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ABSTRACT 
Speech is gradually becoming more important as a 
source of information in knowledge management and 
text search systems. We present a system that analyzes 
a speech data stream and automatically finds docu-
ments related to the current topic of discussion in the 
speech stream. Experimental results show that the sys-
tem generates result lists with an average precision at 
10 hits of better than 60%. We also present a hit-list re-
ranking technique based on named entity analysis and 
automatic text categorization that can improve the 
search results by 6%-12%. 

Keywords 
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1. INTRODUCTION 
Fast processors, huge storage capacity, and sophisti-
cated software, all packed into an impossibly small 
form factor, are driving information retrieval and 
knowledge management in a variety of new directions.  
One direction in particular is the integration of speech 
data into knowledge management systems.  Automatic 
speech recognition (ASR) software has matured to the 
point where it can transcribe speech into text with suf-
ficient accuracy to allow indexing, search, and retrieval 
of spoken documents [11] and automatic processing 
and analysis of radio and television news broadcasts 
[1]. 

Moving beyond archiving speech data and off-line 
processing of speech broadcasts, we are interested in 
exploiting speech as it is generated.  This implies the 
ability to process and analyze speech in real-time.  Our 
basic approach is to apply real-time speech recognition 
to convert speech into a text transcript, and then apply 
on-line text analysis techniques to the transcript to 
accomplish certain tasks. 

The first task we consider (and the one we present in 
this paper) is the task of finding related information 
relevant to the speech currently being analyzed.  If we 
can successfully perform this task, a variety of interest-
ing and useful applications becomes feasible.  One 
such application is the automatic analysis and support 
of meetings.  This is the goal of the MeetingMiner sys-
tem [6], which captures meeting discussions via mi-
crophone, converts the speech to text with ASR, then 
applies a series of analyzers to the text to track the 

topic, automatically answer questions, and automati-
cally find information related to the current discussion. 

Another application made possible by automatic analy-
sis of speech is Data Broadcasting [9].  Data Broad-
casting is the process of using the extra bandwidth in a 
television broadcast to send arbitrary data along with 
the audio and video program.  A key challenge in Data 
Broadcasting is deciding what data to send.  Although 
the data can be assembled and scheduled manually, a 
more useful approach is to analyze the television pro-
gram and automatically identify relevant data to send 
with the program.  Using the same underlying ap-
proach as in the MeetingMiner system, we use ASR to 
convert the audio program to text, analyze the text to 
identify the current topic of discussion in the program, 
and automatically find related information to send 
down the data channel. 

To support the task identified above and the two appli-
cations just mentioned, we have developed a core sys-
tem that takes speech audio as input and produces a list 
of relevant information sources as output.  The system 
uses continuous automatic speech recognition to tran-
scribe the speech, analyzes the resulting text transcript 
to decide when to search for related information, auto-
matically generates a query when a search is triggered, 
and assembles the search results for output to the con-
trolling application.   

Although similar to the traditional information retrieval 
search task, our problem differs in a number of key 
ways.  First, rather than process queries explicitly 
posed by a user, we must automatically generate que-
ries by analyzing a data input stream, e.g., the tran-
script of the discussion.  Second, since the transcript is 
generated by ASR it may contain errors.  Our solution, 
therefore, must be robust in the face of word recogni-
tion errors.  Finally, the goal of this system is to pro-
vide information relevant to the current discussion such 
that the information can be quickly integrated into the 
end user task (whether it be a meeting, viewing a tele-
vision program, or some other yet to be conceived ap-
plication).  In this scenario, a small number of highly 
relevant results is much more important than finding 
all possible results.  As such, our system (and our 
evaluation) focuses on precision and ignores recall. 

Our contributions are as follows.  First, we have intro-
duced a new application area of information retrieval 
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and knowledge management where speech data is cap-
tured and exploited as it is generated.  Second, we pre-
sent a system that accomplishes the capture and analy-
sis task using new techniques to automatically generate 
queries and process search results.  Moreover, our 
search result processing includes techniques for re-
ranking results based on automatic categorization and 
named entity extraction that are applicable to tradi-
tional text search systems as well.  Finally, we present 
an evaluation of our techniques using a standard 
evaluation collection. 

The rest of this paper is organized as follows.  In the 
next section, we discuss related work.  In Section 3, we 
present our system in more detail.  In Section 4, we 
present our experimental evaluation, and in Section 5, 
we offer concluding remarks. 

2. RELATED WORK 
The problem that we are trying to solve here, namely 
how to analyze a data stream in real time and augment 
the data stream with relevant, collateral information, is 
somewhat similar to the problems explored in the vari-
ous Topic Detection and Tracking workshops [1].  In 
TDT, the goal is to analyze news broadcasts (text arti-
cles or text transcripts generated automatically from 
audio and video) and identify previously unseen news 
events, or topics. Topics are then tracked by linking 
subsequent news stories covering the same event.  This 
is accomplished using a variety of off-line text process-
ing, language modeling, and machine learning algo-
rithms. 

TDT differs from our work in two ways. First, our goal 
is not to detect and track new events, but rather to iden-
tify information objects (e.g., documents) in a knowl-
edge repository that are relevant to the current data 
stream being analyzed. Rather than track a series of 
related events, we want to generate a short list of 
highly relevant objects for a given segment of the data 
stream.   

The second way in which our work differs from TDT 
is that our system must operate on-line in order to aug-
ment the data stream with collateral information as the 
data stream is generated. The typical TDT system op-
erates off-line.   

The techniques we use to accomplish this task are 
drawn largely from traditional information retrieval [3] 
and text analysis techniques [12]. To satisfy the re-
sponse time requirements of the task, however, we are 
limited to techniques that can be performed on-line at 
the same rate that the data stream is fed into the sys-
tem. 

A significant contribution of our work is our hit-list re-
ranking procedure based on named entity extraction 
and automatic text categorization. This procedure is 
required for two reasons.  First, the ASR generated text 
transcript may contain word recognition errors.  Sec-
ond, the queries are automatically generated from a full 
text transcript and are generally less precise than que-
ries created by real users.  Both of these factors can 
cause problems for traditional text search engines, 
which are tuned for short, user generated queries with-
out word recognition errors. 

Our re-ranking procedure has similarities to previous 
work on incorporating natural language processing and 
statistical and syntactic phrases into the document re-
trieval process.  Strzalkowski et al. have demonstrated 
improvements in retrieval effectiveness using natural 
language processing techniques [16, 17, 15].  Their 
work explores the use of full linguistic analysis to 
identify higher level conceptual indexing terms com-
bined with query expansion techniques to incorporate 
the concepts into the query. Their results have been 
mixed, but they generally found that their techniques 
are more effective with longer queries. Our natural 
language processing is confined to named entity identi-
fication where the named entities are used to refine the 
results generated from a bag of words query.  Our 
technique appears to be more robust and consistently 
provides an improvement.  Our original queries are 
rather long, however, increasing the likelihood that our 
technique will be effective. 

Chowdhury et al. [7] use entities to improve precision 
as part of their automatic relevance feedback tech-
nique.  They extract entities from the top documents 
returned by an initial query, add them to the query, and 
run the query again.  In our system, we use only the 
named entities that appear in the original query stream. 

A number of authors have found only marginal im-
provements in retrieval effectiveness using statistical 
and syntactic phrases [13, 18].  Rather than try to auto-
matically identify phrases and incorporate them as 
terms in the document retrieval model, we identify 
named entities and use them to adjust the results re-
turned by the search engine.  Our more accurate phrase 
(entity) identification combined with more conserva-
tive application of the information yields a more ro-
bust, consistently beneficial technique. 

3. SYSTEM DESCRIPTION 
The overall system architecture is depicted in Figure 1.  
The system receives a speech audio signal as input and 
sends it to an automatic speech recognition system, 
which in turn generates a text transcript of the speech.  
In an actual application of this system, the ASR com-
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ponent must be able to process an audio signal in real-
time, apply a continuous dictation speech recognition 
model, and generate the transcript.  For the work pre-
sented in this paper, we assume that such an ASR sys-
tem exists and do not consider it further. 

Text Index

Automatic 
Speech 

Recognition

Categorization /
Query Selection

Named Entity 
Identification

Text Search

Hit-list 
Reranking

Speech

Hit-list

Query

Text

Named
Entities

Relevant
Hits  

 

Figure 1: System architecture 

The system feeds the text transcript one sentence at a 
time into the query selector, which generates queries 
using an automatic text categorization system. The 
query selector appends the current sentence to a con-
text buffer then runs the categorizer on the context 
buffer. If the categorizer can categorize the context 
buffer with sufficiently high confidence, the query se-
lector outputs the buffer as a query and clears the 
buffer for the next sentence. The query selector will 
append at most seven sentences to the context buffer, 
at which time the selector generates a query regardless 
of the categorization result. The categorizer used in the 
query selector is a rule-induced categorizer [2], which 
must be trained with a predefined taxonomy of catego-
ries and a training set of documents that have been 
manually categorized into the taxonomy.   

The taxonomy used for the evaluation below is a set of 
38 broadcast news related categories (e.g., “Domestic 
Politics”, “Business”, “Crime”, etc.) trained with ap-

proximately 1200 manually categorized documents 
from the January TDT2 documents (see Section 4 be-
low). 

The system sends each generated query to the text 
search engine, which performs a free text search on the 
text index and returns a hit-list of relevant documents.  
Any free text search engine may be used for this com-
ponent. For our prototype system and for the experi-
ments presented below we use two different search 
engines.  The first search engine is an n-gram based, 
tf*idf style ranking search engine called NGRAM. The 
second search engine is a probabilistic ranking search 
engine called GURU [5]. 

The system also performs named entity identification 
on each query using algorithms based on the Talent 
suite of text analysis tools [14, 10]. The analysis identi-
fies proper names, places, and certain technical terms 
in our on-line system. The named entities could be 
used directly by the search engine and factored into its 
internal ranking algorithm. In our current implementa-
tion, they are used by the hit-list re-ranking process to 
refine the hit-list returned by the search engine. This 
post-processing approach both facilitates experimenta-
tion and enables integration with existing search en-
gines. 

The Talent algorithms rely heavily on clues provided 
by capitalization. If the speech recognition engine does 
not produce properly capitalized text, we apply an 
automatic capitalization recovery process to the text 
[4], which uses a number of syntactic rules, punctua-
tion, and statistical analysis to restore proper 
capitalization to the text. 

For many search engines, the rank associated with a 
document in the hit-list is a function of the frequencies 
of the words of the query, the document and the collec-
tion as a whole. Otherwise, all words in the query (with 
the exception of stop words) are treated equally. How-
ever, when we examined the application scenarios dis-
cussed in this paper, it became apparent that other fac-
tors should also play a role in ranking the resulting 
documents. We postulated: 

1) If a result document has the same category as-
sociated with it as the query, the ranking of 
such a document should be increased. 

2) If a result document contains all of the same 
named entities as the query, it should be 
ranked higher than a document that has only 
some or none of the named entities. 

For each document on the hit-list, the re-ranking proc-
ess works by considering the relevance score returned 
by the search engine, the number of matching named 
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entities between the query and the document, and 
whether or not the query and the document share the 
same category.  A new relevance score for the docu-
ment is calculated using the following formula: 

 

cC
E
E

baSS
q

d ++='  

Equation 1 

where 

'S  : New score for the document 

S  : Original score of the document 

dE  : Number of distinct named entities in the 
document that match those in the query 

qE  : Number of distinct named entities in the 
query 

C  : 1 if document and query have same cate-
gory, 0 otherwise 

cba ,,
 

: Constants in the range 0 to 1 inclusive 
such that 1=++ cba  

 

Note that our hit-list re-ranking procedure assumes that 
the documents in the text search index have been proc-
essed by the same automatic text categorizer and 
named entity identifier that we apply to the queries.   

After a new score for each document is calculated, the 
hit-list re-ranking component sorts the hit-list accord-
ing to the new scores and returns the hit-list to the call-
ing application. The constants a, b, and c determine the 
influence of each component of the re-ranking formula 
on the final score.  We will consider appropriate values 
for these constants in Section 4. 

4. EXPERIMENTAL RESULTS 
4.1. GOALS 

The system evaluated here is one that automatically 
retrieves collateral information based on automatic 
query generation from a text stream. The different 
components of the system and their interactions are 
evaluated as well as the variability of the results based 
on the quality of the text stream and the underlying 
search engine. We show that the novel re-ranking algo-
rithm always gives an improvement in the precision of 
the results independent of the search engine and the 
quality of the text stream. Hence, it could also be ap-
plied to a general search task. 

In particular, the following questions are studied and 
the evaluation results are presented in subsequent sec-
tions.  

1) What is the effect of the query generation 
process on the precision of the results? 

2) What is the effect of the underlying search 
engine? 

3) What is the effect of the re-ranking algorithm? 

4) What is the effect of the quality of the text-
stream? 

5) What is the effect of categorization? 

We will show that the precision can be improved using 
categorization, named entity identification and the 
novel re-ranking results.  

4.2 CORPUS 

To evaluate our system we need a document collection, 
a set of queries (preferably drawn from a speech data 
stream), and relevance judgements for the queries and 
the document collection.  The TDT-2 corpus [8] meets 
all of these requirements.  The TDT-2 corpus is a col-
lection of text and speech from several sources: news-
wire, radio and television news broadcast programs.  It 
contains approximately 60,000 stories. These stories 
were transcribed in three different ways: 1) Manual 
transcription 2) ASR (Automatic Speech Recognition) 
transcription 3) Closed Caption transcription. The cor-
pus also includes 96 topics for which every document 
in the collection has been manually judged as relevant 
or not relevant.  

We created our text collection (referred to below as the 
“training data”) using the “sgm” versions from all Eng-
lish data sources dated January to April inclusive (i.e., 
newswire text and manual transcriptions of broadcast 
sources). The queries are drawn from English docu-
ments dated May and June that were assigned to one or 
more qualifying TDT-2 topics, where a qualifying 
topic is one where at least 10 documents in the training 
data were assigned to the topic. Although the TDT-2 
corpus includes 96 fully evaluated topics, only 46 top-
ics have more than 10 training documents in our split 
of the corpus. Three separate query sources were cre-
ated for our experiments: 

1) Q-AllDocs -- subset containing no ASR 
documents <2104 documents> 

2) Q-ASRDocs -- subset containing only 
ASR transcribed documents <1170 
documents> 
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3) Q-ASRTrans -- manually transcribed ver-
sions of the documents in Q-ASRDocs  
<1170 documents> 

These three different query sources enabled us to study 
the effect of ASR on the search task as outlined at the 
beginning of this section.  

The Q-ASRDocs collection contains only documents 
that are mono-case. However, for one part of our sys-
tem (named entity identification) capitalization is re-
quired. We used a system [4] that automatically capi-
talizes documents and applied it to the Q-ASRDocs 
query set. This part of the system could be easily re-
placed with another subsystem not requiring capitaliza-
tion. The results of the evaluation would not change 
with such a substitution.  

We define a document to be relevant collateral infor-
mation for a particular query if and only if the query 
and the document have the same TDT topic. The topic 
of a query is the topic of the document from which the 
query is drawn. 

Based on the three different query sources we gener-
ated six different query sets. Three of the query sets 
(labelled with the “Whole” suffix) contain whole 
documents as queries (modeling the case where query 
boundaries are explicitly given), and three of the query 
sets (labeled with the “Partial” suffix) contain auto-
matically generated queries from parts of a document 
as described in section 3. All of the query sets are an-
notated in real-time.  The query sets are as follows: 

1) Q-AllDocsWhole – 2104 queries  (375) 

a. categorized: 837 (40%)  

b. uncategorized: 1267 (60%) 

2) Q-ASRDocsWhole – 1170 queries (202)  

a. categorized: 241 (20%)  

b. uncategorized: 929 (80%) 

3) Q-ASRTransWhole – 1170 queries (193) 

a. categorized: 384 (33%) 

b. uncategorized: 786 (67%) 

4) Q-AllDocsPartial – 8213 queries (102) 

a. categorized: 1719 (21%) 

b. uncategorized: 6494 (79%) 

5) Q-ASRDocsPartial -- 3899 queries (62) 

a. categorized: 261 (7%) 

b. uncategorized: 3638 (93%) 

6) Q-ASRTransPartial -- 3078 queries (78) 

a. categorized: 708 (23%) 

b. uncategorized: 2370 (77%) 

A categorized query is one that could be categorized by 
our automatic text categorizer with sufficient conf i-
dence. The number in parenthesis after the number of 
queries is the average query length in words. 

Each story in the corpus itself (i.e., the data which is 
searched) is also annotated by the categorizer and the 
named entity identifier. The corpus has 40,932 docu-
ments, 14,537 (35%) which have a category attributed 
to them, 26,395 (65%) of which were not categorized. 
We will explore the effects of categorization in more 
depth in the next section. 

4.3. EVALUATION 

The first set of results presented here establishes the 
baseline for our system. All results presented below 
show precision at n hits.  Since our target application is 
to augment a data stream with collateral information, 
we are emphasizing precision. The goal is to find rele-
vant collateral information for a query. We will show 
that our system can produce results that have precision 
of 40% - 65% in the top 10 hits. These results can be 
achieved with different search engines and different 
query sets as shown in Figure 2 and Figure 3. Note that 
the scale of the precision axis is scaled to show the area 
of interest. 
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Figure 2: Baseline performance whole document 
queries 

The baseline performance was established using two 
different search engines. The datasets G (labels ending 
with G) used the IBM NGRAM Search Engine, 
whereas the datasets S (labels ending with S) used the 
GURU search engine. In general, the GURU search 
engine performs better, however both search engines 
perform very similar with respect to the different query 
sets. The manually transcribed queries perform the 
best, whereas the queries based on output of an ASR 
system perform the worst with the spread being 5% in 
most cases The results for the Q-AllDocs set differ 
only slightly from the results for the Q-ASRDocs set, 
which seems to imply that ASR systems are quite ade-
quate for the task under evaluation.  Results in Figure 2 
are based on whole document queries while the results 
shown in Figure 3 are based on automatically gener-
ated queries.  
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Figure 3: Baseline performance auto-generated 
queries 

The spread in the precision is wider in Figure 3. The 
GURU search engine again performs better than the 
NGRAM search engine. However, for both search en-
gines the relative performance of the different query 
sets is the same and consistent with the whole docu-
ment queries. The Q-ASRTrans query set achieves the 
highest precision, while the Q-ASRDocs query has the 
lowest precision. The spread in precision between the 
results based on the Q-ASRDocs and the Q-AllDocs 
query set is roughly 5% for whole document queries 
and closer to 10% for automatically generated queries. 
The same spread is observed between the Q-AllDocs 
and the Q-ASRTrans datasets. 

The second set of results examines the effects of cate-
gorization. Again, we look at how the results vary as a 
function of the various query sets and search engines. 
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Figure 4: Categorized vs  uncategorized whole 
document queries 

Figure 4 shows the performance of queries that could 
be categorized compared with the performance of que-
ries that could not be categorized using the NGRAM 
search engine. Queries that can be categorized lead to 
dramatically better results than queries that cannot. In 
particular, precision improves between 16% and 60%.  

When examining auto-generated queries, very similar 
results are observed as shown in Figure 5. 

Very similar improvements are seen when using the 
GURU search engine. It is noteworthy that in general 
the precision is best for the Q-ASRTrans query set and 
the worst for the Q-ASRDocs query set. Different be-
havior was observed for the whole document queries 
using the NGRAM search engine. There, the Q-
ASRDocsWhole query set gave the best results, the 
difference in precision between the other two sets be-
ing quite small. 

These results suggest strongly that a carefully crafted 
and trained taxonomy can lead to improved results by 
supporting a categorization screening step to indicate 
the likelihood of success for the query. Although one 
cannot guarantee that a query is categorized, one can 
attempt to augment a query in those instances. The 
augmentation can be done either automatically or 
through user interaction. 
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Figure 5: Categorized vs uncategorized auto-
generated queries 

So far, we have shown that the baseline performance of 
our system is quite satisfactory. Furthermore, the per-
formance of the base system does not change much 
with the varying query sets. The ability of categorizing 
a query improves the precision of the results dramati-
cally, again independent of the underlying query set 
and search engine. The length of the query (whole 
document vs. auto-generated query) does not have a 
major influence on the results. 

The next section presents a novel re-ranking algorithm. 
We show that this algorithm boosts performance for all 
query sets.  

4.4.  RE-RANKING ALGORITHM 

The novel re-ranking algorithm was introduced in sec-
tion 3, where the formula for computing the rank of a 
document is presented. In this section, the performance 
results are presented. In section 3, we suggested that a 
new score for a document should be computed based 
on the original score, the overlap of named entities 
between the query and the document, and the categori-
zation of the query and the document.  

The following study shows that indeed an improve-
ment of up to 14% in precision at 10 hits can be 
achieved considering all three factors. Furthermore, we 
show that an improvement is achieved for all query 
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sets, independent of search engine and query length. 
Recall that the new rank of a hit-list document is com-
puted using the following formula: 

                     cC
E
E

baSS
q

d ++='  

We experimented with different values of a, b and c 
and the results do not differ substantially with the 
choice for these constants. However, empirically, it 
seemed that the following sets of constants give the 
best results:  

1) (a, b, c) = (0.3, 0.4, 0.3) 

2) (a, b, c) = (0.1, 0.9, 0.0) 

The constants indicate that queries with many named 
entities can rely to a huge degree (even solely) on them 
in the re-ranking process. However, in the presence of 
a good taxonomy and a small number of named enti-
ties, the first set of constants maybe more advisable. 

The experiments presented here consider the first 100 
returned hits for the re-ranking process. Our goal is to 
improve the precision in the top 10 results. 

The experimental results shown in Figure 6 examine 
the improvements in precision for all the query sets.  
The improvement (at 10 hits) ranges from 5% -12% 
with the smallest improvement shown for the Q-
ASRTrans dataset and the biggest improvement seen 
for the Q-ASRDocs query set. Here the NGRAM en-
gine performs the basic search using whole document 
queries. The first set of constants is used for the re-
ranking. 

We examined the same data sets, but substituted the 
GURU search engine for the NGRAM search and en-
gine and used the second set of constants for the re-
ranking. 

The precision at 10 hits improved between 3% and 
4.6% over the original results. 
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Figure 6: Re-ranking whole document queries 

 

Next, we examine how much the re-ranking algorithm 
improves the precision if auto-generated queries form 
the input. The results shown in Figure 7 use the 
NGRAM search engine and the first set of constants 
for the re-ranking process. 
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The improvements in precision at 10 hits range from 
7.6% to 10% for all the query sets.  

The improvements are in the range from 4% to 6% 
when substituting the GURU search engine for the 
NGRAM engine. 

The next figure (Figure 8) examines whether the re-
ranking algorithm improves the precision at 10 when 
only categorized queries are taken into account.  
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Figure 8: Re-ranking categegorized whole docu-
ment queries 

Here the improvements range from 5% to 14%, the 
biggest improvements shown for the Q-ASRDocs 
query set.  For uncategorized queries, improvements in 
the range of 7% - 11% can be achieved using the 
NGRAM search engine using the first set of constants 
for the re-ranking. 

All these results show that re-ranking can dramatically 
improve the precision of our task. There seems to be a 
strong indication that a common search task could also 
be improved using this technique. We showed, that in 
the absence of categorization, the re-ranking based on 
named entities alone still shows a big improvement in 
the results.  

5. CONCLUSIONS 
Recorded speech is gradually becoming more impor-
tant as a source of information in knowledge manage-
ment and text search systems.  Previously most of the 
information retrieval work related to speech involved 
searching spoken documents or analyzing transcribed 
news broadcasts for topic detection and tracking.  In 
the work presented here, we are exploring new ap-
proaches to exploiting speech as a knowledge resource.  
In particular, we are interested in analyzing speech as it 
is generated and augmenting the speech stream with 
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additional collateral information from related knowl-
edge sources. 

We have presented a system that captures speech, tran-
scribes the speech to text using continuous automatic 
speech recognition, analyzes the text transcript, and 
finds documents that are relevant to the current topic of 
discussion in the speech stream.  All of this processing 
occurs on-line (i.e., fast enough to keep up with the 
speech generation rate), and the processing that occurs 
on the text transcript can be applied to any data stream 
with a textual representation. 

Our experimental results on the TDT2 collection show 
that the baseline system can automatically generate 
queries and find relevant documents with an average 
precision in the top ten results of 50% to 60% depend-
ing on the underlying text search engine.  We also pre-
sented an approach for re-ranking the search engine 
results using named entity analysis and automatic text 
categorization that produces an improvement of 4%-
10% in precision at 10 hits, for final results of up to 
65% precision at 10 hits.  We showed that the re-
ranking technique provides improvement for two dif-
ferent text search engines, and it is robust on ASR out-
put that contains word recognition errors.  Moreover, 
this technique is applicable to traditional text search 
systems and might provide similar precision improve-
ments. We plan to run more experiments to confirm 
this. 

Our experimental results also reveal a strong correla-
tion between the ability of the automatic text catego-
rizer to categorize a query (i.e., assign the query to a 
category with sufficiently high confidence) and the 
quality of the result returned by the text search engine.  
For example, average precision at 10 hits for uncatego-
rized partial queries was 38%, while average precision 
at 10 hits for categorized partial queries was 73%.  
This result suggest that an automatic text categorizer 
might be used to evaluate the “quality” of a query be-
fore it is even submitted to the search engine.  Queries 
that cannot be categorized might go through additional 
processing, e.g., iteration with the user, automatic 
query expansion, automatic relevance feedback, etc. 

Our main goal in this work was to validate our ap-
proach to augmenting speech data with relevant infor-
mation.  Based on the experimental results, we believe 
we have achieved this goal.  Much work remains in 
this area.  In particular, we are interested in exploring 
the effect of storing spoken documents in the text col-
lections being searched.  For all of our experiments 
here, the system searched a text collection comprising 
written documents or manually transcribed speech.  In 
the future, we plan to explore the effect of searching 

automatically transcribed documents along with writ-
ten documents and manually transcribed speech. 
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