
RC22341 (W0202-049) February 19, 2002
Computer Science

IBM Research Report

Automatic Search from Streaming Data

Anni R. Coden, Eric W. Brown
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Automatic Search from Streaming Data
Anni R. Coden and Eric W. Brown

IBM, T.J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532

{anni, ewb}@us.ibm.com

ABSTRACT
Speech is gradually becoming more important as a
source of information in knowledge management and
text search systems. We present a system that analyzes
a speech data stream and automatically finds docu-
ments related to the current topic of discussion in the
speech stream. Experimental results show that the sys-
tem generates result lists with an average precision at
10 hits of better than 60%. We also present a hit-list re-
ranking technique based on named entity analysis and
automatic text categorization that can improve the
search results by 6%-12%.

Keywords
Speech retrieval, text mining

1. INTRODUCTION
Fast processors, huge storage capacity, and sophisti-
cated software, all packed into an impossibly small
form factor, are driving information retrieval and
knowledge management in a variety of new directions.
One direction in particular is the integration of speech
data into knowledge management systems. Automatic
speech recognition (ASR) software has matured to the
point where it can transcribe speech into text with suf-
ficient accuracy to allow indexing, search, and retrieval
of spoken documents [11] and automatic processing
and analysis of radio and television news broadcasts
[1].

Moving beyond archiving speech data and off-line
processing of speech broadcasts, we are interested in
exploiting speech as it is generated. This implies the
ability to process and analyze speech in real-time. Our
basic approach is to apply real-time speech recognition
to convert speech into a text transcript, and then apply
on-line text analysis techniques to the transcript to
accomplish certain tasks.

The first task we consider (and the one we present in
this paper) is the task of finding related information
relevant to the speech currently being analyzed. If we
can successfully perform this task, a variety of interest-
ing and useful applications becomes feasible. One
such application is the automatic analysis and support
of meetings. This is the goal of the MeetingMiner sys-
tem [6], which captures meeting discussions via mi-
crophone, converts the speech to text with ASR, then
applies a series of analyzers to the text to track the

topic, automatically answer questions, and automati-
cally find information related to the current discussion.

Another application made possible by automatic analy-
sis of speech is Data Broadcasting [9]. Data Broad-
casting is the process of using the extra bandwidth in a
television broadcast to send arbitrary data along with
the audio and video program. A key challenge in Data
Broadcasting is deciding what data to send. Although
the data can be assembled and scheduled manually, a
more useful approach is to analyze the television pro-
gram and automatically identify relevant data to send
with the program. Using the same underlying ap-
proach as in the MeetingMiner system, we use ASR to
convert the audio program to text, analyze the text to
identify the current topic of discussion in the program,
and automatically find related information to send
down the data channel.

To support the task identified above and the two appli-
cations just mentioned, we have developed a core sys-
tem that takes speech audio as input and produces a list
of relevant information sources as output. The system
uses continuous automatic speech recognition to tran-
scribe the speech, analyzes the resulting text transcript
to decide when to search for related information, auto-
matically generates a query when a search is triggered,
and assembles the search results for output to the con-
trolling application.

Although similar to the traditional information retrieval
search task, our problem differs in a number of key
ways. First, rather than process queries explicitly
posed by a user, we must automatically generate que-
ries by analyzing a data input stream, e.g., the tran-
script of the discussion. Second, since the transcript is
generated by ASR it may contain errors. Our solution,
therefore, must be robust in the face of word recogni-
tion errors. Finally, the goal of this system is to pro-
vide information relevant to the current discussion such
that the information can be quickly integrated into the
end user task (whether it be a meeting, viewing a tele-
vision program, or some other yet to be conceived ap-
plication). In this scenario, a small number of highly
relevant results is much more important than finding
all possible results. As such, our system (and our
evaluation) focuses on precision and ignores recall.

Our contributions are as follows. First, we have intro-
duced a new application area of information retrieval

1

and knowledge management where speech data is cap-
tured and exploited as it is generated. Second, we pre-
sent a system that accomplishes the capture and analy-
sis task using new techniques to automatically generate
queries and process search results. Moreover, our
search result processing includes techniques for re-
ranking results based on automatic categorization and
named entity extraction that are applicable to tradi-
tional text search systems as well. Finally, we present
an evaluation of our techniques using a standard
evaluation collection.

The rest of this paper is organized as follows. In the
next section, we discuss related work. In Section 3, we
present our system in more detail. In Section 4, we
present our experimental evaluation, and in Section 5,
we offer concluding remarks.

2. RELATED WORK
The problem that we are trying to solve here, namely
how to analyze a data stream in real time and augment
the data stream with relevant, collateral information, is
somewhat similar to the problems explored in the vari-
ous Topic Detection and Tracking workshops [1]. In
TDT, the goal is to analyze news broadcasts (text arti-
cles or text transcripts generated automatically from
audio and video) and identify previously unseen news
events, or topics. Topics are then tracked by linking
subsequent news stories covering the same event. This
is accomplished using a variety of off-line text process-
ing, language modeling, and machine learning algo-
rithms.

TDT differs from our work in two ways. First, our goal
is not to detect and track new events, but rather to iden-
tify information objects (e.g., documents) in a knowl-
edge repository that are relevant to the current data
stream being analyzed. Rather than track a series of
related events, we want to generate a short list of
highly relevant objects for a given segment of the data
stream.

The second way in which our work differs from TDT
is that our system must operate on-line in order to aug-
ment the data stream with collateral information as the
data stream is generated. The typical TDT system op-
erates off-line.

The techniques we use to accomplish this task are
drawn largely from traditional information retrieval [3]
and text analysis techniques [12]. To satisfy the re-
sponse time requirements of the task, however, we are
limited to techniques that can be performed on-line at
the same rate that the data stream is fed into the sys-
tem.

A significant contribution of our work is our hit-list re-
ranking procedure based on named entity extraction
and automatic text categorization. This procedure is
required for two reasons. First, the ASR generated text
transcript may contain word recognition errors. Sec-
ond, the queries are automatically generated from a full
text transcript and are generally less precise than que-
ries created by real users. Both of these factors can
cause problems for traditional text search engines,
which are tuned for short, user generated queries with-
out word recognition errors.

Our re-ranking procedure has similarities to previous
work on incorporating natural language processing and
statistical and syntactic phrases into the document re-
trieval process. Strzalkowski et al. have demonstrated
improvements in retrieval effectiveness using natural
language processing techniques [16, 17, 15]. Their
work explores the use of full linguistic analysis to
identify higher level conceptual indexing terms com-
bined with query expansion techniques to incorporate
the concepts into the query. Their results have been
mixed, but they generally found that their techniques
are more effective with longer queries. Our natural
language processing is confined to named entity identi-
fication where the named entities are used to refine the
results generated from a bag of words query. Our
technique appears to be more robust and consistently
provides an improvement. Our original queries are
rather long, however, increasing the likelihood that our
technique will be effective.

Chowdhury et al. [7] use entities to improve precision
as part of their automatic relevance feedback tech-
nique. They extract entities from the top documents
returned by an initial query, add them to the query, and
run the query again. In our system, we use only the
named entities that appear in the original query stream.

A number of authors have found only marginal im-
provements in retrieval effectiveness using statistical
and syntactic phrases [13, 18]. Rather than try to auto-
matically identify phrases and incorporate them as
terms in the document retrieval model, we identify
named entities and use them to adjust the results re-
turned by the search engine. Our more accurate phrase
(entity) identification combined with more conserva-
tive application of the information yields a more ro-
bust, consistently beneficial technique.

3. SYSTEM DESCRIPTION
The overall system architecture is depicted in Figure 1.
The system receives a speech audio signal as input and
sends it to an automatic speech recognition system,
which in turn generates a text transcript of the speech.
In an actual application of this system, the ASR com-

2

ponent must be able to process an audio signal in real-
time, apply a continuous dictation speech recognition
model, and generate the transcript. For the work pre-
sented in this paper, we assume that such an ASR sys-
tem exists and do not consider it further.

Text Index

Automatic
Speech

Recognition

Categorization /
Query Selection

Named Entity
Identification

Text Search

Hit-list
Reranking

Speech

Hit-list

Query

Text

Named
Entities

Relevant
Hits

Figure 1: System architecture

The system feeds the text transcript one sentence at a
time into the query selector, which generates queries
using an automatic text categorization system. The
query selector appends the current sentence to a con-
text buffer then runs the categorizer on the context
buffer. If the categorizer can categorize the context
buffer with sufficiently high confidence, the query se-
lector outputs the buffer as a query and clears the
buffer for the next sentence. The query selector will
append at most seven sentences to the context buffer,
at which time the selector generates a query regardless
of the categorization result. The categorizer used in the
query selector is a rule-induced categorizer [2], which
must be trained with a predefined taxonomy of catego-
ries and a training set of documents that have been
manually categorized into the taxonomy.

The taxonomy used for the evaluation below is a set of
38 broadcast news related categories (e.g., “Domestic
Politics”, “Business”, “Crime”, etc.) trained with ap-

proximately 1200 manually categorized documents
from the January TDT2 documents (see Section 4 be-
low).

The system sends each generated query to the text
search engine, which performs a free text search on the
text index and returns a hit-list of relevant documents.
Any free text search engine may be used for this com-
ponent. For our prototype system and for the experi-
ments presented below we use two different search
engines. The first search engine is an n-gram based,
tf*idf style ranking search engine called NGRAM. The
second search engine is a probabilistic ranking search
engine called GURU [5].

The system also performs named entity identification
on each query using algorithms based on the Talent
suite of text analysis tools [14, 10]. The analysis identi-
fies proper names, places, and certain technical terms
in our on-line system. The named entities could be
used directly by the search engine and factored into its
internal ranking algorithm. In our current implementa-
tion, they are used by the hit-list re-ranking process to
refine the hit-list returned by the search engine. This
post-processing approach both facilitates experimenta-
tion and enables integration with existing search en-
gines.

The Talent algorithms rely heavily on clues provided
by capitalization. If the speech recognition engine does
not produce properly capitalized text, we apply an
automatic capitalization recovery process to the text
[4], which uses a number of syntactic rules, punctua-
tion, and statistical analysis to restore proper
capitalization to the text.

For many search engines, the rank associated with a
document in the hit-list is a function of the frequencies
of the words of the query, the document and the collec-
tion as a whole. Otherwise, all words in the query (with
the exception of stop words) are treated equally. How-
ever, when we examined the application scenarios dis-
cussed in this paper, it became apparent that other fac-
tors should also play a role in ranking the resulting
documents. We postulated:

1) If a result document has the same category as-
sociated with it as the query, the ranking of
such a document should be increased.

2) If a result document contains all of the same
named entities as the query, it should be
ranked higher than a document that has only
some or none of the named entities.

For each document on the hit-list, the re-ranking proc-
ess works by considering the relevance score returned
by the search engine, the number of matching named

3

entities between the query and the document, and
whether or not the query and the document share the
same category. A new relevance score for the docu-
ment is calculated using the following formula:

cC
E
E

baSS
q

d ++='

Equation 1

where

'S : New score for the document

S : Original score of the document

dE : Number of distinct named entities in the
document that match those in the query

qE : Number of distinct named entities in the
query

C : 1 if document and query have same cate-
gory, 0 otherwise

cba ,,

: Constants in the range 0 to 1 inclusive
such that 1=++ cba

Note that our hit-list re-ranking procedure assumes that
the documents in the text search index have been proc-
essed by the same automatic text categorizer and
named entity identifier that we apply to the queries.

After a new score for each document is calculated, the
hit-list re-ranking component sorts the hit-list accord-
ing to the new scores and returns the hit-list to the call-
ing application. The constants a, b, and c determine the
influence of each component of the re-ranking formula
on the final score. We will consider appropriate values
for these constants in Section 4.

4. EXPERIMENTAL RESULTS
4.1. GOALS

The system evaluated here is one that automatically
retrieves collateral information based on automatic
query generation from a text stream. The different
components of the system and their interactions are
evaluated as well as the variability of the results based
on the quality of the text stream and the underlying
search engine. We show that the novel re-ranking algo-
rithm always gives an improvement in the precision of
the results independent of the search engine and the
quality of the text stream. Hence, it could also be ap-
plied to a general search task.

In particular, the following questions are studied and
the evaluation results are presented in subsequent sec-
tions.

1) What is the effect of the query generation
process on the precision of the results?

2) What is the effect of the underlying search
engine?

3) What is the effect of the re-ranking algorithm?

4) What is the effect of the quality of the text-
stream?

5) What is the effect of categorization?

We will show that the precision can be improved using
categorization, named entity identification and the
novel re-ranking results.

4.2 CORPUS

To evaluate our system we need a document collection,
a set of queries (preferably drawn from a speech data
stream), and relevance judgements for the queries and
the document collection. The TDT-2 corpus [8] meets
all of these requirements. The TDT-2 corpus is a col-
lection of text and speech from several sources: news-
wire, radio and television news broadcast programs. It
contains approximately 60,000 stories. These stories
were transcribed in three different ways: 1) Manual
transcription 2) ASR (Automatic Speech Recognition)
transcription 3) Closed Caption transcription. The cor-
pus also includes 96 topics for which every document
in the collection has been manually judged as relevant
or not relevant.

We created our text collection (referred to below as the
“training data”) using the “sgm” versions from all Eng-
lish data sources dated January to April inclusive (i.e.,
newswire text and manual transcriptions of broadcast
sources). The queries are drawn from English docu-
ments dated May and June that were assigned to one or
more qualifying TDT-2 topics, where a qualifying
topic is one where at least 10 documents in the training
data were assigned to the topic. Although the TDT-2
corpus includes 96 fully evaluated topics, only 46 top-
ics have more than 10 training documents in our split
of the corpus. Three separate query sources were cre-
ated for our experiments:

1) Q-AllDocs -- subset containing no ASR
documents <2104 documents>

2) Q-ASRDocs -- subset containing only
ASR transcribed documents <1170
documents>

4

3) Q-ASRTrans -- manually transcribed ver-
sions of the documents in Q-ASRDocs
<1170 documents>

These three different query sources enabled us to study
the effect of ASR on the search task as outlined at the
beginning of this section.

The Q-ASRDocs collection contains only documents
that are mono-case. However, for one part of our sys-
tem (named entity identification) capitalization is re-
quired. We used a system [4] that automatically capi-
talizes documents and applied it to the Q-ASRDocs
query set. This part of the system could be easily re-
placed with another subsystem not requiring capitaliza-
tion. The results of the evaluation would not change
with such a substitution.

We define a document to be relevant collateral infor-
mation for a particular query if and only if the query
and the document have the same TDT topic. The topic
of a query is the topic of the document from which the
query is drawn.

Based on the three different query sources we gener-
ated six different query sets. Three of the query sets
(labelled with the “Whole” suffix) contain whole
documents as queries (modeling the case where query
boundaries are explicitly given), and three of the query
sets (labeled with the “Partial” suffix) contain auto-
matically generated queries from parts of a document
as described in section 3. All of the query sets are an-
notated in real-time. The query sets are as follows:

1) Q-AllDocsWhole – 2104 queries (375)

a. categorized: 837 (40%)

b. uncategorized: 1267 (60%)

2) Q-ASRDocsWhole – 1170 queries (202)

a. categorized: 241 (20%)

b. uncategorized: 929 (80%)

3) Q-ASRTransWhole – 1170 queries (193)

a. categorized: 384 (33%)

b. uncategorized: 786 (67%)

4) Q-AllDocsPartial – 8213 queries (102)

a. categorized: 1719 (21%)

b. uncategorized: 6494 (79%)

5) Q-ASRDocsPartial -- 3899 queries (62)

a. categorized: 261 (7%)

b. uncategorized: 3638 (93%)

6) Q-ASRTransPartial -- 3078 queries (78)

a. categorized: 708 (23%)

b. uncategorized: 2370 (77%)

A categorized query is one that could be categorized by
our automatic text categorizer with sufficient conf i-
dence. The number in parenthesis after the number of
queries is the average query length in words.

Each story in the corpus itself (i.e., the data which is
searched) is also annotated by the categorizer and the
named entity identifier. The corpus has 40,932 docu-
ments, 14,537 (35%) which have a category attributed
to them, 26,395 (65%) of which were not categorized.
We will explore the effects of categorization in more
depth in the next section.

4.3. EVALUATION

The first set of results presented here establishes the
baseline for our system. All results presented below
show precision at n hits. Since our target application is
to augment a data stream with collateral information,
we are emphasizing precision. The goal is to find rele-
vant collateral information for a query. We will show
that our system can produce results that have precision
of 40% - 65% in the top 10 hits. These results can be
achieved with different search engines and different
query sets as shown in Figure 2 and Figure 3. Note that
the scale of the precision axis is scaled to show the area
of interest.

5

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 10 19 28 37 46 55 64 73 82 91 100

hitlist position

p
re

ci
si

o
n

Q-AllDocsWholeG Q-ASRDocsWholeG
Q-ASRTransWholeG Q-AllDocsWholeS
Q-ASRDocsWholeS Q-ASRTransWholeS

Figure 2: Baseline performance whole document
queries

The baseline performance was established using two
different search engines. The datasets G (labels ending
with G) used the IBM NGRAM Search Engine,
whereas the datasets S (labels ending with S) used the
GURU search engine. In general, the GURU search
engine performs better, however both search engines
perform very similar with respect to the different query
sets. The manually transcribed queries perform the
best, whereas the queries based on output of an ASR
system perform the worst with the spread being 5% in
most cases The results for the Q-AllDocs set differ
only slightly from the results for the Q-ASRDocs set,
which seems to imply that ASR systems are quite ade-
quate for the task under evaluation. Results in Figure 2
are based on whole document queries while the results
shown in Figure 3 are based on automatically gener-
ated queries.

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1 10 19 28 37 46 55 64 73 82 91 100

hitlist position
p

re
ci

si
o

n

Q-AllDocsPartialG Q-ASRDocsPartialG Q-ASRTransPartialG
Q-AllDocsPartialS Q-ASRDocsPartialS Q-ASRTransPartialS

Figure 3: Baseline performance auto-generated
queries

The spread in the precision is wider in Figure 3. The
GURU search engine again performs better than the
NGRAM search engine. However, for both search en-
gines the relative performance of the different query
sets is the same and consistent with the whole docu-
ment queries. The Q-ASRTrans query set achieves the
highest precision, while the Q-ASRDocs query has the
lowest precision. The spread in precision between the
results based on the Q-ASRDocs and the Q-AllDocs
query set is roughly 5% for whole document queries
and closer to 10% for automatically generated queries.
The same spread is observed between the Q-AllDocs
and the Q-ASRTrans datasets.

The second set of results examines the effects of cate-
gorization. Again, we look at how the results vary as a
function of the various query sets and search engines.

6

0.25

0.35

0.45

0.55

0.65

0.75

0.85

1 10 19 28 37 46 55 64 73 82 91 100

hitlist position

p
re

ci
si

o
n

Q-AllDocsWholeG cat Q-ASRDocsWholeG cat
Q-ASRTransWholeG cat Q-AllDocsWholeG uncat
Q-ASRDocsWholeG uncat Q-ASRTransWholeG uncat

Figure 4: Categorized vs uncategorized whole
document queries

Figure 4 shows the performance of queries that could
be categorized compared with the performance of que-
ries that could not be categorized using the NGRAM
search engine. Queries that can be categorized lead to
dramatically better results than queries that cannot. In
particular, precision improves between 16% and 60%.

When examining auto-generated queries, very similar
results are observed as shown in Figure 5.

Very similar improvements are seen when using the
GURU search engine. It is noteworthy that in general
the precision is best for the Q-ASRTrans query set and
the worst for the Q-ASRDocs query set. Different be-
havior was observed for the whole document queries
using the NGRAM search engine. There, the Q-
ASRDocsWhole query set gave the best results, the
difference in precision between the other two sets be-
ing quite small.

These results suggest strongly that a carefully crafted
and trained taxonomy can lead to improved results by
supporting a categorization screening step to indicate
the likelihood of success for the query. Although one
cannot guarantee that a query is categorized, one can
attempt to augment a query in those instances. The
augmentation can be done either automatically or
through user interaction.

0.25

0.35

0.45

0.55

0.65

0.75

0.85

1 10 19 28 37 46 55 64 73 82 91 100

hitlist position
p

re
ci

si
o

n
Q-AllDocsPartialG cat Q-ASRDocsPartialG cat
Q-ASRTransPartialG cat Q-AllDocsPartialG uncat
Q-ASRDocsPartialG uncat Q-ASRTransPartialG uncat

Figure 5: Categorized vs uncategorized auto-
generated queries

So far, we have shown that the baseline performance of
our system is quite satisfactory. Furthermore, the per-
formance of the base system does not change much
with the varying query sets. The ability of categorizing
a query improves the precision of the results dramati-
cally, again independent of the underlying query set
and search engine. The length of the query (whole
document vs. auto-generated query) does not have a
major influence on the results.

The next section presents a novel re-ranking algorithm.
We show that this algorithm boosts performance for all
query sets.

4.4. RE-RANKING ALGORITHM

The novel re-ranking algorithm was introduced in sec-
tion 3, where the formula for computing the rank of a
document is presented. In this section, the performance
results are presented. In section 3, we suggested that a
new score for a document should be computed based
on the original score, the overlap of named entities
between the query and the document, and the categori-
zation of the query and the document.

The following study shows that indeed an improve-
ment of up to 14% in precision at 10 hits can be
achieved considering all three factors. Furthermore, we
show that an improvement is achieved for all query

7

sets, independent of search engine and query length.
Recall that the new rank of a hit-list document is com-
puted using the following formula:

 cC
E
E

baSS
q

d ++='

We experimented with different values of a, b and c
and the results do not differ substantially with the
choice for these constants. However, empirically, it
seemed that the following sets of constants give the
best results:

1) (a, b, c) = (0.3, 0.4, 0.3)

2) (a, b, c) = (0.1, 0.9, 0.0)

The constants indicate that queries with many named
entities can rely to a huge degree (even solely) on them
in the re-ranking process. However, in the presence of
a good taxonomy and a small number of named enti-
ties, the first set of constants maybe more advisable.

The experiments presented here consider the first 100
returned hits for the re-ranking process. Our goal is to
improve the precision in the top 10 results.

The experimental results shown in Figure 6 examine
the improvements in precision for all the query sets.
The improvement (at 10 hits) ranges from 5% -12%
with the smallest improvement shown for the Q-
ASRTrans dataset and the biggest improvement seen
for the Q-ASRDocs query set. Here the NGRAM en-
gine performs the basic search using whole document
queries. The first set of constants is used for the re-
ranking.

We examined the same data sets, but substituted the
GURU search engine for the NGRAM search and en-
gine and used the second set of constants for the re-
ranking.

The precision at 10 hits improved between 3% and
4.6% over the original results.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

1 10 19 28 37 46 55 64 73 82 91 100

hitlst position
p

re
ci

si
o

n
Q-AllDocsWholeG Q-ASRDocsWholeG
Q-ASRTransWholeG Q-AllDocsWholeG 0.3 0.4 0.3
Q-ASRDocsWholeG 0.3 0.4 0.3 Q-ASRTransWholeG 0.3 0.4 0.3

Figure 6: Re-ranking whole document queries

Next, we examine how much the re-ranking algorithm
improves the precision if auto-generated queries form
the input. The results shown in Figure 7 use the
NGRAM search engine and the first set of constants
for the re-ranking process.

8

0.25

0.35

0.45

0.55

1 10 19 28 37 46 55 64 73 82 91 100

hitlist position

pr
ec

is
io

n

Q-AllDocsPartialG Q-ASRDocsPartialG
Q-ASRTransPartialG Q-AllDocsPartialG 0.3 0.4 0.3
Q-ASRDocsPartialG 0.3 0.4 0.3 Q-ASRTransPartialG 0.3 0.4 0.3

Figure 7: Re-ranking auto-generated queries

The improvements in precision at 10 hits range from
7.6% to 10% for all the query sets.

The improvements are in the range from 4% to 6%
when substituting the GURU search engine for the
NGRAM engine.

The next figure (Figure 8) examines whether the re-
ranking algorithm improves the precision at 10 when
only categorized queries are taken into account.

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 10 19 28 37 46 55 64 73 82 91 100

hitlist position

p
re

ci
si

o
n

Q-AllDocsWholeG cat Q-ASRDocsWholeG cat

Q-ASRTransWholeG cat Q-AllDocsWholeG cat 0.3 0.4 0.3
Q-ASRDocsWholeG cat 0.3 0.4 0.3 Q-ASRTransWholeG 0.3 0.4 0.3

Figure 8: Re-ranking categegorized whole docu-
ment queries

Here the improvements range from 5% to 14%, the
biggest improvements shown for the Q-ASRDocs
query set. For uncategorized queries, improvements in
the range of 7% - 11% can be achieved using the
NGRAM search engine using the first set of constants
for the re-ranking.

All these results show that re-ranking can dramatically
improve the precision of our task. There seems to be a
strong indication that a common search task could also
be improved using this technique. We showed, that in
the absence of categorization, the re-ranking based on
named entities alone still shows a big improvement in
the results.

5. CONCLUSIONS
Recorded speech is gradually becoming more impor-
tant as a source of information in knowledge manage-
ment and text search systems. Previously most of the
information retrieval work related to speech involved
searching spoken documents or analyzing transcribed
news broadcasts for topic detection and tracking. In
the work presented here, we are exploring new ap-
proaches to exploiting speech as a knowledge resource.
In particular, we are interested in analyzing speech as it
is generated and augmenting the speech stream with

9

additional collateral information from related knowl-
edge sources.

We have presented a system that captures speech, tran-
scribes the speech to text using continuous automatic
speech recognition, analyzes the text transcript, and
finds documents that are relevant to the current topic of
discussion in the speech stream. All of this processing
occurs on-line (i.e., fast enough to keep up with the
speech generation rate), and the processing that occurs
on the text transcript can be applied to any data stream
with a textual representation.

Our experimental results on the TDT2 collection show
that the baseline system can automatically generate
queries and find relevant documents with an average
precision in the top ten results of 50% to 60% depend-
ing on the underlying text search engine. We also pre-
sented an approach for re-ranking the search engine
results using named entity analysis and automatic text
categorization that produces an improvement of 4%-
10% in precision at 10 hits, for final results of up to
65% precision at 10 hits. We showed that the re-
ranking technique provides improvement for two dif-
ferent text search engines, and it is robust on ASR out-
put that contains word recognition errors. Moreover,
this technique is applicable to traditional text search
systems and might provide similar precision improve-
ments. We plan to run more experiments to confirm
this.

Our experimental results also reveal a strong correla-
tion between the ability of the automatic text catego-
rizer to categorize a query (i.e., assign the query to a
category with sufficiently high confidence) and the
quality of the result returned by the text search engine.
For example, average precision at 10 hits for uncatego-
rized partial queries was 38%, while average precision
at 10 hits for categorized partial queries was 73%.
This result suggest that an automatic text categorizer
might be used to evaluate the “quality” of a query be-
fore it is even submitted to the search engine. Queries
that cannot be categorized might go through additional
processing, e.g., iteration with the user, automatic
query expansion, automatic relevance feedback, etc.

Our main goal in this work was to validate our ap-
proach to augmenting speech data with relevant infor-
mation. Based on the experimental results, we believe
we have achieved this goal. Much work remains in
this area. In particular, we are interested in exploring
the effect of storing spoken documents in the text col-
lections being searched. For all of our experiments
here, the system searched a text collection comprising
written documents or manually transcribed speech. In
the future, we plan to explore the effect of searching

automatically transcribed documents along with writ-
ten documents and manually transcribed speech.

6. BIBLIOGRAPHY
[1] Proc. of the DARPA Broadcast News Tran-

scription and Understanding Workshop,
Lansdowne, VA, 1998.

[2] C. Apte and F. Damerau, Automated Learn-
ing of Decision Rules for Text Categoriza-
tion, ACM Trans. Inf. Syst., 12 (1994), pp.
233--251.

[3] R. Baeza-Yates and B. Ribeiro-Neto, Modern
Information Retrieval, Addison Wesley,
1999.

[4] E. Brown and A. Coden, Capitalization Re-
covery for Text, Information Retrieval Tech-
niques for Speech Applications, Lecture
Notes in Computer Science Vol. 2273,
Springer Verlag, 2002.

[5] E. W. Brown and H. A. Chong, The GURU
System in TREC-6, in D. K. Harman and E.
M. Voorhees, eds., The Sixth Text REtrieval
Conference (TREC-6), National Institute of
Standards and Technology Special Publica-
tion 500-240, Gaithersburg, MD, 1998, pp.
535--540.

[6] E. W. Brown, S. Srinivasan, A. Coden, D.
Ponceleon, J. W. Cooper and A. Amir, To-
ward Speech as a Knowledge Resource, IBM
Systems Journal, 40 (2001), pp. 985-1001.

[7] A. Chowdhury, S. Beitzel, E. Jensen, M. Sai-
lee, D. Grossman, O. Frieder, M. C. McCabe
and D. Holmes, IIT TREC-9 - Entity Based
Feedback with Fusion, Proc. of the Ninth
Text REtrieval Conference (TREC 9), 2001.

[8] C. Cieri, D. Graff, M. Liberman, N. Martey
and S. Strassel, The TDT-2 Text and Speech
Corpus, Proc. of the 1999 DARPA Broadcast
News Workshop, Herndon, VA, 1999.

[9] A. Coden and E. Brown, Speech Transcript
Analysis for Automatic Search, Proc. of
HICSS'34, 2001.

[10] J. W. Cooper and R. J. Byrd, Lexical
Navigation: Visually Prompted Query
Expansion and Refinement, Proc. of the
ACM International Conference on Digital
Libraries, Philadelphia, PA, 1997, pp. 237-
246. [11] J. Garofolo, E. Voorhees, V. Stanford and K.
S. Jones, TREC-6 1997 Spoken Document
Retrieval Track Overview and Results, The

10

Sixth Text REtrieval Conference (TREC-6),
NIST Special Publication 500-240,
Gaithersburg, MD, 1998, pp. 83-91.

[12] C. Manning and H. Schuetze, Foundations
of Statistical Natural Language Processing,
MIT Press, Cambridge, MA, 1999.

[13] M. Mitra, C. Buckley, A. Singhal and C.
Cardie, An Analysis of Statistical and Syn-
tactic Phrases, Proc. of RIAO97, Computer-
Assisted Information Searching on the
Internet, Montreal, Canada, 1997, pp. 200-
214.

[14] Y. Ravin, N. Wacholder and M. Choi, Dis-
ambiguation of Names in Text, Proc. of the
ACL Conf. on Applied Natural Language
Processing, Washington, D.C., 1997, pp.
202-208.

[15] T. Strzalkowski, F. Lin and J. Perez-
Carballo, Natural Language Information
Retrieval TREC-6 Report, Proc. of the Sixth
Text REtrieval Conference (TREC-6), 1998.

[16] T. Strzalkowski, J. Perez-Carballo, J.
Karlgren, A. Hulth, P. Tapanainen and T.
Lahtinen, Natural Language Information
Retrieval: TREC-8 Report, Proc. of the Eigth
Text REtrieval Conference (TREC 8), 2000.

[17] T. Strzalkowski, G. Stein, G. B. Wise, J.
Perez-Carballo, P. Tapananinen, T. Jar-
vinen, A. Voutilainen and J. Karlgren, Natu-
ral Language Information Retrieval: TREC-
7 Report, Proc. of the Seventh Text REtreival
Conference (TREC-7), 1999.

[18] A. Turpin and A. Moffat, Statistical Phrases
for Vector-Space Information Retrieval,
Proc. of the ACM Inter. Conf. on Research
and Development in Information Retrieval,
Berkeley, CA, 1999, pp. 309-310.

11

