statement
S7. Figure 4(D) shows the connection graph holding immediately after S4. The
upper subgraph of the figure shows the connection graph built after statement S3,
and the lower subgraph shows the connection graph built after statement S4. Con-
sider the upper graph. We construct connection graphs in a bottom-up fashion:
from callees to callers. Therefore, at the entry of method T(), we do not have the
A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 9

class ListElement {

int data;

ListElement u, l;

static ListElement x, y;

static void L() {

S0: x = new ListElement();

S1: y = x;

S2: T(x,y);

. . .

}

static void T(ListElement f1, ListElement f2) {

S3: f1.u = new ListElement();

S4: f2.l = new ListElement();

S5: f1.data = 10;

S6: f2.data = f2.data + 20;

S7: f2 = new ListElement();

}

}

Fig. 3. An example program for illustrating connection graph.

connection graph holding at the callers of T(), nor is it necessary. When f1.u is
write accessed at S3, f1 does not point to any object. However, f1 still has the
same value as the first actual parameter passed by callers of T(). We use a1 to
represent the value(s) of the actual parameter passed to formal parameter f1. Note
that formal parameters such as f1 and f2 are local variables of T(), but that actual
parameters such as a1 and a2 are accessible from callers of T() and are regarded
as non-local variables of T().

We first insert deferred edge from f1 to a1. This edge denotes that f1 points
to what a1 points to, not that f1 points to a1. Deferred edges are deleted once
the connection graph of a method is constructed, using a bypass function described
earlier. We then create a phantom node, labeled S3*, to represent the object that a1
points to in a caller’s context and whose u field is accessed through f1 at statement
S3. Similarly, node S4* is the phantom node created for the object accessed at
S4. We also call the actual parameters, such as a1 and a2, the phantom reference
nodes. The lower subgraph of Figure 4(E) is built similarly after statement S4. Note
that a single concrete object created at statement S0 is mapped to two abstract
objects S3* and S4* in T(), illustrating the lack of the uniqueness property of the
connection graph.

From the connection graph holding after S4 (Figure 4(D)), we would fail to
identify that f1.data accessed at S5 and f2.data accessed at S6 refer to the same
storage location. This failure would be fatal for points-to graphs built for the
purpose of alias analysis. This failure, however, is not a concern for escape analysis:
our escape analysis still identifies that objects S3 and S4 are reachable from outside
T() through actual parameters a1 and a2, respectively. After statement S7, f2
no longer points to object S4, as shown in Figure 4(E). Object S4, however, is

A shorter version of this report has been submitted to ACM TOPLAS

10 · Jong-Deok Choi et al.

u

S4

u S3

u S3

â2â1

u S3S3*

u S3

y y

(A) points−to graph at (B) points−to graph after (C) points−to graph after
the entry of T(): S4: S7:

S7:S4:
(D) connection graph after (E) connection graph after

y

f1 f2

x

l

S3

S7

after S2:
(G) connection graph right

before S2:
(F) connection graph right

a1f1

a2f2 S4* l S4

S3*

S7

x x

l S4

a1f1

a2f2 S4* l S4

y

f1 f2

x

y

f1 f2

x

l S4

S0 S0 S0

S0 S0

Fig. 4. Points-to and connection graphs at various points in the example program
of Figure 3.

reachable from a2, making it escape the method (T()) in which it is created. Object
S7 is reachable only from a local variable (f2), and is identified as a method-local
object. The summary connection graph of method T() consists of the subgraph
of the connection graph after S7 that is reachable from any non-locals of T(): the
subgraph reachable from a1 and a2 in Figure 4(E).

Now consider method L(). The connection graph holding immediately before the
call to T() at statement S2, shown in Figure 4(F), is the same as the points-to graph
in Figure 4(A) except for the following: instead of nodes labeled f1 and f2, we have
two nodes labeled â1 and â2, respectively, pointing to the object labeled S0. Nodes
labeled â1 and â2 denote the actual parameter values passed to the call to T(), and
correspond to the nodes labeled a1 and a2, respectively, in the callee’s connection
graph. At statement S2, we update the connection graph holding immediately
A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 11

before the call to T() (in Figure 4(F)) with the summary connection graph of T(),
by recognizing that node â1 at S2 corresponds to node a1 at S7, and that node
â2 at S2 corresponds to node a2 at S7. From this we can recognize that object
nodes S3* and S4* represent the same object node S0 at statement S2, resulting
in the connection graph in Figure 4(G). This process of updating the connection
graph holding immediately before a callsite with the summary connection graph
of the called method is performed by a routine called UpdateCaller(), described
later in Section 4. The summary connection graph of a method is constructed
independently of the calling context. The effect of the summary connection graph
of a method, however, is reflected to each callsite specifically depending on the
connection graph holding at each callsite.

To summarize, here are some of the characteristics of our connection graph rep-
resentation: (1) we use deferred edges to defer computation, and later use a bypass
function to evaluate the deferred computation; (2) we introduce a dummy phantom
node to anchor objects pointed to by formal parameters and return values that are
object references; (3) we introduce phantom nodes for handling upward exposed
objects; (4) for every access path in the concrete storage graph, we can compute
a corresponding path in the connection graph; and (5) the use of phantom nodes
allows us to analyze a method independent of the calling context.

3. INTRAPROCEDURAL ANALYSIS

Given the control flow graph (CFG) representation of a Java method, we use a
simple iterative scheme for constructing the intraprocedural connection graph. We
describe two variants of our analysis, a flow-sensitive version, and a flow-insensitive
version. To simplify the presentation, we assume that all multiple-level reference
expressions of the form a.b.c.d... are split into a sequence of simple two level
reference expressions that are of the form a.b. Any bytecode generator automat-
ically does this simplification for us. For example, a Java statement of the form
a.b.c.d = new T() will be transformed into a sequence of simpler statements: t
= new T(); t1 = a.b; t2 = t1.c; t2.d = t; where t, t1, and t2 are new
temporary reference variables of the appropriate type.

Given a node s in the CFG, the connection graph at entry to s (denoted as Csi)
and the connection graph at exit from s (denoted as Cso) are related by the standard
data flow equations:

Cso = fs(Csi) (1)
Csi = ∧r∈Pred(s)C

r
o , (2)

where fs denotes the data flow transfer function of node s. The meet operation (∧)
is a merge of connection graphs. We define a merge between two connection graphs
C1 = (N1, E1) and C2 = (N2, E2) to be the union of the two graphs. Furthermore,
if N1 and N2 have common nodes, i.e. nodes with the same unique node id, the
escape state of the corresponding node in the merged graph is a meet of the common
nodes’ escape states. More formally,

C3 = C1 ∧ C2 = (N1 ∪N2, E1 ∪ E2)
A shorter version of this report has been submitted to ACM TOPLAS

12 · Jong-Deok Choi et al.

and let n3 a node in C3. The escape state of n3 ∈ C3 is:

n3.es =


n1.es ∧ n2.es if ∃n1 ∈ N1|n1.id = n3.id, ∃n2 ∈ N2|n2.id = n3.id,

n1.es if ∃n1 ∈ N1|n1.id = n3.id, 6 ∃n2 ∈ N2|n2.id = n3.id,

n2.es if 6 ∃n1 ∈ N1|n1.id = n3.id, ∃n2 ∈ N2|n2.id = n3.id

(3)

Even though for simplicity, we talk about different connection graphs at different
program points, in our implementation, we maintain a single connection graph
for each method which is updated incrementally. We handle loops by iterating
over the data flow solution until it converges. We impose an upper limit (our
current implementation uses an upper bound of ten) on the number of iterations
– if convergence is not reached, a bottom solution, in which every node is marked
GlobalEscape, is assumed for that method.

Given the bytecode simplification of Java programs, we identify four basic state-
ments that affect intraprocedural escape analysis: (1) p = new τ(), (2) p = q, (3)
p.f = q, (4) p = q.f . We present the transfer functions for each of these state-
ments. Figure 5 illustrates the transfer functions for each of the basic statements
for flow-sensitive analysis. Note that all the variables on the left-hand-side of the
statements are local variables: global variables (i.e. static fields) are never killed.

Figure 6 illustrates an example showing the connection graphs at various program
points computed using the analysis described in this section.4 The first column of
the figure corresponds to Csi , the middle column corresponds to the statement s,
and the third column corresponds to Cso .

(1) p = new τ(). We first create a new object node O (if one does not already exist
for this site). For flow-sensitive analysis, we first apply ByPass(p) and then
add a new points-to edge from p to O. For flow-insensitive analysis, we do not
apply ByPass(p), but simply add the points-to edge from p to O.

(2) p = q. As in the previous case, for flow-sensitive analysis, we first apply
ByPass(p), and then add the edge p D→ q. Again, for flow-insensitive analysis
we ignore ByPass(p) but add the edge p D→ q. The difference is that we can
kill what p points to with flow-sensitive analysis, but not with flow-insensitive
analysis.

(3) p.f = q. Let U = PointsTo(p). If U = ∅, then either (1) p is null (in which
case, a null pointer exception will be thrown), or (2) the object that p points to
was created outside of this method (this could happen if p is a formal parameter
or reachable from a formal parameter). We conservatively assume the second
possibility (if U = ∅) and create a phantom object node Oph, and insert a points-
to edge from p to Oph (if p is null, the edge from p to Oph is spurious, but does
not affect the correctness of our analysis).
During interprocedural analysis, the phantom nodes will be mapped back to
the actual nodes (see Definition 4.1 of the MapsTo function) created by the
appropriate procedure. We also use a 1-limited scheme for creating phantom
nodes. Now let V = {v|u F→ v and u ∈ U and fid(v) = f}, where fid(v) is the

4In order to keep the figure simple, we have not transformed a statement like a.f = new T1() to

its equivalent form: t = new T1(); a.f = t;.

A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 13

s1

s

p

k

r

r

1

m

o

o

1

n

s1

s

p

k

r

r

1

m

o

o

1

nq

p=q

p.f=q

p=new

s1

s

p

k

r

r

1

m

o

o

1

n

f

1
qq q

j

(4)
p=q.f

s1

s

p

k

r

r

1

m

o

o

1

n

f

1
qq q

j

s1

s

p

k

r

r

1

m

o

o

1

nq

s1

s

p

k

r

r

1

m

o

o

1

n

o

p
1

(1)

(2)

(3)

q

p pn

f g fq

p p
1

pn

g

Fig. 5. Flow-sensitive transfer functions for basic statements.

A shorter version of this report has been submitted to ACM TOPLAS

14 · Jong-Deok Choi et al.

S3: b a

f g f g

S3S1

f g

S3b a

f g

S1

f g

S4

S5:
Input Output

f g

S3

S1: T1 a = new T1(...);

S2: T1 b = a;

if()
S3: a.f = new T1(...);

else

S4: b.f = new T1(...);

S5: a = b.f;

b a

f g f g

S1S4: S4

b a

f g

S1

f g

S4

S5:

Fig. 6. An example illustrating connection graph computation. The connection
graphs at S1 and S2 are not shown.

field id of the field node v. Again, it is possible that V is empty. In this case,
we create a field reference node (lazily) and add it to V . Finally we add edges
in {v D→ q|v ∈ V } to the connection graph. Note that even for flow-sensitive
analysis, we cannot in general kill whatever p.f was pointing to, and so we
do not apply ByPass(p.f). This is because even a single object that p points
to in any k-limited representation may correspond to more than one concrete
object.

(4) p = q.f . Let U = {u|q +1−→ u}, V = {v|u F→ v and u ∈ U and fid(v) = f}. As
in the previous case, if U is empty, we create a phantom node and add it to U ,
and if V is empty, we create a field reference node and add it to V .
For flow-sensitive analysis, we first apply ByPass(p), and then add the edges in
{p D→ v|v ∈ V } to the connection graph. For flow-insensitive analysis we once
again ignore ByPass(p), but add the edges in {p D→ v|v ∈ V } to the connection
graph.

4. INTERPROCEDURAL ANALYSIS

The core part of our analysis proceeds in a bottom-up manner, in which the sum-
mary information (in the form of a subgraph of CG) obtained for a callee is used
to update the CG of the caller. A key contribution of our analysis is the manner
in which we summarize the effect of a method, so that a single succinct summary
can be accurately used for different calling contexts while determining the stack-
allocatability of objects. Note that for pointer analysis, which is closely related
to our analysis but solves a more general problem, a procedure in general cannot
be accurately summarized independent of the aliasing relationships that hold at
A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 15

its caller [Landi and Ryder 1992; Choi et al. 1993; Emami et al. 1994; Wilson
and Lam 1995; Ghiya and Hendren 1998; Chatterjee et al. 1999]. (An exception
is a type-based alias analysis, which ignores execution flow in a program.) In the
absence of cycles in the program call graph (PCG), a single traversal of nodes in
reverse topological order over the PCG would be sufficient for this phase. In order
to handle cycles (due to recursion), we iterate over the nodes in strongly connected
components of PCG in a bottom-up manner until the data flow solution converges.
As with intraprocedural analysis, we impose a constant upper bound on the number
of iterations, and assume a bottom solution if convergence is not reached within
those iterations – i.e., all nodes in the set Na (for actual arguments and return
value) for methods involved in a non-converging strongly connected component are
marked GlobalEscape. This phase is sufficient to identify stack-allocatable objects
(which are also thread-local).

In order to identify additional thread-local objects, i.e., those which are not stack-
allocatable, we need to propagate some information from the caller to its callees.
This step, which constitutes an extension to our core analysis, is performed in a
separate top-down pass over the PCG.

The remainder of this section is organized as follows. Sections 4.1 through 4.4
describe the core interprocedural analysis at four points of interest: (1) method
entry, (2) method exit, (3) immediately before a method invocation, and (4) imme-
diately after a method invocation. Section 4.5 describes the extension to identify
more thread-local objects. Section 4.6 discusses how Java’s type-safety could be
exploited when dealing with conservative situations such as native method calls.

We will use the Java example shown in Figure 7 to illustrate our interprocedural
framework. In this example, method L() constructs a linked list and method T ()
constructs a tree-like structure. Figure 7(B) shows the caller-callee relation for
the example program, shown in Figure 7(A). In Figure 7(B), we identify the four
points of interest to interprocedural analysis, which are discussed in the following
subsections. Figure 8 shows the connection graphs built at various points of the
program in Figure 7(A). These connection graphs are a conservative representation
of the data structure built by the program during execution.

4.1 Connection Graph at Method Entry

We process each formal parameter (of reference-type) in a method one at a time.
Note that the implicit this reference parameter for an instance method appears as
the first parameter. For each formal parameter fi, there exists an actual parameter
ai in the caller of the method that produced the value for fi. Nodes corresponding
to actuals belong to Na. At the method entry point, we can envision an assignment
of the form fi = ai that copies the value of ai to fi. Since Java specifies call by
value semantics, fi is treated like a local variable within the method body, and so
it can be killed by other assignments to fi. We create a phantom reference node
for ai and insert a deferred edge from fi to ai. The phantom reference node serves
as an anchor for the summary information that will be generated when we finish
analyzing the current method.5 We initialize EscapeState[fi] = NoEscape and

5We use ai as the anchor point rather than fi, since, in Java, fi is treated as a local variable, and

so the deferred edge from fi to ai can be deleted.

A shorter version of this report has been submitted to ACM TOPLAS

16 · Jong-Deok Choi et al.

class ListElement {

int data;
ListElement next;
static ListElement g = null;
ListElement() {data = 0; next = null;}

static void L(int p, int q) {
S0: ListElement u = new ListElement();

ListElement t = u;
while(p > q) {

S1: t.next = new ListElement();
t.data = q++;
t = t.next;

}
S2: ListElement v = new ListElement();

NewListElement.T(u, v);
}

}

class NewListElement {

ListElement org;
NewListElement next;
NewListElement() {org = null; next = null;}

static ListElement T(ListElement f1, ListElement f2) {
S3: NewListElement r = new NewListElement();

while(f1 != null) {
S4: r.org = f1.next;
S5: r.next = new NewListElement();

. . . // do some computation using r

. . . // w/o changing the data structure
S6: r = r.next;

if(f1.data == 0)
S7: ListElement.g = f2;

f1 = f1.next;
}
return f2;

}
}

(A)

(1)

(2)

(3)

(4)

(B)

return

Invocation
Before Method

Invocation
After Method

return

L(p,q)

T(a1,a2)

T(a1,a2)

T(f1,f2)

Method Exit

Method Entry

Fig. 7. An example program for illustrating interprocedural analysis and its call
graph.

A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 17

(F):

(A):

(D):

(E):

(B):

(C):

Connection graph
after call to T() t

S0 S1u

next
â2

v S2

next next
a1̂

L(p,q)

T(a1,a2)

L(p,q)

T(a1,a2)

NonLocalGraph
GlobalEscape

g a2

R

NonLocalGraph
ArgEscape

S4a1

f1

T(f1,f2)

T(f1,f2)

f1

f2

a1

a2
t

S0 S1

S2

next

before call to T()
Connection graph

next

next

v

u

a2^

a1̂

S3

S5

LocalGraph

r

next

org

next

next

org

Fig. 8. Connection graphs at various points in the call graph. Nodes that escape
globally are shadowed.

A shorter version of this report has been submitted to ACM TOPLAS

18 · Jong-Deok Choi et al.

EscapeState[ai] = ArgEscape. Figure 8(A) illustrates the reference nodes f1 and
f2, the phantom reference nodes a1 and a2, and the corresponding deferred edges
at the entry of method T().

4.2 Connection Graph at Method Exit

We model a return statement that returns a reference to an object as an assignment
to a special phantom variable called return (similar to formal parameters). Multiple
return statements are handled by “merging” their respective return values. We
model each throw statement conservatively by marking the object being thrown as
GlobalEscape. After completing intraprocedural escape analysis for a method, we
use the ByPass function (defined in Section 3) to eliminate all the deferred edges in
the CG, creating phantom nodes wherever necessary. For example, Figure 8(B) -
Figure 8(D) show the connection graph at the exit of method T(), and the phantom
node R in Figure 8(D), representing the return node, is created during this process.
Handling return values due to an exception are described in Section: 5.

We then do reachability analysis on the CG holding at the return statement of the
method to update the escape state of objects. The reachability analysis partitions
the graph into three subgraphs:

(1) The subgraph induced by the set of nodes that are reachable from a Glob-
alEscape node. The initial nodes marked GlobalEscape are static fields of a class
and Runnable objects. This subgraph is collapsed into a single bottom node
that efficiently represents all the nodes whose escape state is GlobalEscape.

(2) The subgraph induced by the set of nodes that are reachable from an ArgEscape
node, but not reachable from any GlobalEscape node. The initial ArgEscape
nodes are the phantom reference nodes that represent the actual arguments
created at the entry of a method, such as a1 and a2 in Figure 8(A), and the
phantom node for the return variable.

(3) The subgraph induced by the set of nodes that are not reachable from any
GlobalEscape or ArgEscape node (which remain marked NoEscape).

We call the union of the first and the second subgraphs the non-local subgraph
of the method, and the third subgraph the local subgraph. It is easy to show that
there can only be edges from the local subgraph to the non-local subgraph, but not
vice versa. All objects in the local subgraph that are created in the current method
are marked stack-allocatable. The non-local subgraph represents the summary
connection graph of the method. This summary information is used at each call site
invoking the method, as described in the next section. As a further optimization to
reduce the number of nodes and path lengths in the summary representation, each
reference node in the non-local subgraph is bypassed by connecting its predecessors
directly to its successors, so that the non-local subgraph consists only of the nodes
representing actual parameters, objects and fields accessed via the parameters, and
a single bottom node that represents all nodes with the GlobalEscape escape state.

Figure 8(B) - Figure 8(D) show the connection graph at the exit of method
T(). In this connection graph, the object node S4 is a phantom node that was
created at Statement S4 during intraprocedural analysis of T(). The object nodes
S3 and S5 were created locally in T(). In the figure, we can see that the structure in
Figure 8(B) is local to method T(), and so will not escape T(). We also see that the
A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 19

assignment to the global reference variable, “g = f2”, makes the formal parameter
f2 and the phantom reference node a2 all GlobalEscape as shown in Figure 8(D).
In the figure, a deferred edge from g to a2 is shown for exposition. The summary
graph for method T() will consist of the non-local subgraphs shown in Figure 8(C)
and Figure 8(D). This summary graph will be mapped back to caller’s connection
graph (see Section 4.4).

4.3 Connection Graph Immediately Before a Method Invocation

At a method invocation site, each parameter passing is handled as an assignment
to an actual parameter âi at the caller. Let u1 be a reference to an object U1.
Consider a call u1.foo(u2, . . . un), where u2 . . . un are actual parameters to foo().
We model the call as follows: â1 = u1; â2 = u2; . . . ; foo(â1, â2, . . . ân). How to
handle a virtual method is described in the next section. Each âi at the call site
will be matched with the phantom reference node ai of the callee method. In
Figure 8(E), two nodes, â1 and â2 , are created with deferred edges pointing to the
first and the second actual parameters to the call, u and v, respectively.

4.4 Connection Graph Immediately After a Method Invocation

At this point, we essentially map the callee’s connection graph summary information
back to the caller’s connection graph (CG). Three types of nodes play an important
role in updating the caller’s CG with the callee’s CG immediately after a method
invocation: âi’s of the caller’s CG, ai’s of the callee’s CG, and the return node
of the callee’s CG. Updating the caller’s CG is done in two steps: (1) updating
the node set of the caller’s CG using âi’s and ai’s; and (2) updating the edge
set of the caller’s CG using âi’s and ai’s. We refer to these steps collectively as
the UpdateCaller() routine. Updating the return node is done during the first
step by treating the return node the same as ai and treating the node that is
assigned the result of the method invocation the same as âi. If the callee is a
virtual method, we first union the summary connection graphs of all the methods
that might be a target of the call, and then use the unioned graph as the callee’s
summary connection graph.

Updating Caller Nodes. Figure 9 describes how we map the nodes in the callee’s
CG with the nodes in the caller’s CG. This mapping of nodes from callee CG to
caller CG is based on identifying the MapsTo relation among object nodes in the
two CGs. As a base case, we ensure that ai maps to âi. Given the base case, we
also ensure that a node in PointsTo(ai) maps to any node in PointsTo(âi). We
formally define the relation MapsTo (7−→), among objects belonging to a callee CG
and a caller CG recursively as follows:

Definition 4.1. (1) ai 7−→ âi

(2) Op ∈ PointsTo(p) 7−→ Oq ∈ PointsTo(q), if
(a) (p = ai) ∧ (q = âi), or
(b) (p = O.f) ∧ (q = Ô.g) ∧ (O 7−→ Ô) ∧ (fid(f) = fid(g)).

In Figure 9, MapsToObj (n) denotes the set of objects that n can be mapped to
using the MapsTo relation discussed above. In the figure, we use the subscript er to
denote caller nodes and ee to denote callee nodes. The algorithm starts with ai and

A shorter version of this report has been submitted to ACM TOPLAS

20 · Jong-Deok Choi et al.

UpdateCallerNodes()

{
1: foreach ai, âi actual parameter pair do
2: UpdateNodes (ai, {âi});
3: endfor

}
UpdateNodes(fee: field node;

MapsToF : set of field nodes)

// MapsToF is the set of MapsTo field nodes of fee
{
4: foreach object node no ∈ PointsTo(fee) do
5: foreach fer ∈ MapsToF do

6: if PointsTo(fer) = ∅ then
7: CreateTargetNode(fer); // create/insert a new node as the target of fer
8: endif

9: foreach n̂o ∈ PointsTo(fer) do
10: if n̂o 6∈ MapsToObj (no) then
11: MapsToObj (no) = MapsToObj (no) ∪ {n̂o};
12: UpdateEscapeState(no, n̂o);

13: foreach ´fee such that no
F→ ´fee do

14: tmpMapsToF = { ´fer | n̂o
F→ ´fer and fid(´fee) = fid(´fer)};

15: UpdateNodes(´fee, tmpMapsToF);
16: endfor

17: endif
18: endfor

19: endfor

20: endfor
}

Fig. 9. Algorithm to Update the Caller’s Connection Graph Nodes.

âi as the original “fields” that map to/from each other, and then recursively finds
other objects in the caller CG that are MapsTo nodes of each corresponding callee
object. The escape state of the nodes in MapsToObj (n) is marked GlobalEscape
if the escape state of n is GlobalEscape (UpdateEscapeState() at Statement 12).
Otherwise, the escape state of the caller nodes is not affected.

The main body of procedure UpdateNodes is applied to all the callee object nodes
pointed to by the callee field node fee (Statement 4). Given a callee object node no,
Statement 9 computes the set of no’s MapsTo object nodes in the caller graph. This
is done by identifying the set of caller object nodes “pointed” to by the caller field
node fer, which is itself a MapsTo field node of callee node fee (i.e. fer ∈ MapsToF).
A caller object node, n̂o, and its field nodes are created at Statement 7 if no MapsTo
caller object node exists, with an escape state of NoEscape (CreateTargetNode()
at Statement 7). In the connection graph of a method, however, we create at most
one object node for any allocation site in the program.

Given a callee object node no and its MapsTo caller node n̂o, Statement 14
computes, for each field node of no (i.e. f́ee), the set of MapsTo field nodes of the
caller (i.e. tmpMapsToF). It then recursively invokes UpdateNodes, passing f́ee
and tmpMapsToF as the new parameters (Statement 15).
A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 21

Updating Caller Edges. Recall that following the removal of deferred edges, there
are two types of edges in the summary connection graph: field edges and points-
to edges. Field edges get created at Statement 7 in Figure 9 while the nodes are
updated.

To handle points-to edges, we do the following: Let p and q be object nodes of
the callee graph such that p F→ fp

P→ q. Then, for each p̂ ∈ MapsToObj (p) and

q̂ ∈ MapsToObj (q), both of the caller, we establish p̂
F→ f̂p

P→ q̂ by inserting a

points-to edge f̂p
P→ q̂ for each field node f̂p of p̂ such that fid(fp) = fid(f̂p).

Example. Consider the summary non-local subgraphs shown in Figure 8(C) and
Figure 8(D). First, all nodes that are reachable from global variable g are marked ⊥
(i.e. GlobalEscape). Then, all nodes reachable from the phantom reference node a1,
but not reachable from g are marked as ArgEscape. Now when we analyze method
L() intraprocedurally we would construct the connection shown in Figure 8(F) that
is right after the invocation site of T(). We will first mark the phantom reference
node a1 of the callee (in Figure 8(C)) and the phantom node â1 of the caller (in
Figure 8(F)) as the initial “field” nodes, i.e. ai and {âi} at Statement 2 in Figure 9.
Then we will map the phantom node S4, pointed to by a1, to S0, pointed to by â1 .
The cycle in the non-local subgraph of T() also results in mapping S1 as a MapsTo
node of S4. The cycle also results in inserting edges from the next fields of S0 and
S1 to both S0 and S1. This is a result of the 1-limited approach we take in creating
a phantom node: we create at most one phantom node at a statement. Now since
a2 is marked ⊥, all the nodes of the caller reachable from â2 will also be marked
as ⊥.

4.5 Updating Escape State of Nodes in Callees to Identify Thread-Local Data

After the bottom-up phase of interprocedural analysis described above, all object
nodes marked NoEscape can be regarded as stack-allocatable as well as thread-local.
We now describe the analysis step to identify those object nodes, marked ArgEscape
at this stage, which should be marked GlobalEscape based on reachability informa-
tion from any caller. If this step is omitted, all object nodes marked ArgEscape will
have to be conservatively regarded as escaping their thread of creation. For sim-
plicity, we perform this propagation of GlobalEscape state in a separate top-down
traversal over the PCG, although it could be combined with the core interprocedural
analysis described above. Again, cycles in the PCG are handled by iterating until
the solution converges. For each object marked GlobalEscape in a method, we iden-
tify the corresponding nodes in each callee method and mark them GlobalEscape.
Thus, an object in a method is conservatively marked as escaping its thread of
creation if it escapes the thread of creation in any caller of that method. (This con-
servativeness is necessary because we do not perform method specialization.) The
nodes in the callees which correspond to nodes in the callers are identified using the
inverse of the MapsTo relation described in Section 4.4. In fact, we keep track of
this inverse mapping when applying the analysis described in Section 4.4. Note that
this step does not affect the escape state of any node marked NoEscape in the core
part of our interprocedural analysis, because if such a node had a corresponding
node in the caller (i.e., if it were reachable from the caller), it would not have been

A shorter version of this report has been submitted to ACM TOPLAS

22 · Jong-Deok Choi et al.

marked NoEscape in the first place.

4.6 Java’s Strong Type Information

We can exploit Java’s strong type system in computing the connection graph for a
method whose body cannot be (or, has not been) analyzed. Examples of bottom
methods are native methods implemented in a non-Java language. The representa-
tion for such a method, called a bottom method, is called the bottom graph, which
has one node for each class of the program. Given two nodes N1 and N2 in the
bottom graph that represent two classes C1 and C2, respectively, there is a points-
to edge from N1 to N2 if C1 contains an instance field that is a reference to C2.
There is a deferred edge from N1 to N2 if C2 is a sub-type of C1. If a static field
of any class contains a reference to C1, the corresponding node N1 in the bottom
graph is marked GlobalEscape.

In effect, the bottom graph is the most conservative connection graph of the
program allowed under Java’s type system.

The bottom graph can be used to conservatively establish connections among
nodes that are reachable from the actual parameters passed to a bottom method
and static fields. Let O1 and O2 be two object nodes reachable from actual pa-
rameters passed to a bottom method or from static fields, and N1 and N2 be their
corresponding nodes in the bottom graph. If there exists an edge from a field of
N1 to N2, we insert a edge from the corresponding field node of O1 to O2. Also,
we make GlobalEscape any object reachable from an actual parameter passed to
a bottom method if the corresponding node in the bottom graph is marked Glob-
alEscape.

In a dynamic optimization system, a method that has not been analyzed by the
compiler also becomes a bottom method when the compiler generates code for a
caller of the method. In this case, the bottom method may have been interpreted
or compiled without analysis/optimization. Although our current implementation
does not take advantage of the type information in bottom methods, the combi-
nation of the bottom graph and the summary graph would make our approach for
escape analysis well suited for dynamic Java compilation systems such as Jalapeño
at IBM Research [Burke et al. 1999].

5. HANDLING EXCEPTIONS AND FINALIZATION OF JAVA

In this section, we show how we handle Java-specific features such as exceptions
and object finalization.

5.1 Exceptions

We now show how our framework handles exceptions. Exceptions are precise in
Java, hence any code motion across the exception point should be invisible to
the user program. An exception thrown by a statement is caught by the closest
dynamically enclosing catch block that handles the exception [Gosling et al. 1996].

One way to do data flow analysis in the presence of exceptions is to add a control
flow graph edge from each statement that can throw an exception to each catch
block that can potentially catch the exception, or to the exit of the method if
there is no catch block for the exception. The added edges ensure that data flow
information holding at an exception-throwing statement will not be killed by state-
A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 23

ments after the exception throwing statement, since the information incorporating
the “kill” would be incorrect if the exception was thrown.

We, however, use a simpler strategy for doing data flow analysis in the presence
of exceptions. Recall that we “kill” only local reference variables of a method in a
flow-sensitive analysis. Therefore, we only need to worry about them. Of the local
variables within a try block, we kill only those that are declared within the block.
Local reference variables declared outside the try block should not be killed, as
they can be live at the termination of the block if an exception is thrown. We will
use the following example to elaborate on this point. In the example, x is local to
the method, but non-local to the try-catch statement.

m0(T1 f1, T2 f2) {
T1 x;

S1: try {
S2: x = new T1(); // creates object O1
S3: x.b = f2;

// sets up a path from x to f2.
S4: ... // an exception is thrown here.
S5: x = new T1(); // creates object O2

} catch (Exception e) {
S6: System.out.println("Don’t worry");

}
S7: f1.a = x;
}

Assume that an exception is thrown at S4. After the catch block, when S7 is
executed, f2 will become reachable from f1. If we were to kill the points-to edge
from x to object node O1 at S5, then we would lose the path information from
f1 to f2, and hence, would have an incorrect connection graph. Recall that our
strategy is not to kill information for variables in a try block that are not local to
the block. Hence, in this example, we will not delete the previous edge from x to
O1 (whose field node b has an edge to f2) while analyzing S5. Hence, at S7, after
putting an edge from f1 to x, we would correctly have a connection graph path
from f1 to f2.

A method (transitively) invoked within a try-catch block can be handled in
the same manner as a regular statement block in its place: we can kill any locals
declared in that method. An important implication of this approach is that we
can ignore potential run-time exceptions within methods that do not have any
try-catch blocks in them. Many methods in Java correspond to this case.

5.2 Finalization

Before the storage for an object is reclaimed by the garbage collector, the Java
Virtual Machine invokes a special method, the finalizer, of that object [Gosling
et al. 1996]. The class Object, which is a superclass of every other class, provides
a default definition of the finalize method, which takes no action. If a class
overrides the finalize method such that its this parameter is referenced, it means

A shorter version of this report has been submitted to ACM TOPLAS

24 · Jong-Deok Choi et al.

that an object of that class is reachable (due to the invocation of the finalizer) even
after there are no more references to it from any live thread. We deal with this
problem by marking each object of the class overriding the finalizer as GlobalEscape
(⊥).

6. ELIMINATING REDUNDANT STORAGE SYNCHRONIZATION OPERATIONS

Synchronization operations in Java perform two functions. The first is to enforce
mutual exclusion by acquiring and releasing a lock. These locking operations can
be optimized as discussed in Section 7. The second function is to force global values
cached in thread local memory to be updated from, or written to, global memory.
This is similar to the effects of synchronization in a release consistency system such
as TreadMarks [Amza et al. 1996].

The semantics of the acquire phase of the synchronization operation are to (1)
obtain a lock, and (2) ensure that locally cached values of global shared variables
are updated with the global shared value. The second requirement can be enforced
by the hardware cache coherence mechanism and an inexpensive instruction syn-
chronization (isync on the PowerPC architecture) instruction. The semantics of
the release phase of the synchronization operation are to (1) make sure all writes
to memory of global shared values are completed, and (2) release the lock. En-
forcement of the first requirement requires executing a storage synchronization
instruction. In this article the storage synchronization instruction will be called
the sync instruction, which is its name in the PowerPC architecture [May et al.
1994]6 Sync operations can be expensive, particularly on multiprocessor systems,
since each memory sub-system must acknowledge the completion of all writes. The
remainder of this section discusses an unimplemented analysis that builds upon
the results of escape analysis to determine when sync operations can be eliminated
from the release phase of a synchronization operation.

The results in Table III of Section 7 give an upper bound of the effectiveness
of this analysis on a uniprocessor system. Because the cost of a sync operation is
typically higher on a multiprocessor system, the benefit from this analysis will also
be greater.

6.1 When sync operations are required

Before considering the details of how to determine when a sync operation is not
needed, we state the conditions when a sync operation must be executed. Let w
(r) be a write (read) of value v in thread Tw (Tr) of a thread escaping object O.
Also let s be a sync operation implied by the release phase of some synchronization
in Tw. Then s must be executed if (1) there is a path from any w to s without an
intervening sync operation, and (2) there exists a corresponding r operation for the
w operation.

In our analysis we make the following conservative assumption: for any write w
and r as defined above, we assume that if w exists then r also exists, and Tr 6= Tw.
Because escape analysis information has already been computed, determining that
a sync operation s should be eliminated only requires determining if there is a path

6The sync instruction is sometimes called the fence instruction in the literature and on other

architectures.

A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 25

from some w to s that does not contain another sync operation. We model this as
a 1-bit dataflow problem.

6.2 Intraprocedural analysis

The intraprocedural analysis is accomplished by iterating over a control flow graph
of the method or procedure being analyzed. The graph contains nodes representing
acquire operations, branches, and writes to global escaping objects. Each node N of
the graph has four fields: IN, OUT, GEN and KILL. The GEN field is initially set to
true if the node contains a write to a thread escaping object, and false otherwise.
The KILL node is set to false if the node performs a release operation, and true
otherwise. The IN and OUT nodes are initialized to false. If the node represents a
method invocation, the values of the fields represent summary information for the
method as described in Section 6.3.

Nodes other than those representing acquire operations, and writes to global
escaping objects have no affect on the analysis, and can be modeled by setting
their OUT field to the value of their IN field whenever they are visited.

Intuitively, the IN field of a node ni becomes true after the analysis if there is a
path from a write of a thread escaping variable to ni which does not visit a node
containing a release operation, and remains false otherwise. OUT becomes true if
either this node contains a write of a thread escaping variable, or IN is true and
the node does not perform a release operation.

The entry node for the method is initialized differently, with GEN set to true.
This allows the optimizations to be correct regardless of the calling context.

The analysis iterates over a method’s graph until no change is noted in the KILL
fields for all nodes. As each node N is visited, the IN field is computed as:

IN =
∨

p∈pred(N)

p.IN (4)

and the transfer function is computed by:

OUT = (IN ∧KILL) ∨GEN . (5)

The ∧ operation is performed using a bit-wise and, while ∨ is performed using a
bit-wise or operation. Intuitively, if KILL is true (i.e. the node does not perform a
release) it does not effect the state of the input to the node. After the analysis is
completed, any node that performs a release operation, and whose IN field is true
must perform a sync as part of the release operation. The sync can be eliminated
from all other release operations.

6.3 Procedure summary information

Procedure summary information is gathered by invoking the intra-procedural anal-
ysis algorithm at each call to a method for which summary information is not
available. Summary information is gathered for the GEN and KILL fields. If the
invocation is a virtual method call, then the summary GEN information for the
call site is computed by or’ing the GEN information for all methods that might be
invoked. The summary KILL information is found by performing a meet operation
(∧) over the KILL information for all methods that might be called.

A shorter version of this report has been submitted to ACM TOPLAS

26 · Jong-Deok Choi et al.

GEN summary information is gathered by setting the IN field of the ENTRY
node of the graph for the method being analyzed to false. If, after analysis, the
OUT field of the graph’s exit node is false, then either no writes to thread escaping
objects occurred in the method, or any that did were killed by release operations.
The summary GEN information is also set to false. Otherwise, the summary
information is set to true.

To compute KILL summary information, the IN field of the entry node of the
graph for the method being analyzed is set to true. If, after analysis, the OUT
field of the graph’s exit node is false, then both the incoming write to a thread
escaping object field is killed, or sync’ed, within the thread, and no additional write
to a thread escaping object’s field is performed that is not also killed. Thus the
invocation as a whole kills the incoming writes, and the summary KILL information
is set to false. Otherwise, it is set to true. Note that if the GEN summary
information for a method is true, the KILL information must also be true.

The computed summary information is memoized, and therefore only needs to be
computed once for each method, not once per call site. GEN and KILL summary
information can be conservatively approximated by setting them to both to true.

7. TRANSFORMATION AND RUN-TIME SUPPORT

We have implemented two optimizations based on escape analysis in the IBM High
Performance (static) Compiler for Java (HPCJ) for the PowerPC/AIX architec-
ture platform [International Business Machines Corporation 1997; Seshadri 1997]:
(1) allocation of objects on the stack, and (2) elimination of unnecessary synchro-
nization operations. In this section, we describe the transformation applied to the
user code (based on the analysis described in previous sections) and the run-time
support to implement these optimizations.

7.1 Transformation

Once the analysis converges during the iteration over the call graph (i.e., when
there are no further changes being made to any connection graph in terms of edges
or the EscapeState of nodes), we mark each new site in the program as follows,
based on the following information: (1) if the EscapeState of the corresponding
object node is NoEscape, the new site is marked stack-allocatable, and (2) if the
EscapeState of the corresponding object node is NoEscape or ArgEscape, the new
site is marked as allocating thread-local data. Since we use a 1-limited scheme for
naming objects, a new statement (a compile-time object name) is marked stack-
allocatable or thread-local only if all objects allocated during run time at this new
site are stack-allocatable or thread-local, respectively.

7.2 Run-Time Support

We allocate objects on the stack by calling the native alloca routine in HPCJ’s
AIX backend. Each invocation of alloca essentially grows the current stack frame
at run time by some amount. In cases where (1) the object requires a fixed size,
and (2) either just a single instance of a new statement executes in a given method
invocation, or the previous instance of the object allocated at a new statement is no
longer live when the new statement is executed next, it would be possible to allocate
a fixed piece of storage on the stack frame for that new statement. Our current
A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 27

Program Description Number of Size of

classes classes

vtrans High Performance Java Translator (IBM) 142 503K
jgl Java Generic Library 1.0 (ObjectSpace) 135 217K

jacorb Java Object Request Broker 0.5 (U. Freie) 436 308K

jolt Java to C translator (KB Sriram) 46 90K
jobe Java Obfuscator 1.0 (E. Jokipii) 46 60K

javacup Java Constructor of Parsers (S. Hudson) 59 101K
hashjava Java Obfuscator (KB Sriram) 98 183K

toba Java to C translator (U. Arizona) 19 86K

wingdis Java decompiler, demo version (WingSoft) 48 178K
pbob portable Business Object Benchmark (IBM) 65 333K

Table I. Benchmarks used in our experiments.

implementation does not perform this analysis to reuse stack space. A potential
downside of our approach is that the stack frame may grow in an unconstrained
manner, since it is not garbage collected.

A secondary benefit of stack allocation is the elimination of occasional synchro-
nization for allocation of objects from the thread-common heap. In order to avoid
synchronization on each heap allocation, the run-time system in HPCJ uses the
following scheme. Each thread usually allocates objects from its thread-local heap
space. For allocating a large object or when the local heap space is exhausted, the
thread needs to allocate from thread-common heap space, which requires a relatively
heavy-weight synchronization. Stack-allocated objects reduce the requirement for
allocations from the thread-common heap space. Because the number of objects
allocated from thread-common heap space, the benefits will vary depending on
the particular allocation strategy employed by a particular JVM. Nevertheless, the
information derived from escape analysis allows this benefit to be fully derived.

Elimination of synchronization operations requires run-time support at two
places: allocation sites of objects, i.e., new sites; and use sites of objects as syn-
chronization targets, i.e., synchronized methods or statements. In HPCJ, syn-
chronized methods and statements are implemented using monitorenter and mon-
itorexit atomic operations. The implementation of these operations in HPCJ has
two parts: (1) atomic compare and swap operation for ensuring mutual exclusion,
and (2) PowerPC sync primitive for flushing the local cache.

We mark objects at the allocation sites using a single bit in the object represen-
tation, indicating whether the object is thread-local. At the use sites of objects, we
modified the routine implementing monitorenter on an object to bypass the expen-
sive atomic operation (compare and swap) if its thread-local bit is set, and instead
use a non-atomic operation. It is important to note that our scheme has benefits
even for the thin-lock synchronization implementation [Bacon et al. 1998], which
still needs an atomic operation (compare and swap); we completely eliminate the
need for atomic lock operations for thread-local objects. Note that we still flush the
local memory to ensure that global variables are made visible at synchronization
points to observe Java semantics [Gosling et al. 1996]. Since the only change we
make regarding synchronization is to eliminate the instructions that ensure mutual
exclusion, the semantics of all other thread-related operations such as wait and
notify remain unchanged as well.

A shorter version of this report has been submitted to ACM TOPLAS

28 · Jong-Deok Choi et al.

Program Number of objects Size of objects Total number of
allocated in bytes allocated locks

user user + user user + user user +
library library library

trans 263K 727K 7656K 31333K 868K 885K
jgl 3808K 4157K 124409K 139027K 10391K 10434K
jacorb 103K 48036K 2815K 3423323K 546K 672K
jolt 94K 593K 3006K 17511K 1030K 1348K
jobe 204K 339K 7957K 13331K 77K 106K
javacup 67K 330K 1672K 8454K 191K 287K
hashjava 173K 248K 4671K 8270K 158K 165K
toba 154K 2201K 5878K 59356K 1060K 1246K
wingdis 840K 2561K 25902K 92238K 2105K 2299K
pbob 19787K 48206K 639980K 2749520K 35691K 171189K

Table II. Benchmarks characteristics

8. EXPERIMENTAL RESULTS

This section evaluates escape analysis on several Java benchmark programs. We
experimented with four variants of the algorithm for the two applications: (1) Flow
sensitive (FS) analysis, (2) Flow sensitive analysis with bounded field nodes (BFS),
(3) Flow insensitive analysis (FI), and Flow insensitive analysis with bounded field
nodes (BFI). The difference between FS and FI is that FI ignores the control-flow
graph and never kills. Bounded field nodes essentially limit the number of field
nodes that we wish to model for each object. We use a simple mod operation to
keep the number of field nodes bounded. For instance, the kth reference field of an
object can be mapped to the (k mod m)th field node. In our implementation, we
used m = 3. Bounding the number of fields reduces the space and time requirement
for our analysis, but can make the result less precise.

Our testbed consisted of a 333 MHz uniprocessor PowerPC running AIX 4.1.5,
with 1 MB L2 Cache and 512 MB memory. We selected a set of 10 medium-sized to
large-sized benchmarks described in Table I for our experiments. Columns 3 and 4
give the number of classes and the size of the classes in bytes for the set of programs.
Table II gives the relevant characteristics for the benchmark programs. Columns 2
and 3 present the total number of objects dynamically allocated in the user code and
overall (including both the user code and the library code). Columns 4 and 5 show
the cumulative space in bytes occupied by the objects during program execution.
Finally, columns 6 and 7 show the total number of lock operations dynamically
encountered during execution.

In the rest of this section, we present our results for the above variants of our
analysis. All of the remaining measurements that we present refer to objects created
in the user code alone. Modifying any operations related to object creation in the
library code would require recompilation of the library code (not done in our current
implementation). Thus, our implementation analyzes library code while performing
interprocedural analysis, but does not transform library code. Section 8.1 discusses
results for stack allocation of objects. Section 8.2 discusses results for synchroniza-
tion elimination. Section 8.3 discusses the actual execution time improvements due
A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 29

to these two optimizations.

8.1 Stack Allocation

Figure 10 shows the percentage of user objects that we allocate on the stack, and
Figure 11 gives the percentage in terms of space (bytes) that is stack-allocatable.

A substantial number of objects are stack-allocatable for jacorb, jolt, wingdis,
and toba (if one does not bound the number of fields nodes). We did not see
much difference between FS and FI (i.e. flow-sensitive and flow-insensitive without
bounding the number of fields distinguished). And in most cases, bounding the
number of field did not make much difference in the percentage values (for example,
see trans, jgl, jolt, jobe, javacup, hashjava, and wingdis). Interestingly, toba
and jolt (both of which are Java to C translators) have similar characteristics in
terms of stack allocatability of objects. Both of these benchmarks have a substantial
number of objects that are stack-allocatable. But in the case of toba, limiting the
number of fields drastically reduces the number of objects that are stack-allocatable.

8.2 Lock Elimination

For lock elimination, we collected two sets of data (again for different variants of
the analysis). We measured both the number of dynamic objects that are identified
by our analysis as thread-local and how many lock operations are executed over
these objects. Figure 12 shows the percentage of user objects that are determined
to be local to a thread, and Figure 13 shows the percentage of lock operations
that are removed for these thread-local objects during execution. It can be seen
that our most precise analysis version finds a lot of opportunities to eliminate
synchronization, removing more than 50% of the synchronization operations in half
of the programs. One can deduce certain interesting characteristics by comparing
the two graphs. For pbob, one can see that the percentage of thread-local objects
(≈ 50%) is higher than the percentage of locks removed (≈ 15%). Our observation
is that relatively few thread-local objects are actually involved in synchronization.

For wingdis, we have found a large percentage of objects that are thread-local
(≈ 75%), and were able to remove ≈ 91% of synchronization operations. Notice
that jobe has very few objects identified as thread-local. However, there are a
relatively large number of synchronization operations performed on them, leading
to a significant opportunity for eliminating those operations. The versions of our
analysis using unbounded number of field nodes are able to remove a much higher
percentage of synchronization operations than the bounded versions (even though
the percentage of objects identified as thread-local, ranging from 0.3% to 0.8%,
is too small to be noticeable). We conjecture that this difference comes from the
fact that in the bounded cases, some GlobalEscape fields and NoEscape fields can
be mapped onto the same node, resulting in loss of precision. Another interesting
characteristic we observed is that for most cases, all four variants of the analysis
performed equally well (except for jacorb, hashjava, toba, and pbob). For toba,
bounding the number of fields, again, significantly reduced the percentage values
of both the number of thread-local objects and the number of synchronization
operations that could be eliminated.

A shorter version of this report has been submitted to ACM TOPLAS

30 · Jong-Deok Choi et al.

trans
jgl

jacorb
jolt

jobe
javacup

hashjava
toba

wingdis
pbob

0

20

40

60

80

100

FS
BFS
FI
BFI

Fig. 10. Percentage of user code objects allocated on the stack.

8.3 Execution Time Improvements

Table III summarizes our results for execution time improvements. The second
column shows the execution time (in seconds) prior to applying optimizations due
to escape analysis. The third column shows the percentage reduction in execution

Program Execution percentage potential
time (sec) reduction of sync

elimination

trans 5.2 7 % 2 %

jgl 18.8 23 % 5 %
jacorb 2.5 6 % 5 %

jolt 6.8 4 % 4 %
jobe 9.4 2 % 1 %

javacup 1.4 6 % 0 %
hashjava 6.4 5 % 2 %
toba 4.0 16 % 4 %

wingdis 18.0 15 % 2 %
pbob N/A 6 % N/A

Table III. Improvements in execution time

A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 31

trans
jgl

jacorb
jolt

jobe
javacup

hashjava
toba

wingdis
pbob

0

20

40

60

80

100

FS
BFS
FI
BFI

Fig. 11. Percentage of user code object space allocated on the stack.

time due to stack allocation of objects and synchronization elimination with our
flow-sensitive analysis version. The time for pbob is not shown, because it runs
for a predetermined length of time; its improvement is given as an increase in the
number of transactions in that time period. pbob was run on a 4-way PowerPC
SMP machine.

Table III shows an appreciable performance improvement (greater than 15% re-
duction in execution time) in three programs (wingdis, jgl and toba), and rela-
tively modest improvements in other programs. jgl had a significant percentage of
thread local objects, and a corresponding high percentage of locks removed, which
contributed to its good performance. wingdis and toba shared these characteris-
tics, and a substantial percentage of their objects were also stack allocatable. The
table also shows the improvement that results from removing all sync instructions
from the code. This gives an upper bound on the performance improvements that
can be expected from implementing the sync removal analysis of Section 6. We
note that the benefit is potentially greater for programs with threads executing on
multiple processors since the overhead incurred by the sync instruction is greater.

A shorter version of this report has been submitted to ACM TOPLAS

32 · Jong-Deok Choi et al.

trans
jgl

jacorb
jolt

jobe
javacup

hashjava
toba

wingdis
pbob

0

20

40

60

80

100

FS
BFS
FI
BFI

Fig. 12. Percentage of thread local objects in user code.

9. RELATED WORK

Lifetime analysis of dynamically allocated objects has been traditionally used for
compile time storage management [Ruggieri and Murtagh 1988; Park and Gold-
berg 1992; Birkedal et al. 1996]. Park and Goldberg introduced the term escape
analysis [Park and Goldberg 1992] for statically determining which parts of a list
that are passed to a function do not escape the function call (and hence can be
stack allocated). Others have improved and extended Park and Goldberg’s work
[Deutsch 1997; Blanchet 1998]. Birkedal et al. [Birkedal et al. 1996] propose a
region allocation model, where regions are managed during compilation. A type
system is used to translate a functional program to another functional program
annotated with regions where values could be stored. Hannan [Hannan 1995] uses
a type system to translate a strongly typed functional program to an annotated
functional program, where the annotation is used for stack allocation rather than
for region allocation. In our case we only stack allocates objects that do not escape
a method and are created in the method. In some cases it is possible preallocate
objects that escape a method akin to region allocation [Gay and Steensgaard 1999;
Gay and Aiken 1998].

Prior work on synchronization optimization has addressed the problem of reduc-
A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 33

trans
jgl

jacorb
jolt

jobe
javacup

hashjava
toba

wingdis
pbob

0

20

40

60

80

100

FS
BFS
FI
BFI

Fig. 13. Percentage of locks removed on objects in user code.

ing the amount of synchronization [Diniz and Rinard 1997; Li and Abu-Sufah 1987;
Midkiff and Padua 1987]. These approaches assume that the mutual exclusion
ordering implied by the original synchronization is needed, and so only attempt
to reduce the number of such operations without violating the original ordering.
In contrast, our approach finds unnecessary mutual exclusion lock operations and
eliminates them.

There have been a number of parallel efforts on escape analysis for Java [Choi
et al. 1999; Gay and Steensgaard 1999; Reid et al. 1999; Bodga and Hölzle 1999;
Aldrich et al. 1999; Whaley and Rinard 1999; Blanchet 1999]. The current article
is an extended version of Choi et al. [Choi et al. 1999], and includes a more detailed
discussion of various optimizations and analysis.

Bogda and Hölzle use set constraints for computing thread-local objects [Bodga
and Hölzle 1999]. Their system is a bytecode translator, and uses replication of
execution paths as the means for eliminating unnecessary synchronization. Af-
ter replication, they convert synchronized methods that access only thread-local
objects into non-synchronized methods. This conversion, in general, breaks Java
semantics—since at the beginning and the end of a synchronized method or a
statement, the local memory has to be synchronized with the main memory (see

A shorter version of this report has been submitted to ACM TOPLAS

34 · Jong-Deok Choi et al.

Section 7). Replication, however, offers an opportunity for specializing an alloca-
tion site that generates both thread-local and thread-global objects along different
call chains. They also summarize the effect of native methods (although manually).
Using the summary information, they improve the precision of their analysis. Our
approach can be extended to include specialization and native method analysis.

Whaley and Rinard describe an escape analysis technique that is similar to ours.
Two notable differences are that they construct a regular points-to graph and for
certain cases they are able to perform strong updates on field variables [Whaley
and Rinard 1999]. In a more recent paper, they use a demand-driven approach to
speed up the analysis [Vivient and Rinard 2001].

Aldrich et al. describe a set of analyses for eliminating unnecessary synchroniza-
tion on multiple re-entries of a monitor by the same thread, nested monitors, and
thread-local objects [Aldrich et al. 1999]. They also remove synchronization oper-
ations, which can break Java semantics. They claim that their approach, however,
should be safe for most well-written multithreaded programs in Java, which assume
a “looser synchronization” model than what Java provides.

Blanchet uses type heights (which are integer values) to encode how an object
of one type can have references to other objects or is a subtype of another ob-
ject [Blanchet 1999]. The escaping part of an object is represented by the height of
its type. He proposes a two-phase (a backward phase and a forward phase) flow-
insensitive analysis for computing escape information. He uses escape analysis, like
our work, for both stack allocation and synchronization elimination. For synchro-
nization elimination, before acquiring a lock on an object o, his algorithm tests at
runtime whether o is on the stack – if it is, the synchronization is skipped. Our
algorithm uses a separate thread-local bit within each object, and can skip the syn-
chronization even for objects that are not stack allocatable (but are thread local).
In our approach when an object is reachable from a global variable we do not elim-
inate synchronization on it, since multiple threads may potential access it. Ruf’s
analysis essentially computes threads that access global escape objects [Ruf 2000].
If only one thread accesses such global escape objects, synchronization operations
can be eliminated on them.

A key difference between the points-to graph used in pointer analysis and the
connection graph used in escape analysis is that if two access paths in a points-to
graph are disjoint, then the corresponding objects in the two paths do not interfere.
On the other hand, if two paths are disjoint in the connection graph, nothing can
be said about the interference of the objects in the access path. So our mapping of
the callee connection graph with the caller connection graph is simpler. Fähndrich
et al. also observe the above property and use directional information to speed-up
queries on data flow information [Fähndrich et al. 2000].

To reduce the size of finite-state models of concurrent Java programs, Corbett
uses a technique called virtual coarsening [Corbett 1998]. In virtual coarsening,
invisible actions (e.g., updates to variables that are local or protected by a lock)
are collapsed into adjacent visible actions. Corbett uses a simple intraprocedural
pointer analysis (after method inlining) to identify the heap objects that are local
to a thread, and also to identify the variables that are guarded by various locks.

Pugh describes some problems with the semantics of the Java memory
model [Pugh 1999], and is spearheading an effort to revise the memory
A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 35

model [JavaMemoryModel]. All memory flush operations associated with thread-
local objects may be eliminated without further analysis (as described in Sec-
tion 6) under one of the proposals being considered for the revised Java memory
model [JavaMemoryModel].

Our connection graph abstraction is related to the alias graph and points-to
graph proposed in the literature [Larus and Hilfinger 1988; Chase et al. 1990;
Choi et al. 1993; Emami et al. 1994; Ghiya and Hendren 1998; Chatterjee et al.
1999]. Conventional representations for pointer analysis, including alias graph and
points-to graph, are used for understanding memory disambiguation and cannot
be easily summarized on a per procedure basis [Landi and Ryder 1992; Choi et al.
1993; Emami et al. 1994]. Researchers have, therefore, presented techniques to
reduce the number of distinct calling contexts for which the procedure needs to be
summarized for pointer analysis. These techniques include memoization to reuse
the data flow solution for a given calling context [Wilson and Lam 1995; Ghiya
and Hendren 1996], and inferring the relevant conditions on the unknown incoming
context while summarizing a procedure [Chatterjee et al. 1999]. Compared to
Wilson and Lam’s approach to memoization, we do lose some precision since we do
not reanalyze a method in cases where the resolution to a reference (i.e., function
pointer in the case of Wilson and Lam) is subsequently made more precise.

The connection graph is a simpler abstraction than alias or points-to graph.
We have shown that for identifying stack-allocatable objects, we can summarize
the connection graph on a per procedure basis regardless of the incoming calling
context, without losing precision. Hence, in this context, connection graph analysis
is amenable to elimination-based data flow analysis [Marlowe 1989], i.e., one can
construct a closure operation that essentially summarizes the effects of a method.

Ghiya and Hendren [Ghiya and Hendren 1996] introduce a related abstraction,
the connection matrix, to determine whether an access path exists between the
objects pointed to by two heap-directed pointers. They use this information for
shape analysis of heap-allocated objects [Ghiya and Hendren 1996], and for mem-
ory disambiguation [Ghiya and Hendren 1998]. They do not use deferred edges
in their representation, and have to compute the connection matrix for a proce-
dure repeatedly, for different calling contexts, as their work targets a more general
problem.

10. CONCLUSIONS

In this paper, we have presented a new interprocedural algorithm for escape anal-
ysis. Apart from using escape analysis for stack allocation of objects, we have
demonstrated an important new application of escape analysis – eliminating un-
necessary synchronization in Java programs. Our approach uses a data flow analysis
framework and maps escape analysis to a simple reachability problem over a con-
nection graph abstraction. With a preliminary implementation of this algorithm,
which analyzes but does not transform class library code, our static Java compiler is
able to detect a significant percentage of dynamically created objects in user code as
stack-allocatable, as high as 70% in some cases. It is able to eliminate 11% to 92%
of mutex lock operations (on objects created in the user code) in our benchmarks,
eliminating more than 50% of those lock operations in half of the benchmarks.
We observe overall performance improvements ranging from 2% to 23% on our

A shorter version of this report has been submitted to ACM TOPLAS

36 · Jong-Deok Choi et al.

benchmarks, and find that most of these improvements come from savings on lock
operations on the thread-local objects, as these programs do not seem to incur a
significant garbage collection overhead due to relatively low memory usage.

We expect to improve these results in the future with a more aggressive imple-
mentation of our algorithm that treats native methods less conservatively, and by
applying our optimizations to the Java standard class library routines as well. We
also plan to implement our algorithm to eliminate unnecessary sync operations for
flushing of local memory.

Interprocedural analysis in the presence of dynamic loading of classes, as allowed
in Java, is in general a hard problem. We are currently working on extending
our escape analysis to Jalapeño, a dynamic Java compilation system at IBM Re-
search [Burke et al. 1999].

Acknowledgement

We would like to thank David Bacon, Michael Burke, Mike Hind, Ganesan Rama-
lingam, Vivek Sarkar, Ven Seshadri, Marc Snir, and Harini Srinivasan for useful
technical discussions. We also thank OOPSLA’99 and PLDI’99 referees for their
insightful comments on early drafts of the paper.

REFERENCES

Aldrich, J., Chambers, C., Sirer, E. G., and Eggers, S. 1999. Static analysis for eliminating

unnessary synchronization from Java programs. In Proceedings of the Sixth International Static
Analysis Symposium, Venezia, Italy.

Amza, C., Cox, A., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W., and

Zwaenepoel, W. 1996. TreadMarks: Shared Memory Computing on Networks of Worksta-

tions. IEEE Computer 29, 2 (Feb.), 18–28.

Bacon, D. F., Konuru, R., Murthy, C., and Serrano, M. 1998. Thin locks: Featherweight

synchronization for Java. In Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation, Montreal, Canada.

Birkedal, L., Tofte, M., and Vejlstrup, M. 1996. From region inference to von Neumann ma-

chines via region representation inference. In Proc. 23rd Annual ACM Symposium on Principles

of Programming Languages.

Blanchet, B. 1998. Escape analysis: Correctness, proof, implementation and experimental results.
In Proc. 25th Annual ACM Symposium on Principles of Programming Languages, San Diego,
CA, pp. 25–37.

Blanchet, B. 1999. Escape analysis for object oriented languages: Application to Java. In Pro-

ceedings of ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,

and Applications, Denver, Colorado.

Bodga, J. and Hölzle, U. 1999. Removing unnecessay synchronization in Java. In Proceedings
of ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and

Applications, Denver, Colorado.

Burke, M., Carini, P., Choi, J.-D., and Hind, M. 1995. Flow-insensitive interprocedural alias

analysis in the presence of pointers. In K. Pingali, U. Banerjee, D. Gelernter, A. Nicolau,

and D. Padua (Eds.), Lecture Notes in Computer Science, 892, pp. 234–250. Springer-Verlag.
Proceedings from the 7th Workshop on Languages and Compilers for Parallel Computing.

Extended version published as Research Report RC 19546, IBM T. J. Watson Research Center,
September 1994.

Burke, M. G., Choi, J.-D., Fink, S., Grove, D., Hind, M., Sarkar, V., Serrano, M. J.,
Sreedhar, V. C., Srinivasan, H., and Whaley, J. 1999. The Jalapeño dynamic optimizing

compiler for Java. In Proc. ACM SIGPLAN 1999 Java Grande Conference.

A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 37

Chambers, C., Pechtchanski, I., Sarkar, V., Serrano, M. J., and Srinivasan, H. 1999. De-

pendence analysis for Java. In 12th International Workshop on Languages and Compilers for

Parallel Computing.

Chase, D. R., Wegman, M., and Zadeck, F. K. 1990. Analysis of pointers and structures. In

SIGPLAN ’90 Conference on Programming Language Design and Implementation, pp. 296–
310. SIGPLAN Notices 25(6).

Chatterjee, R., Ryder, B. G., and Landi, W. A. 1999. Relevant context inference. In 26th

Annual ACM SIGACT-SIGPLAN Symposium on the Principles of Programming Languages.

Choi, J.-D., Burke, M., and Carini, P. 1993. Efficient flow-sensitive interprocedural compu-

tation of pointer-induced aliases and side effects. In 20th Annual ACM SIGACT-SIGPLAN
Symposium on the Principles of Programming Languages, pp. 232–245.

Choi, J.-D., Gupta, M., Serrano, M., Sreedhar, V. C., and Midkiff, S. 1999. Escape analysis

for Java. In Proceedings of ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, Denver, Colorado.

Corbett, J. C. 1998. Constructing compact models of concurrent Java programs. In Proceedings
of the 1998 International Symposium of Software Testing and Analysis. ACM Press.

Deutsch, A. 1997. On the complexity of escape analysis. In Proc. 24th Annual ACM Symposium
on Principles of Programming Languages, San Diego, CA, pp. 358–371.

Diniz, P. and Rinard, M. 1997. Synchronization Transformations for Parallel Computing. In

Proceedings of the 9’th Workshop on Languages and Compilers for Parallel Computers.

Emami, M., Ghiya, R., and Hendren, L. 1994. Context-sensitive interprocedural points-to anal-
ysis in the presence of function pointers. In Proceedings of the ACM SIGPLAN ’94 Conference

on Programming Language Design and Implementation, pp. 242–256.

Fähndrich, M., Rehof, J., and Das, M. 2000. Scalable context-sensitive flow analysis using

instantiation constraints. In Proceedings of the ACM SIGPLAN’00 Conference of Programming
Language Design and Implementation, pp. 253–263.

Gay, D. and Aiken, A. 1998. Memory management with explicit regions. In Proc. ACM SIG-

PLAN Conference on Programming Language Design and Implementation, Montreal, Canada.

Gay, D. and Steensgaard, B. 1999. Stack allocating objects in Java. Research Report, Microsoft

Research.

Ghiya, R. and Hendren, L. J. 1996. Connection analysis: A practical interprocedural heap

analysis for C. International Journal of Parallel Programming 24, 6, 547–578.

Ghiya, R. and Hendren, L. J. 1998. Putting pointer analysis to work. In Proc. 25th Annual
ACM Symposium on Principles of Programming Languages, San Diego, CA, pp. 121–133.

Gosling, J., Joy, B., and Steele, G. 1996. The Java(TM) Language Specification. Addison-
Wesley.

Goyal, D. 2000. A language-theoretic approach to algorithms. Ph.D. thesis, New York University.
URL: http://cs.nyu.edu/phd students/deepak/thesis.ps.

Gupta, M., Choi, J.-D., and Hind, M. 2000. Optimizing Java programs in the presence of

exceptions. In Proc. European Conference on Object-Oriented Programming, Cannes, France.

Also available as IBM T. J. Watson Research Center Tech. Report RC 21644.

Hannan, J. 1995. A type-based analysis for stack allocation in functional languages. In Proc. 2nd

International Static Analysis Symposium.

Hind, M., Burke, M., Carini, P., and Choi, J.-D. 1999. Interprocedural pointer alias analysis.
ACM Transactions on Programming Languages and Systems 21, 4 (July), 848–894. available

as IBM Research Report RC8752.

International Business Machines Corporation 1997. IBM High Performance Compiler for Java.

Available for download at http://www.alphaWorks.ibm.com/formula.

JavaMemoryModel. Java memory model mailing list. Archive at
http://www.cs.umd.edu/~pugh/java/memoryModel/archive/.

Landi, W. and Ryder, B. 1992. A safe approximate algorithm for interprocedural pointer aliasing.
In SIGPLAN ’92 Conference on Programming Language Design and Implementation, pp. 235–

248. SIGPLAN Notices 27(6).

A shorter version of this report has been submitted to ACM TOPLAS

38 · Jong-Deok Choi et al.

Larus, J. R. and Hilfinger, P. N. 1988. Detecting conflicts between structure accesses. In

SIGPLAN ’88 Conference on Programming Language Design and Implementation, pp. 21–34.

SIGPLAN Notices, 23(7).

Li, Z. and Abu-Sufah, W. 1987. On reducing data synchronization in multiprocessed loops. IEEE
Transactions on Computers C-36, 1 (January), 105–109.

Marlowe, T. J. 1989. Data Flow Analysis and Incremental Iteration. Ph.D. thesis, Rutgers

University.

May, C., Silha, E., Simpson, R., and Warren, H. (Eds.) 1994. The PowerPC Architecture.
Morgan Kaufmann Publishers, Inc.

Midkiff, S. P. and Padua, D. A. 1987. Compiler algorithms for synchronization. IEEE Trans-
actions on Computing C-36, 12 (Dec), 1485–1495.

Park, Y. and Goldberg, B. 1992. Escape analysis on lists. In Proc. ACM SIGPLAN Conference

on Programming Language Design and Implementation, pp. 117–127.

Pugh, W. 1999. Fixing the Java memory model. In ACM 1999 Java Grande Conference, pp.
89–98.

Reid, A., McCorquodale, J., Baker, J., Hsieh, W., and Zachary, J. 1999. The need for
predictable garbage collection. In WCSSS’99 Workshop on Compiler Support for System Soft-
ware.

Ruf, E. 2000. Effective synchronization removal for Java. In Proceedings of the ACM SIGPLAN’00
Conference of Programming Language Design and Implementation, pp. 208–218.

Ruggieri, C. and Murtagh, T. 1988. Lifetime analysis of dynamically allocated objects. In Proc.
15th Annual ACM Symposium on Principles of Programming Languages, pp. 285–293.

Sagiv, M., Reps, T., and Wilhelm, R. 1998. Solving shape-analysis problems in languages

with destructive updating. ACM Transactions on Programming Languages and Systems 20, 1
(Jan.), 1–50.

Seshadri, V. 1997. IBM high performance compiler for Java. AIXpert Magazine. Electronic

publication available at URL http://www.developer.ibm.com/library/aixpert.

Vivient, F. and Rinard, M. 2001. Incrementalized pointer and escape analysis. In Proceedings

of the ACM SIGPLAN’01 Conference of Programming Language Design and Implementation.

Whaley, J. and Rinard, M. 1999. Compositional pointer and escape analysis for Java programs.
In Proceedings of ACM SIGPLAN Conference on Object-Oriented Programming Systems, Lan-

guages, and Applications, Denver, Colorado.

Wilson, R. P. and Lam, M. S. 1995. Efficient context-sensitive pointer analysis for C programs.
In SIGPLAN ’95 Conference on Programming Language Design and Implementation, pp. 1–12.

SIGPLAN Notices, 30(6).

A. CORRECTNESS

In this section, we establish the correctness of our escape analysis algorithm. We
will overload the notation p.f1.f2 . . . fn, called a reference expression, to denote a
set of points-to paths of length n starting from a variable p, where f1, . . . , fn denote
field nodes in the path. Let P denote a reference expression, then PointsTo(P,G)
denotes the set of abstract objects in G pointed to by the last field node of the paths
represented by the reference expression. We use PointsTo(P) as a shorthand for
PointsTo(P,G) when G is clear from the context. For object O, either an abstract
or a concrete object, AllocSite(O) denotes the set of allocation sites for O. For a
concrete object, AllocSite(O) will be a singleton, consisting of a single allocation
site.

When a field of an object is read- or write-accessed in method M , the object
might be the one created by a caller of M . We call such objects upwards-exposed
objects. A more formal definition is as follows:

A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 39

Definition A.1. Object O is upwards-exposedly accessed at program point pp in
M if (1) a field of O is read-accessed or write-accessed at pp, and (2) there exists
a path in the control flow graph from the entry of M to pp along which O is not
created. If O is upwards-exposedly accessed at a program point in M , O is an
upwards-exposed object.

The main theorem that establishes the correctness of escape analysis is The-
orem A.18. Intuitively, Theorem A.18 states that (1) if an allocation site A is
marked NoEscape, then all concrete objects allocated at this site are local to the
method, and (2) if it is marked ArgEscape, then all concrete objects allocated at this
site are local to the thread. To prove the main theorem requires several supporting
lemmas.

In the following, we use Gc to denote the concrete storage graph created during
the execution of a program, Ga to denote the points-to alias graph of the abstract
objects and edges similar to those proposed in the literature [Choi et al. 1993;
Hind et al. 1999], and implemented, for computing points-to aliases of the same
program, and CG to denote the connection graph we build for the same program.
We refer to an alias graph or a connection graph as an abstract graph.

According to the uniqueness property defined in Section 2, between Gc and Ga

of a same program, for every concrete object Oc ∈ Gc, there exists a unique ab-
stract object Oa ∈ Ga that Oc can be mapped to. The points-to analysis of Choi
et al. [Choi et al. 1993; Hind et al. 1999] relies on the uniqueness property for
constructing points-to graph. In contrast to the uniqueness property, a concrete
object can be mapped to multiple abstract objects in the connection graph, which
we call the non-uniqueness property. This non-uniqueness property of the connec-
tion graph allows for efficient bottom-up computation of connectivity for escape
analysis.

The non-uniqueness property, however, makes it impossible to straightforwardly
apply proofs based on the uniqueness property to the correctness proof of our
escape analysis based on the connection graph. This non-uniqueness make CG
different from the Gc built for the same program. We, therefore, take a three-step
approach to prove the correctness of our approach. The first step is to establish
that computing the reachability of abstract objects over Ga is a safe approximation
of computing the reachability of concrete objects over Gc. We express this as
Gc v Ga. We establish this by showing that for every access path to object Oc ∈ Gc
at a program point there is a points-to path to object Oa ∈ Ga at that point
such that AllocSite(Oc) ⊆ AllocSite(Oa). The second step is to establish that
our way of computing the reachability of abstract objects over CG is equivalent
to computing the reachability of abstract objects over Ga. We express this as
Ga v CG. (Actually, Ga v CG and CG v Ga both hold.) From these two steps,
we can trivially establish that Gc v CG: our way of computing the reachability of
abstract objects over CG is a safe approximation of computing the reachability of
concrete objects over Gc.

Finally we show, based on Gc v CG, that our way of identifying local and escap-
ing objects using the connection graph is correct. The second step of establishing
Ga v CG is necessary due to the non-uniqueness property of CG, and, therefore,
is the focus of our correctness proof.

A shorter version of this report has been submitted to ACM TOPLAS

40 · Jong-Deok Choi et al.

A.1 Gc v Ga

We first state the following two properties of Ga (whose proofs are beyond the scope
of this paper [Choi et al. 1993; Hind et al. 1999].)

Property 2. Every concrete node ci ∈ Gc is mapped to a single abstract node
aj ∈ Ga such that AllocSite(ci) ⊆ AllocSite(aj), expressed as aj = MapCtoA(ci).

Property 3. Let ci, cj ∈ Gc, am = MapCtoA(ci), an = MapCtoA(cj), and f
be a field of ci. Then, ci.f → cj only if am.f → an.7

Property 2 and Property 3 hold for points-to graphs that are constructed using the
algorithm given in [Choi et al. 1993; Hind et al. 1999], which employ k-limited
creation of abstract objects.8

Given the above properties we can establish the following theorem.

Lemma A.2. Let Oc ∈ Gc and Oa ∈ Ga. There exist a set of paths Pc =
p.f1.f2 . . . fn → Oc ∈ Gc only if there exist a set of paths Pa = p.f1.f2 . . . fn →
Oa ∈ Ga such that AllocSite(Oc) ⊆ AllocSite(Oa).

Proof. By induction on path length, based on Property 3.

Theorem A.3. Gc v Ga

Proof. According to Lemma A.2.

A.2 Ga v CG
We now establish that our way of computing the reachability of objects over CG
is equivalent to computing that over Ga. As noted previously, CG contains phan-
tom nodes (i.e. objects accessed in a method in which they are not created) that
introduce extra paths compared to Ga. We therefore have to show that these extra
paths will not affect the escape state of objects.

We use ai to denote a phantom reference variable (corresponding to a phantom
reference node) holding the initial value of formal parameter fi. We call ai the
actual parameter at the callee of formal parameter fi. We use âi to denote the
(temporary) variable of the caller holding the value of the actual parameter corre-
sponding to ai (and, thereby, to fi) of the callee. We call âi the actual parameter
at the caller of fi. The pair of ai and âi is used to identify nodes and edges, in
the caller and the callee, that correspond to each other. If the method returns
a reference (i.e. pointer in Java) value, the returned expression is treated as an
assignment to an actual parameter corresponding to the return, and the method
call is treated as read-accessing the actual parameter at the caller.

First a few more definitions are needed. Local variables are named memory
locations in Java that are defined in a method and that can be accessed only within

7For efficiency, sometimes multiple fields of a concrete node are mapped to a single edge of the

corresponding abstract node. In this case, the property can be stated as: ci.f → cj only if
am.g → an, where g is the field that f is mapped to. However, ignoring this does not affect the
correctness arguments presented herein.
8Others [Larus and Hilfinger 1988; Chase et al. 1990; Ghiya and Hendren 1998; Chatterjee et al.

1999], have proposed points-to alias graphs which are slight variants of the one proposed in [Hind

et al. 1999; Choi et al. 1993].

A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 41

a method. Local variables include the formal parameters fi, 1 ≤ i ≤ n. If the
method is a virtual method, formal parameter f0 denotes the this pointer. Non-
local variables are named memory locations in Java, such as static field of a class,
that can be accessed by more than one method. Actual parameters are regarded
as written at a call site, and are read within a called method initially through
the formal parameters. Actual parameters are, therefore, regarded as non-local
variables since they can be accessed by a caller and a callee. An object is local to
a method if there exists no path from a non-local variable of the method to the
object. Otherwise, it is a non-local object. We call the maximal subgraph of G not
reachable from any non-local the local subgraph of G.9

We create at most one abstract object per statement, and name each abstract
object after its allocation site. A Java statement containing more than one creation
sites of abstract objects is broken into smaller statements by the Java bytecode
generator. Therefore, we can identify whether an object in Ga and an object in
CG correspond to each other by their allocation sites.

Definition A.4. For Oa ∈ Ga and Ocg ∈ CG, we say Oa ∼= Ocg if and only if
AllocSite(Oa) = AllocSite(Ocg).

Definition A.5. G1 and G2 are congruent, denoted as G1
∼= G2, if for each

reference expression P , PointsTo(P,G1) = PointsTo(P,G2). Note that ((G1
∼=

G2) ∧ (G2
∼= G3)) =⇒ (G1

∼= G3)

Let Gcs and Gee be the abstract graph holding at callsite cs and the abstract
graph of the callee invoked at cs, respectively.10

Definition A.6. We use Gcs⊕Gee to denote the application of UpdateCaller()
to abstract graphs Gcs and Gee.

For simplicity of discussion, we assume routine UpdateCallerNodes() and
UpdateCallerEdges() in Section 4 are applied for all non-locals. We also as-
sume that these routines also propagate the local subgraph of the callee to the
callsite graph such that for each edge from a local object Ol to a non-local object
On in the callee graph there exist a set of edges from Ol to each of the objects to
which On is mapped to in the callsite graph.11

Let Gacs be the points-to graph holding at callsite cs invoking method M , Gai be
the points-to graph holding at program point ppi in M with respect to callsite cs,
and CGi be the connection graph holding at ppi. A major purpose of this section
(Section A.2) is to prove Theorem A.12:

Gai
∼= Gacs ⊕ CGi,

9It can be a set of disjoint graphs.
10Without loss of generality, we assume each callsite uniquely identifies a single method. When

multiple methods are identified as static targets of a method invocation at a callsite due to indirect

or dynamic dispatch, a dataflow meet operation is performed over the results, one from each target.
11We assume that all the upwards-exposed accessed objects of a callee have correspondingly

mapped objects in the points-to graph holding at a callsite of the callee. This is a reasonable
assumption for a static analysis. One way to handle when the assumption breaks within a method

is to ignore the CFG edge where it breaks until the analysis converges or an object becomes

reachable along a CFG edge.

A shorter version of this report has been submitted to ACM TOPLAS

42 · Jong-Deok Choi et al.

based on which we prove Ga v CG. Note that CGi, as a connection graph, has
the non-uniqueness property and might have phantom nodes for upwards-exposed
objects accessed in M . However, Gacs⊕CGi results in a points-to graph, which has
the uniqueness property. It does not have any phantom nodes, either.

Definition A.7. For objects Os and Ot, we use Os.fi → Ot and Os
fi−→ Ot

interchangeably to denote that there exists an edge from fi field of Os to Ot.

Definition A.8. Let Gr = Gcs ⊕ Gee. Then, for object Oe ∈ Gee and Or ∈ Gr,
MapsToObj(Oe, Gee, Gr) = {Or | Oe 7−→ Or}, where 7−→ is MapsTo relation
defined in Section 4. We use MapsToObj(Oe) and MapsToObj(Oe, Gr) as short-
hands for MapsToObj(Oe, Gee, Gr) where the meaning is clear from the context.

Lemma A.9. Let Gr = Gcs ⊕Gee. Then,

O1
f→ O2 ∈ Gee =⇒

{Ô1
f→ Ô2} ∈ Gr,∀Ô1 ∈MapsToObj(O1, Gr),∀Ô2 ∈MapsToObj(O2, Gr).

Proof. By definition of MapsToObj() and construction of UpdateCaller() in
Section 4.

For a set of objects So, we define MapsToObj(So) as follows:

MapsToObj(So) =
⋃
O

MapsToObj(O), O ∈ So.

Lemma A.10. Let Go = Gcs ⊕ Gee, and P be a reference expression. Then,
PointsTo(P,Go) = MapsToObj(PointsTo(P,Gee)).

Proof. By induction on path lengths based on Lemma A.9.

The following lemma establishes the associativity of the ⊕ operator. We use the
associativity of ⊕ in establishing the relation between the connection graph holding
right after a callsite invoking a method and the connection graph holding at the
end of the called method. Note that both the left hand side and the right hand
side of the ⊕ operation in Lemma A.11 result in points-to graphs.

Lemma A.11. Let Ga be the points-to graph holding at a callsite invoking method
M , Gb be the connection graph holding at a callsite invoking N from within M , and
Gc be the connection graph at program point ppi within N . Then,

(Ga ⊕Gb)⊕Gc ∼= Ga ⊕ (Gb ⊕Gc).

Proof. Let G0 = (Ga ⊕ Gb) ⊕ Gc, and G1 = Ga ⊕ (Gb ⊕ Gc). We prove by
showing that for all path expression P , PointsTo(P,G0) = PointsTo(P,G1) by
induction on path length. Note that we only need to consider paths that are not
in Ga since ⊕ operation deletes neither nodes nor edges..

—Base Case:
(1) Consider objects Opc , O

q
c ∈ Gc such that

gp : {p→ Opc}, gq : {q → Oqc}, gpq : {Opc
f1→ Oqc} ∈ Gc. (6)

We will first consider Ga ⊕ (Gb ⊕Gc).
A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 43

Let

OPb = MapsToObj(Opc , Gb ⊕Gc) = PointsTo(p,Gb) ∪ {Opc}, (7)
OQb = MapsToObj(Oqc , Gb ⊕Gc) = PointsTo(q,Gb) ∪ {Oqc}.12 (8)

The union of callee objects, such as Opc and Oqc , with the caller objects happens
only when the callee object is a non-phantom node or does not have any target
objects of MapsToObj() in the caller graph. However, all the target objects,
including the callee object, will have the same outgoing edges, and regarding the
callee object as being always unioned is conceptually easier to understand.
By Lemma A.9,

{Opc
f1→ Oqc} ∈ Gc =⇒

{Opb
f→ Oqb} ∈ Gb ⊕Gc,∀O

p
b ∈ OPb,∀O

q
b ∈ OQb. (9)

Let

OPa = MapsToObj(Opb , Ga ⊕ (Gb ⊕Gc)),∀Opb ∈ OPb
= PointsTo(p,Ga) ∪OPb
= PointsTo(p,Ga) ∪ PointsTo(p,Gb) ∪ {Opc} (10)

OQa = MapsToObj(Oqb , Ga ⊕ (Gb ⊕Gc)),∀Oqb ∈ OQb
= PointsTo(q,Ga) ∪OQb
= PointsTo(q,Ga) ∪ PointsTo(q,Gb) ∪ {Oqc}. (11)

By Lemma A.9,

{Opb
f1→ Oqb} ∈ Gb, O

p
b ∈ OPb, O

q
b ∈ OQb =⇒

{Opa
f→ Oqa} ∈ Ga ⊕ (Gb ⊕Gc),∀Opa ∈ OPa,∀Oqa ∈ OQa, (12)

which, from Equation (10) and Equation (11), becomes

{Opa
f→ Oqa} ∈ G1,

∀ Opa ∈ PointsTo(p,Ga) ∪ PointsTo(p,Gb) ∪ {Opc},
∀ Oqa ∈ PointsTo(q,Ga) ∪ PointsTo(q,Gb) ∪ {Oqc}. (13)

We now consider (Ga ⊕Gb)⊕Gc.
Let

Ôpb ∈ PointsTo(p,Gb), Ô
q
b ∈ PointsTo(q,Gb).

By Lemma A.9,

MapsToObj(Ôpb , Ga ⊕Gb) = PointsTo(p,Ga) ∪ {Ôpb},
MapsToObj(Ôqb , Ga ⊕Gb) = PointsTo(q,Ga) ∪ {Ôpq}.

A shorter version of this report has been submitted to ACM TOPLAS

44 · Jong-Deok Choi et al.

Therefore,

PointsTo(p,Ga ⊕Gb) =
⋃
Ôpb

MapsToObj(Ôpb , Ga ⊕Gb)

= PointsTo(p,Ga) ∪ PointsTo(p,Gb),
PointsTo(q,Ga ⊕Gb) =

⋃
Ôqb

MapsToObj(Ôqb , Ga ⊕Gb)

= PointsTo(q,Ga) ∪ PointsTo(q,Gb).

By Lemma A.9,

{Opc
f1→ Oqc} ∈ Gc =⇒

{Ôpc
f1→ Ôqc} ∈ (Ga ⊕Gb)⊕Gc,
∀Ôpc ∈ PointsTo(p,Ga ⊕Gb) ∪ {Opc},
∀Ôqc ∈ PointsTo(q,Ga ⊕Gb) ∪ {Oqc}

= {Ôpc
f1→ Ôqc} ∈ G0,

∀Ôpc ∈ PointsTo(p,Ga) ∪ PointsTo(p,Gb) ∪ {Opc},
∀Ôqc ∈ PointsTo(q,Ga) ∪ PointsTo(q,Gb) ∪ {Oqc}. (14)

Equation 13 and Equation 14 are identical, and, therefore, the following holds
for the base case:

(Ga ⊕Gb)⊕Gc ∼= Ga ⊕ (Gb ⊕Gc).

(2) Consider objects Opb , O
q
b ∈ Gb such that

gp : {p→ Opb}, gq : {q → Oqb}, gpq : {Opb
f1→ Oqb} ∈ Gb.

Gb ⊕Gc does not affect any of the following:

gp : {p→ Opb}, gq : {q → Oqb}, gpq : {Opb
f1→ Oqb} ∈ Gb,

and, therefore,

PointsTo(p,G0) = PointsTo(p,Ga ⊕ (Gb ⊕Gc)) = PointsTo(p,Ga ⊕Gb)
= PointsTo(p,Ga) ∪ {Opb},

PointsTo(p,G1) = PointsTo(p, (Ga ⊕Gb)⊕Gc) = PointsTo(p,Ga ⊕Gb)
= PointsTo(p,G0),

PointsTo(q,G0) = PointsTo(q,Ga ⊕ (Gb ⊕Gc)) = PointsTo(q,Ga ⊕Gb)
= PointsTo(q,Ga) ∪ {Oqb},

PointsTo(q,G1) = PointsTo(q, (Ga ⊕Gb)⊕Gc) = PointsTo(q,Ga ⊕Gb)
= PointsTo(q,G0).

A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 45

By Lemma A.9,

{Opb
f1→ Oqb} ∈ Gb =⇒

= {Ôpb
f1→ Ôqb} ∈ G0, G1

∀Ôpb ∈ PointsTo(p,Ga) ∪ {Opb},
∀Ôqb ∈ PointsTo(q,Ga) ∪ {Oqb}. (15)

Therefore, the following holds for the base case:

(Ga ⊕Gb)⊕Gc ∼= Ga ⊕ (Gb ⊕Gc).

—Induction:
The proof for the base case above can be extended to the general case by replacing
objects reachable from a single variable reference expression of p and q to objects
with objects reachable from reference expressions p.f1 . . . fm and q.g1 . . . fm. For
example, Equation (6), Equation (7), and Equation (8) become as follows:

gp : { p.f1 . . . fm → Opc}, gq : {q.g1 . . . gn → Oqc}, gpq : {Opc
f1→ Oqc} ∈ Gc (16)

OPb = MapsToObj(Opc , Gb ⊕Gc)
= PointsTo(p.f1 . . . fm, Gb) ∪ {Opc} (17)

OQb = MapsToObj(Oqc , Gb ⊕Gc)
= PointsTo(q.g1 . . . gn, Gb) ∪ {Oqc}. (18)

With that modification, by following the same logic, we can show that the fol-
lowing holds in the general case:

(Ga ⊕Gb)⊕Gc ∼= Ga ⊕ (Gb ⊕Gc).

Theorem A.12. Let Gacs be the points-to graph holding at callsite cs invoking
a method M , Gai be the points-to graph holding at program point ppi in M , with
respect to cs, by propagating Gacs to the entry of M , and CGi be the connection
graph holding at ppi. Then, Gai ∼= Gacs ⊕ CGi.

Proof. We prove it by induction on program points ppi, 0 ≤ i ≤ n, where ppn
is the exit of M .

—Base Case: This is the case at the entry of a method. Since Ga0 = Gacs and
Gacs ⊕ CG0 = Gacs, the induction hypothesis holds.

—Induction: Assuming Gai
∼= Gacs ⊕ CGi (right after ppi), we show that

Gai+1
∼= Gacs⊕CGi+1 (right after ppi+1). Recall that by definition, G1

∼= G2 ⇐⇒
∀P ∈ G1, PointsTo(P,G1) = PointsTo(P,G2). There are six types of state-
ments between ppi and ppi+1 for a leaf method as follows:
—p = new T: (See Figure 5(1).) In the connection-graph, object Ocg is created,

and subgraph ζcg = {p → Ocg} is added to CGi to construct CGi+1. This
results in ζcg ∈ (Gacs ⊕ CGi+1).
In the points-to graph, object Oa is created with the same name (based on the
allocation site) as that of Ocg, and subgraph ζa = {p → Oa} is added to Gai .
This results in ζa ∈ Gai+1, where Oa and Ocg have identical names.

A shorter version of this report has been submitted to ACM TOPLAS

46 · Jong-Deok Choi et al.

With killing, we assume p is a local variable of M since we only kill local
variables (not including the case of “p.g = q”). Since p is a local variable of
M , there is no path from p in Gacs, which holds at a callsite of M .13 Therefore,
there exists edge E : p→ Om ∈ (Gacs ⊕ CGi) only if there exists edge E : p→
Om ∈ CGi, and deleting all the edges {p → Om | Om ∈ PointsTo(p, CGi))}
from CGi to construct CGi+1 results in deleting all the edges {p → Om |
Om ∈ PointsTo(p,Gai ⊕CGi)}. On points-to graph Gai , deleting edges from p
is deleting all the edges {p→ On | On ∈ PointsTo(p,Gai)}, which is the same
as deleting all the edges {p → On | On ∈ PointsTo(p,Gacs ⊕ CGi)}, by the
induction hypothesis of Gai ∼= Cacs ⊕CGi. Therefore, the same set of edges are
deleted from Gai and Gacs ⊕CGi to construct Gai+1 and Gacs ⊕CGi+1, and the
induction holds.
Since it does not delete any edges that would have not been deleted in any pre-
vious iterations at the same statement, the transfer function of this statement
is monotonic.

—p = q: (See Figure 5(2).) By the induction hypothesis and by Lemma A.10,

PointsTo(q,Gai) = PointsTo(q,Gacs ⊕ CGi)
= MapsToObj(PointsTo(q, CGi), Gai). (19)

To Gai , we add the following edges to construct Gai+1:

p→ Oa,∀Oa ∈ PointsTo(q,Gai). (20)

To CGi, we add the following edges to construct CGi+1:

p→ Ocg,∀Ocg ∈ PointsTo(q, CGi). (21)

According to Lemma A.10, adding edges in Equation (21) results in adding
the following edges to Gacs ⊕ CGi:

p→ Ôcg,∀Ôcg ∈MapsToObj(PointsTo(q, CGi), Gacs ⊕ CGi), (22)

which, from Equation (19), is the same as follows:

p→ Ôcg,∀Ôcg ∈ PointsTo(q,Gai). (23)

Equation (23) is the same as Equation 20, which reflects what we perform to
construct CGai+1.
With killing, the same argument for “p = new T;” applies, and the operation
on connection-graph building is monotonic.

—p = q.f: (See Figure 5(4).) When q has a target object in CGi, the proof
for the case of “p = q” can be used for this case by replacing q with q.f . For
example, Equation (19) for induction hypothesis becomes as follows:

PointsTo(q.f,Gai) = PointsTo(q.f,Gacs ⊕ CGi)
= MapsToObj(PointsTo(q.f, CGi)). (24)

Therefore, we only need to consider when q does not have a target object,
resulting on construction of phantom nodes:

PointsTo(q, CGi) = PointsTo(q.f, CGi) = ∅. (25)

13This is true even when M is called multiple times in a same method due to scoping rule.

A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 47

Note that in this case,

PointsTo(q.f,Gai) = PointsTo(q.f,Gacs ⊕ CGi) = PointsTo(q.f,Gacs). (26)

Without loss of generality, we assume q is a non-local (or there exists a path
of only deferred edges from q to a non-loal variable).14

In the connection graph, we create two phantom nodes, O1 and O2, and add
them to CGi to construct CGi+1 such that O1 = PointsTo(q, CGi+1) and
O2 = PointsTo(q.f, CGi+1). Then, we insert edge p→ PointsTo(q.f, CGi+1),
which, after performing UpdateCaller(), is converted into the following edges:

p→ Ocg,∀Ocg ∈ PointsTo(q.f,Gacs ⊕ CGi+1) (27)
= p→ Ocg,∀Ocg ∈MapsToObj(PointsTo(q.f, CGi+1)) (28)
= p→ Ocg,∀Ocg ∈MapsToObj(PointsTo(q.f, CGi) ∪ {O2}) (29)
= p→ Ocg,∀Ocg ∈MapsToObj({O2}) (30)
= p→ Ocg,∀Ocg ∈ PointsTo(q.f,Gacs) (31)
= p→ Ocg,∀Ocg ∈ PointsTo(q.f,Gai). (32)

Equations (30) and (31) are derived from Equation (25), and Equation (32) is
derived from Equation (26). The edges in Equation (32) are exactly the edges
to be added to construct points-to graph Gai+1.
With killing, the same argument for “p = new T;” applies, and the operation
on connection-graph building is monotonic.

—p.g = q: (See Figure 5(3).) It is similar to the case of “p = q.f” except that
a phantom node might be created as a target of p, instead of q.
No killing happens with this statement, and the operation on connection-graph
building is monotonic.

—call N(): Let CGX be the connection graph holding at the exit of N ,
and GaX be the points-to graph holding at the exit of N . Note that
CGN+1 = CGN ⊕ CGX since our connection graph construction algorithm
applies UpdateCaller() to the connection graph holding at the callsite (i.e.,
CGN) and to the connection graph holding at the end of the callee (i.e., CGX)
in order to compute the connection graph holding right after the callsite (i.e.,
CGN+1).

GaN+1 = GaX
∼= GaN ⊕ CGX (according to Induction Hypothesis)
∼= (GaM ⊕ CGN)⊕ CGX (according to Induction Hypothesis)
∼= GaM ⊕ (CGN ⊕ CGX) (according to Lemma A.11)
∼= GaM ⊕ CGN+1 (by connection graph construction)

The last step comes from that we construct CGN+1 by CGN ⊕CGX . When a
callsite has multiple static targets, we perform union of GaX by each method. If
a target does not have its connection graph built yet, we optimistically assume

14Otherwise, q is a local pointing to nothing. This is a symptom of either a definite null-pointer
error or of not-yet converged analysis due to control-flow graph back edges. In the latter, we
expect to visit this statement again later with q pointing to a target.

A shorter version of this report has been submitted to ACM TOPLAS

48 · Jong-Deok Choi et al.

its connection graph to be empty. The operation at a callsite, therefore, is
monotonic.

—control flow graph join: We perform union of the connection graphs prop-
agated from each of the incoming edges of the join node. For an incoming edge
that has not been visited during intraprocedural iteration, we optimistically
assume the connection graph from the edge to be empty. The operation at a
join node, therefore, is monotonic.

Since all the operations are monotonic in building the connection graph, after
convergence, Gai ∼= Gacs ⊕ CGi holds at every program point.

The connection graphs in Figure 4 illustrate Theorem A.12. The points-to graph
holding at statement S4 is congruent with the result of ⊕ applied to the connection
graph of Figure 4(F) as Gacs and the connection graph of Figure 4(D) as CGi. (After
a bypass operation is applied to the deferred edge from y to x, the connection graph
of Figure 4(F) can be regarded as the points-to graph holding at the callsite if no
aliasing holds at the entry of the caller, L().) Figure 4(G) shows the result of ⊕
operation. (Figure 4(G) also corresponds to a points-to graph after a bypass is
applied.)

Definition A.13. The local subgraph of a points-to graph Ga for a method M ,
denoted as Gal (M) (or simply Gal , where M is clear from the context), is the max-
imal subgraph of Ga obtained by removing all the nodes that are reachable from a
non-local variable with respect to M , and by removing the edges incident to/from
those nodes.

The lack of uniqueness property of a connection graph is due to the paths in
the concrete graph and the abstract graph holding at a callsite of a method. These
paths are reachable from the non-locals of a method. Since the local subgraph of the
connection graph of a method is not reachable from any non-locals of the method, it
does have the uniqueness property. Corollary A.14 states that the local subgraphs
of the points-to graph and the connection graph of a method are congruent with
each other.

Corollary A.14. Let Gai and CGi be the points-to graph and the connection
graph, both holding at program point ppi in method M , Gal be the local subgraph of
Gai , and CGl be the local subgraph of CGi. Then, Gal ∼= CGl.

Proof. Since CGl is not reachable from any non-local variables of M , CGl
will be just propagated, by UpdateCaller(), in computing Gacs ⊕ CGi. Since
Gai
∼= Gacs ⊕ CGi, PointsTo(P,Gal) = PointsTo(P,CGl) for any path P starting

with a local variable of M . Therefore, Gal ∼= CGl,

Theorem A.15. Let Gai and CGi be the points-to graph and the connection
graph, both holding at program point ppi in method M , Gl and CGl be the local
subgraphs of Gai and CGi, respectively, and Oi be an abstract object in M . Then,

Oi ∈ Gl ⇐⇒ Oi ∈ CGl.

Proof. By Corollary A.14.
A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 49

Theorem A.15 shows that for computation of local abstract objects of a method
(i.e., objects that are not reachable from any non-local variable), using the connec-
tion graph of the method produces the same result as using the points-to graph
of the method. Among the objects reachable from non-locals, we distinguish those
reachable from globals or Runnable objects (GlobalEscape), and those not reach-
able from globals or Runnable objects (ArgEscape). Objects that are not reach-
able from globals or Runnable objects become part of the local subgraph for some
method where they are no longer reachable from non-locals. Note that if an object
node is marked GlobalEscape in any method, the corresponding nodes in its callees
(and methods called transitively in those callees) are also marked GlobalEscape, as
described in Section 4.5.

Objects reachable from globals or Runnable objects will be eventually propagated
to main() (or root methods of the call graph), where the points-to graph will
be identical to the connection graph because main() does not have any callsites
invoking it. The following theorem formally states this.

Theorem A.16. Let O be an abstract object. There exists a path from a global
variable or Runnable object to O in a points-to graph only if O is marked Glob-
alEscape in the connection graph.

Proof. Follows from the above discussion (in main() or root methods, Gai ∼=
Gacs ⊕ CGi = CGi because Gacs = ∅ for root methods).

A.3 Reachability properties of escaping concrete objects

We now establish some properties of concrete objects that escape from their method
or thread of creation.

Lemma A.17. Let Oc be a concrete object; let T be its thread of creation and M
be its method of creation.

—Oc escapes T only if Oc is reachable from either (1) a static reference field or (2)
a reference to a Runnable object.

—Oc escapes M only if Oc is reachable from either (1) a static reference field, (2) a
formal parameter or return value of M , or (3) a reference to a Runnable object.

Proof. Follows directly from the Java language specification [Gosling et al.
1996]. Java allows an object Oc, created in thread T , to be accessed by another
thread T ′ (where T ′ 6= T) only if it is either (1) reachable from a static field (no
other form of “global” variables are supported in Java), or (2) reachable from the
object representing thread T ′ or T .

Similarly, Java allows an object Oc, created in method M , to be accessed after
M returns only if it is either (1) reachable from a static field, (2) reachable from
a formal parameter or the return value (of an object reference type) of M , or (3)
reachable from an object representing another thread that continues to run after
M returns.

A.4 Putting it together: Correctness of escape analysis

Theorem A.18. Let M be a method invocation in thread T , and A be an al-
location site in M . At the end of our escape analysis, if the allocation site A is
marked

A shorter version of this report has been submitted to ACM TOPLAS

50 · Jong-Deok Choi et al.

—ArgEscape or NoEscape, then all the the concrete objects created at A are local
to T .

—NoEscape, then all the concrete objects created at this site are local to M .

Proof. For the first part of the Theorem, consider a concrete object Oc that
escapes its thread of creation. According to Lemma A.17, Oc must be reachable
from p, where p is either a static field reference or a Runnable object reference.
By Lemma A.2, there must exist an abstract object Oa ∈ Ga that is reachable
from p such that AllocSite(Oc) ⊆ AllocSite(Oa). By Theorem A.16, the node
corresponding to Oa in CG must be marked GlobalEscape. Thus, we have shown
that a concrete object Oc can escape its thread of creation only if the corresponding
abstract object Oa at its allocation site in CG is marked GlobalEscape. Therefore,
if an abstract object is marked NoEscape or ArgEscape in CG, the corresponding
concrete object cannot escape its thread of creation.

For the second part of the Theorem, consider a concrete object Oc that escapes
its method of creation. According to Lemma A.17, Oc must be reachable from
p, where p is a non-local variable with respect to M (i.e., p is either a formal
parameter or return value of M , a static field reference, or a Runnable object
reference). By Lemma A.2, there must exist an abstract object Oa ∈ Ga that is
reachable from p such that AllocSite(Oc) ⊆ AllocSite(Oa). Thus, Oa is not part of
Gal (the local points-to graph) for M . By Theorem A.15, the node corresponding to
Oa in CG must not be part of the local subgraph of CG. Thus, we have shown that
a concrete object Oc can escape its method of creation only if the corresponding
abstract object Oa at its allocation site in CG is not marked NoEscape. In other
words, if an abstract object is marked NoEscape in CG, the corresponding concrete
object cannot escape its method of creation.

Corollary A.19. If an allocation site A is marked

—NoEscape, then all the objects created at that site can be stack-allocated and the
lock operations associated with that object can safely be eliminated.

—ArgEscape, then the locks associated with that object can safely be eliminated.

B. TIME COMPLEXITY

In this section, we analyze the complexity of escape analysis. We will first discuss
the complexity for intraprocedural case. We will assume that all deferred edges
have been eliminated using the ByPass(p) function. For intraprocedural analysis,
we use the dataflow equations 1 and 2 for computing the connection graph. We can
represent the connection graph as a set of pairs (x, y) such x→ y is an edge in the
connection graph. The fixed point can be obtained by iterating over the dataflow
equations.
A shorter version of this report has been submitted to ACM TOPLAS

Stack Allocation and Synchronization Optimizations for Java Using Escape Analysis · 51

Let us assume that there are K nodes in the control flow graph. We can rewrite
the equations 1 and 2 as follows:

Cs1 = ∪p∈Pred(s1)f
s1(Cp)

Cs2 = ∪p∈Pred(s2)f
s2(Cp)

...
CsK = ∪p∈Pred(sK)f

sK (Cp)

Given that the transfer function is monotonic for escape analysis, we can compute
the least fixed point to above equations using Kildall’s iterative algorithm. Let
Amax be the maximum size of the connection graph at any program point. Recall
that an field access expression of the form a.f1.f2...f l is broken into a series of one-
level field access expressions of the a.f . During the construction of the connection
graph, we essentially create one object node per field access. Since we are using 1-
limited scheme for handling recursive structure, the maximum acyclic path length
(an acylic connection is obtained by ignoring the back-edges in the connection
graph) in the connection graph will limited by the maximum field length of the
field expression. Let L be the maximum acyclic path-length in the connection
graph.

Using the iterative scheme, we can compute the connection graph at a program
point in O(L × Amax). The reason for this is that at each iteration, we might
introduce one object node in the connection graph by traversing the entire CG to
check whether there is a change in the CG. Now since there are K nodes in the CFG,
at each iteration we visit K nodes and update the connection graph at each of the
nodes in the CFG. So at each iteration, the time complexity is O(K × L×Amax).
At each iteration, we might add one edge in the connection graph, and since we
add at most Amax edges, the number of iterations is bounded by O(K × Amax).
Therefore, the time complexity of intraprocedural analysis is O(L×A2

max ×K2).
In the worst case, Amax can be O(N2). It quite reasonable to assume L to be

constant. Also, K could be O(N). Therefore the time complexity of intraprocedural
analysis isO(N6). This complexity analysis is based on naive implementation of sets
and the fixed point iteration. By using a worklist based strategy for computing the
fixed point, we can reduce the complexity to O(N5). Finally, using finite difference
technique, as proposed by Goyal in his thesis, which incrementally updates the
connection graph, we can further reduce the complexity to O(N3) [Goyal 2000].

For the interprocedural case, our analysis essentially proceeds along the same
lines, except that we use call graph and connection graph summary information
at each call graph node. The transfer functions at each node is captured by the
mapping function described in Section 4. The mapping function used to summarize
the effects of a callee method has a complexity of O(N2). This does not increase the
overall complexity of the analysis. Hence, the time complexity of interprocedural
escape analysis is O(N6), where N is the program size. Using a clever scheme, we
can reduce the complexity to O(N3) [Goyal 2000].

A shorter version of this report has been submitted to ACM TOPLAS

