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Abstract. Starting from the Näıve Bayes model, we develop a new concept for

aggregating items of evidence in classification problems. We show that in Näıve Bayes,

each feature variable contributes a multiplicative adjustment factor to the estimated

class probability. We next introduce a way of controlling the importance of the feature

variables by raising each adjustment factor to a different power. The powers are

chosen so as to maximize the accuracy of estimated class probabilities on the training

data, and their optimal values are obtained by fitting a logistic regression model whose

explanatory variables are constructed from the feature variables of the classification

problem. This optimization accomplishes more than what feature selection does for

Näıve Bayes. We call this new model family the Adjusted Probability Model (APM).

We also define a regularized version, APMR. Experiments demonstrate that APMR

is surprisingly effective. Assigning different degrees of importance to the feature

variables seems to remove much of the näıveté from Näıve Bayes.

Key words: Näıve Bayes, probabilistic model, classification, ensemble of models,

adjusted probability model, evidence aggregation, maximum likelihood.





1. Introduction

The Näıve Bayes (NB) model for classification problems is attractive for its simplicity

and its good model understandability. There have been several studies of how well

the model performs as a classifier. Domingos and Pazzani (1997) explore theoretical

conditions under which NB may be optimal even though its assumption of indepen-

dence of the feature values given the class may not hold, and also supply empirical

evidence. Hand and Yu (2001) give arguments on why the independence assumption

is not so absurd. Garg and Roth (2001) consider all joint distributions and show

that the number of these distributions goes down exponentially with their distance

from the product distribution of NB, thereby explaining the power of NB beyond the

independence assumption. These studies focus on classification error.

In many data mining applications, the desired model output is the class prob-

ability. Examples include marketing applications in which a mailing is sent out to

consumers whose estimated probability of response to the mailing exceeds a given

level; this level is chosen to maximize expected profit, based on a “lift curve” (e.g.,

Piatetsky-Shapiro and Steingold, 2000). We focus on class probability estimation,

using a new model derived from a novel interpretation of NB. This derivation is given

in section 2. The new model yields class probability estimates that are given by the

prior probability of the class with successive multiplicative adjustments arising from

the evidence supplied by each feature; we therefore call it the Adjusted Probability

Model (APM). Each adjustment factor has an associated importance parameter that

is estimated by fitting a logistic regression model. The estimation of class probability

based on a single feature value can be construed as a simple model. Our formulation

of APM is therefore a new way of aggregating the outputs of an ensemble of models.

The aggregation uses multiplicative adjustments, in contrast to additive aggregation

traditionally done by boosting or bagging. We also introduce a regularized version of

APM that we call APMR.

In section 3, we present the straightforward process of “educating Näıve Bayes”, or

training the model parameters by the maximum likelihood criterion for both APM and

APMR. Section 4 presents the results of experiments that investigate the performance

of the new models on some UCI problems that have exclusively nominal features.

In section 5 we discuss APM and APMR in relation to other relevant techniques.

We show that several other NB based techniques are syntactically close to our formu-

lation of APM, but are not as natural or optimal for the goal of modeling the class

probabilities. Section 6 contains some concluding remarks.
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2. A new interpretation of Näıve Bayes and a new model

Suppose that the data consist of n examples. The ith example has class label ci and

feature values in vector Xi. Let xij be the feature value of feature j in example i.

The column vector of values for feature j will be denoted by xj. The probability that

the class is k given feature values X is then

P (C = k|X) = P (C = k)
P (X|C = k)

P (X)
. (1)

Näıve Bayes makes the assumption that the feature values are independent given the

class, i.e. that

P (X|C = k) =
∏
j

P (xj|C = k) . (2)

Thus when comparing the possible classes for a given example we have

P (C = k|X) ∝ P (C = k)
∏
j

P (xj|C = k) ; (3)

this is the usual NB formulation.

We make the important observation that

P (xj|C = k) =
P (xj)P (C = k|xj)

P (C = k)
, (4)

so the NB model may equivalently be written as

P (C = k|X) ∝ P (C = k)
∏
j

P (C = k|xj)

P (C = k)
. (5)

This gives a new interpretation of NB: the class probability given the values of a set of

features is proportional to the prior probability of the class adjusted multiplicatively

by factors each of which reflects the influence of one of the individual features. Each

adjustment factor is simply the ratio between the class probability given a feature

value and the class prior probability. A natural extension of this interpretation is

to permit the features to have different degrees of influence: importance parameters

(weights) can be introduced as

P (C = k|X) ∝ P (C = k)
∏
j

(
P (C = k|xj)

P (C = k)

)αj

. (6)
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Expression (6) defines our Adjusted Probability Model, APM.

The näıveté of NB arises from assumption (2), which ignores the effect of corre-

lation between features. For example, if there are two nearly identical features they

both contribute to the product in (5) although they are both based on the same

information. Introducing the α coefficients in (6) enables the model to allow for such

duplication: one would expect that in a properly trained model the α coefficients of

nearly identical features would sum to 1 rather than each being equal to 1. Thus

we might say that training APM to obtain an optimal set of αj values amounts to

“educating” Näıve Bayes to be more sophisticated.

We now show that the training process can be reduced to a logistic regression

problem. From (6) we have

P (C|X)

1−P (C|X)

=
P (C)

1−P (C)

∏
j

(
P (C|xj){1−P (C)}
{1−P (C|xj)}P (C)

)αj

. (7)

Rewriting for a given X = Xi, we have

ln
P (C|Xi)

1− P (C|Xi)
= q0 +

∑
j

αjqij (8)

where

q0 = ln
P (C)

1−P (C)
, (9)

qij = ln
P (C|xij){1−P (C)}
{1−P (C|xij)}P (C)

. (10)

Equation (8) can also be written as

P (C|Xi) =
1

1 + e−q0−αTQi
(11)

where α is a vector with elements αj and Qi is a vector with elements qij defined as

in (10).

Equations (8) and (11) display APM in the form of a logistic regression model.

Note that the term q0 does not have an α coefficient: in statistical terminology it

is an offset rather than an intercept. For a two-class problem, it is straightforward
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to estimate the model parameters αj by the method of maximum likelihood: details

are given in section 3. In a problem with three or more classes, equation (8) can

be regarded as specifying a polytomous logistic regression. In practice it is more

convenient to regard a multi-class problem as a succession of two-class problems (of

the form one class vs. the rest): the estimation is easier and we gain the freedom

of permitting the αj values to be different in the different two-class problems. This

enables a feature to have greater influence in distinguishing some classes as opposed

to others, a situation that can plausibly occur in practice.

The probabilities needed to define the quantities q0 and qij in equations (9)–(10)

are naturally estimated from the data by

P (C = k) = #{i : ci = k}/n , (12)

P (C = k|xj = v) =
#{i : xij = v & ci = k}

#{i : xij = v}
. (13)

Here one may use a small-sample adjustment, e.g. increasing the numerator by L and

the denominator by 2L (this is the Laplace correction when L = 1 and a modified

Laplace correction when L = 1/n — see Kohavi et al., 1997).

The foregoing computations are for a discrete-valued feature. Features that take

values in a continuous range may first be discretized, or some continuous relation

between P (C|xj) and xj can be developed for each feature. We do not discuss these

possibilities further here.

Overfitting to the training set is a definite possibility in this scheme. We therefore

define a regularized version of APM, APMR, by restricting the αj coefficients in (8)

to satisfy
∑

j α2
j = m where m is chosen to maximize the accuracy of out-of-sample

predictions of class probabilities. Finding the optimal value of m is a form of structural

risk minimization. We use an internal cross validation: in each fold the training set is

divided into train-train and train-validate sets. The value m̂ is found that produces

the smallest median (or mean) loss over the train-validate sets of all folds. (The loss

is the criterion function used to fit the logistic regression model (8), and is formally

defined in equation (15) below.) Model (8) is then fitted to the entire training set,

with the restriction that
∑

j α2
j = m̂. This yields the final APMR classifier.

In detail, to find the optimal value of m, we proceed as follows. Let the
∑

j α2
j

value from the unrestricted APM model be mu. Denote by APM(m) the APM model

with the restriction
∑

j α2
j = m. To find the optimum value of m, search for a local

minimum loss within the interval of m values between 0 and mu. This is effective
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Figure 1. Loss, as a function of m, for the five train-validate sets in the internal cross-
validation used in training the APMR model for the SDNA example from section 4.

because in our experiments the average loss over the examples in the train-validate

set is generally concave in m. An example is given in Figure 1. For 10 values

of m, equally spaced between 0 and mu, generate APM(m) models for all the folds

in a 5-fold cross-validation. In these APM(m) models, the probability estimates q0

and qij in equations (9) and (10) are computed from the entire training set (i.e. they

are the values that were computed for the unrestricted APM model), rather than

being computed separately for the train-train sets of each fold of the cross-validation.

Find the value m′ that produces the smallest median (or mean) average train-validate

set loss across all folds. Define a new search interval bounded by the two adjacent

values to m′. Define 10 equally spaced values in this interval (one of them being m′).

Again find the m value that produces the smallest median (or mean) average train-

validate set loss across all folds. In all this procedure requires 5× (10 + 9) = 95 runs

of the APM(m) algorithm. The model APM(m̂) is finally fitted to the entire training

set to obtain APMR.

3. Optimization of the importance parameters

We assume a two-class problem with class labels 0 and 1. The likelihood of the data

under the APM model is

∏
i

{P (C|Xi)}ci{1− P (C|Xi)}1−ci (14)
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where P (C|Xi) is given by equation (11). Equivalently to maximizing (14), we can

minimize the average loss per example,

Loss =−n−1
∑

i

[ci log P (C|Xi)

+(1− ci) log{1−P (C|Xi)}] . (15)

This loss measure directly penalizes incorrect estimation of class probabilities: the

loss is zero when the actual class has estimated probability 1, and increases as this

estimated probability decreases (the loss is essentially the “fair fee” of Good, 1952;

see also Dawid, 1982). We use logarithms to base 2 in (15), so the loss is measured

in bits.

The minimization of (15) can be achieved by the Newton-Raphson method, which

we implement as the APM algorithm. We denote by p a vector with elements pi =

P (C|Xi), by D a diagonal matrix with entries pi(1− pi), by α a vector with elements

αj, and by Q a matrix with elements qij.

APM algorithm:

1) Initialize: α =0.

2) Compute p and form D.

3) Compute ∆α = (QTDQ)−1QT(C −p).

4) Update α←α + ∆α.

5) If all elements of ∆α are less in absolute value than some small value, say 10−10,

stop; otherwise, continue iteration from step 2).

The optimization for the APM(m) model makes use of a Lagrangian multiplier λ

and minimizes

Loss + λ
(∑

i

α2
j −m

)
. (16)

Again, the minimization is performed via the Newton-Raphson method. After some

algebra, we obtain the following algorithm. I denotes the identity matrix.

APM(m) algorithm:

1) Run the APM algorithm, obtaining the solution αu; let mu = αT
u αu.

2) Initialize: α = αu× (m/mu)
1/2.

3) Compute p and D.

4) Compute r=QT(p−C) + 2λα.

5) Compute s = αTα−m.

6) Compute ∆λ = [4αT(QTDQ+ 2λI)−1α]−1[s− 2αT(QTDQ+ 2λI)−1r].

6



7) Compute ∆α =−(QTDQ+ 2λI)−1(2α∆λ + r).

8) Update α←α + ∆α and λ←λ + ∆λ.

9) If all elements of ∆α have absolute value less than some small value, say 10−10,

stop; otherwise, continue iteration from step 3).

The APM and APM(m) algorithms can occasionally be numerically unstable.

More robust optimization algorithms will be developed in the future. The experi-

ments reported here used some ad hoc modifications, as follows. In both APM and

APM(m) algorithms some elements of p may become 0 or 1 to machine precision,

causing a matrix inversion problem. We replaced such values by 10−10 and 1− 10−10

respectively. Also, after step 5 of the APM(m) algorithm, we terminated the loop

if the loss, which we also computed, was small (say less than 0.001) and s/m was

similarly small. The run time is dominated by the matrix inversion.

4. Experiments

For our experiments we took most of the classification problems in the UCI data repos-

itory that do not have numerical features. We used the following problems: DNA

(3 classes, 60 features, 2000 training examples and a prescribed test set of 1186 exam-

ples), SDNA (3190 combined “original” examples of DNA, of which 15 examples have

partially unknown feature values and were discarded), mushroom (2 classes, 23 fea-

tures, 8124 examples), breast (2 classes, 9 features, 286 examples), vote (2 classes,

16 features, 435 examples), and lymph (4 classes, 18 features, 148 examples). Fol-

lowing most other reported experiments on these problems we treated “missing” as a

separate value of each feature.

The results are summarized in Table 1. The reported results are means and

standard deviations over the 100 test sets obtained from 10 repetitions of 10-fold

cross-validation (except for the DNA problem, which has a fixed train/test split). In

the table we indicate the small-sample adjustment that we used. Only problems with

a small number of examples, viz., breast and lymph, are sensitive to the magnitude

of the modifying factor L in the Laplace correction. It was not clear whether a small-

sample adjustment was used in the results reported by others. All runs were done in

interpreted APL on a 133MHz IBM RS/6000 workstation. Run times are reasonable,

e.g. one 10-fold cross validation run on the SDNA data generating NB, APM and

APMR models took about two hours. (For this 3-class problem, this involved running

the APM(m) algorithm a total of 10× 95× 3 = 2850 times.)
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For problems with more than two classes we report the results for each class (class

k vs. rest is denoted as k for short in Table 1) and for “All” classes. The all-classes

results were computed by combining the class probabilities from the individual class

models, although completely different APMR models were generated for different

classes. We report the classification error rate and the loss measure (15), which

directly measures the inaccuracy of estimated class probabilities. In the loss measure,

to avoid infinities estimated class probabilities of 0 and 1 were replaced by 10−10 and

1− 10−10 respectively. For the APM and APMR methods, we also report m or m̂

values and the number of negative αj values in the final classifier.

Our loss measure has not been reported in other papers, but we can compare its

value across the NB, APM, and APMR methods. In all cases, APMR produces a

smaller loss than NB, often by a significant margin. What is surprising is that our

optimization was done with the goal of maximizing the accuracy of class probability,

i.e. minimum loss, and yet the classification error rates are also often superior to NB

and to many other methods whose results have been reported in the literature, as

follows.

DNA: Gärtner and Flach (2001) report error rates for class 1 ranging from 2.11%

to 3.88% depending on the SVM parameter setting for SVMlight and their BSVM.

The APMR rate for this case is 2.50%. The all-class error rate of APMR is 3.49%

which compares well with the rate of 5.0% for bagged CART reported by Breiman

(1996).

SDNA: For “all classes”, the APMR error rate is 3.9%. Freund and Schapire

(1996) reported error rates for C4.5 boosted and bagged of 4.9% and 5.2%. Freund

and Mason (1999) reported error rates for boosted C5.0, boosted stumps and AD-

Tree of 3.7%, 6.0% and 4.1%. Quinlan (1996) reported error rates for bagged C4.5

and boosted C4.5 of 5.58% and 5.43%.

Mushroom: Gärtner and Flach (2001) report an error rate of 4.23± 0.75% for

NB and zero error for both linear SVM and WBCSVM. Zero error is also attained by

both APM and APMR.

Breast(-cancer): The APMR error rate of 27.97% is slightly higher than that of

NB, 27.59%. However, APMR’s error rate has much smaller standard deviation, and

its average loss is significantly better. Hall and Holmes (2000) report an error rate

of 26.88% for NB and 26.46% for NB with selection of best features. Gärtner and

Flach (2001) report error rates of 26.88± 7.48% for NB, 31.1± 7.85% for WBCSVM,

and 30.12± 6.57% for a linear SVM.
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Table 1. Comparison of NB, APM and APMR. “Error” is the misclassification rate.
“Loss” is the loss measure of equation (15). “# neg.” is the number of negative αj coeffi-
cients in the final model. Table entries are means, and numbers in parentheses are standard
deviations, over 10 repetitions of the folds of a 10-fold cross-validation.

Class Method Error (%) Loss m or m̂ # neg.
DNA: (APMR results are averaged over 10 runs; no Laplace correction)

1 NB 3.63 0.13
APM 2.70 0.12 156 11
APMR 2.50 0.10 21 8.0

2 NB 3.12 0.19
APM 4.22 0.20 209 12
APMR 3.51 0.17 18 7.8

3 NB 8.09 0.32
APM 6.49 0.24 114 11
APMR 6.41 0.23 27 10.0

All NB 5.40 0.25
APM 3.96 0.24
APMR 3.49 0.24 (0.00)

SDNA (no Laplace correction)

1 NB 3.12 (0.97) 0.13 (0.05)
APM 2.65 (0.93) 0.13 (0.06) 127 (57) 10.9 (1.5)
APMR 2.50 (0.75) 0.12 (0.05) 23 (9) 7.5 (1.6)

2 NB 2.99 (0.89) 0.18 (0.08)
APM 3.27 (0.85) 0.17 (0.08) 77 (27) 11.5 (1.6)
APMR 2.87 (0.77) 0.16 (0.07) 14 (4) 9.0 (1.5)

3 NB 7.78 (1.46) 0.30 (0.05)
APM 6.28 (1.48) 0.24 (0.05) 100 (20) 11.7 (1.6)
APMR 6.12 (1.36) 0.23 (0.03) 29 (8) 9.6 (1.8)

All NB 4.36 (1.05) 0.25 (0.09)
APM 4.27 (1.09) 0.25 (0.09)
APMR 3.90 (1.09) 0.24 (0.08)

Mushroom (modified Laplace correction, L = 1/n)

NB 0.45 (0.23) 0.02 (0.01)
APM 0 0 19816 (927) 7.4 (0.9)
APMR 0 0 5714 (2732) 5.1 (0.4)

Breast (full Laplace correction, L = 1)

NB 27.59 (7.36) 0.93 (0.23)
APM 28.53 (7.54) 0.85 (0.13) 6.0 (1.3) 0.04 (0.2)
APMR 27.97 (6.27) 0.82 (0.11) 2.2 (1.4) 0

Vote (modified Laplace correction, L = 1/n)

NB 9.72 (4.27) 0.94 (0.48)
APM 4.66 (2.89) 0.29 (0.33) 1002 (3425) 6.6 (0.8)
APMR 4.25 (2.75) 0.20 (0.16) 446 (3280) 6.1 (0.9)

Lymph (full Laplace correction, L = 1)

1 NB 2.00 (4.50) 0.13 (0.25)
APM 0.67 (2.11) 0.16 (0.47) 26 (12) 7.5 (1.6)
APMR 0.67 (2.11) 0.02 (0.04) 17 (8) 11.6 (1.1)

2 NB 15.52 (11.58) 0.58 (0.45)
APM 19.62 (7.49) 0.93 (0.81) 278 (191) 4.9 (0.9)
APMR 18.24 (11.90) 0.53 (0.30) 16 (10) 3.5 (1.4)

3 NB 12.14 (8.36) 0.57 (0.46)
APM 16.33 (16.25) 0.77 (0.79) 8893 (22211) 3.9 (1.0)
APMR 14.24 (14.59) 0.57 (0.42) 1069 (2799) 3.8 (1.8)

4 NB 2.00 (3.22) 0.07 (0.12)
APM 0.67 (2.11) 0.02 (0.04) 7.3 (3.3) 6.4 (0.7)
APMR 0.00 (0.00) 0.01 (0.02) 5.1 (2.2) 8.6 (1.7)

All NB 12.81 (11.64) 0.64 (0.55)
APM 19.62 (10.94) 0.88 (0.66)
APMR 14.90 (11.01) 0.57 (0.36)
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Vote: The APMR error rate is 4.25%. Quinlan (1996) reports error rates for C4.5

bagged and boosted of 4.37% and 5.29%. Freund and Schapire (1996) report error

rates for C4.5 bagged and boosted of 3.6% and 5.1%. Freund and Mason (1999) report

error rates of 4.5% for boosted C5.0, 4.4% for boosted stumps, and 3.7% for AD-Tree.

Hall and Holmes (2000) report error rates of 9.81% for NB (compared with our 9.72%)

and 4.07% for NB with selection of best features. Gärtner and Flach (2001) report

error rates of 9.81± 3.92% for NB, 4.14± 3.13% for WBCSVM, and 3.77± 2.77% for

a linear SVM.

Lymph: APMR was worse than NB with a modified Laplace correction. Even

with the full correction APMR is comparable to NB only for the loss. Quinlan (1996)

reports error rates for bagged and boosted C4.5 of 20.41% and 17.43%. Hall and

Holmes (2000) report error rates of 16.76% for NB and 15.89% for NB with selection

of best features. We infer that these results must have been obtained with a small

Laplace correction. This problem has a fairly small number of examples and many

features have values that are present in only one or two examples.

It is rather surprising that the test error rate of APMR is often much better than

that of NB and also competitive with more sophisticated SVM or bagged/boosted

models, even though loss, not the classification error rate, was the optimization target.

5. Relation to other modifications to NB

That NB is like logistic regression has been observed by many authors. Elkan (1997)

made this observation, without introducing the α coefficients of APM, and showed

that boosted NB is related to a neural network with one hidden layer. Hand and

Adams (2000) also show the relationship and use it for discretization of numerical

features. Ridgeway et al. (1998) showed that a linearized form of boosted NB yields

a probability model similar to (8) without the α coefficients but with the values

of q0 and qij replaced by appropriately weighted values over several iterations of

boosting. A “weighted NB” method has been used in text categorization with fixed

exponentiating weights based on the frequency of observing a feature word in the text

example (Rennie, 1999).

A modified NB model that is syntactically close to APM is the weighted NB,

called WBCSVM, of Gärtner and Flach (2001). In our notation, this model can be
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formulated for the two-class case corresponding to model (6) as

P (C|X) ∝ {P (C)}α0
∏
j

{P (Xj|C)}αj . (17)

Gärtner and Flach use a kernel derived from a “linear decision function” that is

defined similarly to APM’s q values in equation (10). However, the model is optimized

for classification error rate as is usual for SVMs. Overfitting is avoided by reliance

on SVM. Beside the difference in the optimization goal, there is one syntactically

small but important difference between APM and WBCSVM: APM does not fit an

importance measure α0. This reflects our intention of using the importance weights

only to compensate for the absence of class-conditional correlations among features

in the NB model.

It is true that one could take the original NB formulation (3), generalize it to

P (C|X) ∝ P (C)
∏
j

{P (Xj|C)}αj , (18)

and still arrive at the same logistic regression, equation (8). For (18) can be written

as
P (C|X)

1− P (C|X)
∝ P (C)

1− P (C)

∏
j

(
P (Xj|C)

P (Xj|C̄)

)αj

, (19)

where C̄ is the event “not-C”, and Bayes’s theorem shows that

P (xj|C)

P (xj|C̄)
=

P (C|xj){1− P (C)}
{1− P (C|xj)}P (C)

. (20)

However, when weighting the importance of different features it seems more natural to

exponentiate the probability ratios in (6) rather than the odds ratios in (19). Another

feature of our generalization of NB is that missing values and unseen values, which

happen often during 10-fold modeling runs, are correctly handled. When in the test

set a value of a feature, v, is encountered that is not present in the training examples,

a sensible assignment is to set P (C|v) = P (C). APM does this, whereas NB as usually

implemented “ignores v”: this amounts to assigning P (v|C) = 1, a strange choice that

nonetheless is effective in practice.

APMR can also be viewed as a generalization of feature selection, which may

be regarded as the case where the alpha values are all constrained to be either 0

or 1 and their squared norm m is the cardinality of the optimum feature subset. In
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APMR, the alpha values are arbitrary (positive as well as negative) and their sum m

can take positive non-integer values: this is similar to the relationship between ridge

techniques and feature selection in regression.

The importance exponents of APM, αj, can become negative. As indicated in

Table 1, this is not unusual. This phenomenon can also occur in WBCSVM, for

which Gärtner and Flach (2001) suggest that “counter-productive attributes might

be assigned negative weights”. However, in a limited experiment with our APM we

removed those features whose αj values were negative; the resulting models were

degraded by varying degrees. We interpret negative αj values in a different light. In

an APM model with a single feature, the α value for that feature should be +1 in order

for the two sides of expression (6) to be in agreement. Therefore the occurrence of

a negative α value for a feature suggests that the relationship between that feature’s

values and the class probability has become reversed in the presence of additional

features. This situation is closely related to Simpson’s paradox, a phenomenon much

studied by statisticians (e.g., Blyth, 1972; Samuels, 1993). Indeed, when we trained

APM on the example of Simpson’s paradox given by Pearl (2000, sec. 6.1) we did

obtain a negative α value for the relevant feature (drug/no-drug).

6. Concluding remarks

APM is derived from a new interpretation of Näıve Bayes. While there have been

many similar modifications to NB, they either aim at reducing the error rate or are

crucially different in the training procedure: one distinctive feature of APM is having

q0 fixed. The usual NB approach is known to be quite effective in predicting class

membership; the APM/APMR approach provides the same or better accuracy and

yields much better estimates of the class probability. We conclude that APMR is

well suited for many applications where estimation of the class probability is of prime

importance. We plan to perform more experiments, including problems that have

numerical features.

Although APMR performs well, its basic model (6) still does not completely

account for dependence between features. One approach to dealing with this is to add

new features based on combinations of the original features. For example, one can

include outputs of other models as input features to APM. This further extends the

viewpoint that APM is a means of combining the outputs of an ensemble of models.

When there are more than two classes, we took the class probabilities from dif-

ferent APMR models for each class vs. the rest and computed error and loss mea-
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sures for the all-class problem. Collins et al. (2002) suggest using Bregman distance

to reformulate logistic regression in the context of boosting; it is possible that this

idea can also be used to generate a multiclass APM by training a polytomous logistic

regression. We plan further investigation of this approach.
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