
RC22396 (W0204-057) April 15, 2002
Computer Science

IBM Research Report

Managing Graph(ical) Complexity with Raisin and Its
Category Explorer

Douglas N. Gordin
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Managing Graph(ical) Complexity
with Raisin and Its Category Explorer

Douglas N. Gordin
IBM T.J. Watson Research Center

PO Box 218; Route 134
Yorktown Heights, NY 10598

011-914-945-3266

dgordin@us.ibm.com

ABSTRACT
Graphs offer a powerful way to view the relationships between
objects. Yet, as useful as small graphs are for seeing
relationships, large graphs are frustrating because their complexity
overwhelms our ability to trace through patterns of relationships.
The Raisin system helps manage this complexity by giving the
means to layout a graph well; index a graph using categories
based on structure and other criteria; highlight and abstract via
selection, hiding, and aggregation; and create new categories that
distill the user’s conclusions for analysis and presentation.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation (e.g., HCI)]:
User Interfaces– Graphical user interfaces (GUI), Interaction
styles (e.g., commands, menus, forms, direct manipulation),
Theory and methods.

General Terms
Algorithms, Design, Human Factors

Keywords
Graph visualization, Focus+Context, Directed Acyclic Graph,
Aggregation, Tree control, Categorization, Simplification

1. INTRODUCTION
Graphs offer a powerful way to view the relationships between
objects as well as a strong set of mathematical tools for the
analysis of those relationships. In trying to account for the power
of visual diagrams and graphs, Larkin & Simon analyzed how
diagrammatic representations alter the cognitive ecology of
searching for information [1]. Their explanations also shed light
on why large graphs are extremely frustrating— the huge number
of relationships mean we can not grasp all the connections and
tracing through specific pathways is difficult because the
background overpowers our attempt to focus on selected parts.

Visualization techniques often focus on two task models: data

discovery and communication of results. Data discovery is the
search for interesting patterns and explanations. A powerful
technique is to partition the data into categories and then devise
causal connections between the categories. Afterwards the data is
arranged so as to best convey the original data, the explanatory
categories, and the casual connections.

The CATEGORY EXPLORER is a graph visualization tool to help
users discover categories within graphs and use these categories to
analyze and re-present the graphs for communication In brief, the
CATEGORY EXPLORER provides an index on the nodes of graph
that allows them to be navigated via a series of turn-down
controls. Using these controls users can explore a variety of
formal graph properties and evolve semantically meaningful
categories that can be stored for later use.

The paper is organized as follows: A) An extended example
illustrates how Raisin is used to explore data; B) the functionality
of Raisin is explained; C) design issues are discussed.

2. AN EXTENDED EXAMPLE
The need for the CATEGORY EXPLORER is quickly seen when
attempting to analyze complex graphs. The graph explored here
shows an influence graph beginning with the Renaissance painter
Titian, connecting to painters he influenced, and then painters
they influenced, and so on, for a total of three levels of indirection
[2]. Within this group of painters arcs occur whenever a painter is
understood to have influenced another. This Titian influence
graph is medium size with 117 nodes and 274 arcs. The arcs are
directed, because the influence relation is asymmetric (i.e., saying
Michelangelo influenced Rodin, does not imply that Rodin
influenced Michelangelo). An initial layout of this graph is
shown in Figure 1. This graph should be useful for understanding
the spread of style and influence, beginning with Titian. Yet, its
complexity makes this goal elusive.

2.1 Focusing In
 A primary goal of graph visualization techniques is to flexibly
move between focusing in on a subject and putting the subject in a
broader context [3]. Here I show how Raisin helps focus in on
Titian and the artists whom he directly influenced; next, I show
how to view these influences in context.

Once Titian is selected, the artists he directly influenced can be
selected, and graph layout redone to produce a graph that shows
the influences between the artists that Titian directly influenced
(see Figure 2). This raises the issue of how to decide whether a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000… $5.00.

1

2

given influence was received directly from Titian or through an
intermediary. This layering of influence can be analyzed by
producing a depth first spanning tree in the CATEGORY EXPLORER
and use that to highlight root nodes (i.e., nodes with no incoming
influence arcs). Hence, Titian’s influence is most unambiguous
for these highlighted artists, since there is no question of the
influence coming by way of an intermediary. Further, one might
speculate that these artists demonstrate the most differentiated
aspects of Titian’s influence.

2.2 Seeing Titian’s Influence in Context
A broader view of Titian’s influence looks at direct and indirect
influences without the distraction of influences amongst these
artists (see Figure 3). The layout is radial with Titian in the center
and surrounding him those that he directly influenced, followed
by indirect influences, and so on. This visualization was
generated by having the CATEGORY EXPLORER generate a breadth-
first spanning tree and then visualizing that tree. This tree is
shown in the CATEGORY EXPLORER (see Figure 3; right pane). The
highlighted nodes show the subtree beginning with Vouet who
was directly influenced by Titian.

A key question is which of the artists Titian influenced were the
primary ones influencing others. This question can be addressed
by generating a partial order (or lattice) based on the influences
relation (as shown in Figure 1). For example, if artist A
influenced X, Y, and Z, and artist B influenced Y and Z, then A is
greater than B in a partial order since A influenced all of the
artists that B did and more (see Figure 4). Note how the two
highlighted artists, Sebastiano del Piombo and Valazquez are the
most central. This centrality is also borne out by their node
degree as shown in the CATEGORY EXPLORER (see Figure 4).
There it shows that in the partial order they are each above 37
other artists, thus they appear to be the primary carriers of Titian’s
influence. In contrast, Palma Vecchio appears to carry Titian’s
influence on to very few other painters. Thus, we can conclude
that Titian’s influence was best diffused through the highlighted
artists.

3. RAISIN & ITS CATEGORY EXPLORER
This section discusses the functionality of Raisin as divided
between its GRAPH VIEWER (i.e., in Figure 1 the left pane) and
CATEGORY EXPLORER (e.g., in Figure 2, the right pane).

3.1 The Graph Viewer
The Graph Viewer supports visualizing and manipulating the
nodes and arcs that make up the graph. The graph representation
is general in that any graph consisting of simple nodes and arcs
may be represented. The arcs may be directed or undirected and
an optional weight can be supplied. Key features are the ability to
layout the graph using multi-dimensional scaling (MDS) and
selecting, dragging, hiding, and aggregating nodes. In addition,
there are numerous display options (e.g., zooming, centering).

The graph’s layout of is critical to helping users see relationships
between nodes. Common problems are arcs that cross one
another, arcs that are too long, and overlapping nodes. MDS
produces a layout by bringing into alignment the structure of the
graph with its appearance on the screen. Its structure is described
through graph distance or the shortest paths between pairs of
nodes. Its appearance is described through Euclidean distance
how far apart pairs of nodes are on the screen. For a given pair of

nodes the difference between the measures is its stress. MDS
seeks to minimize the overall stress by iteratively moving the
nodes (see [4] for full details on this algorithm). Following the
MDS a cleanup pass is needed to move nodes that overlap. This
is done by a sweep line algorithm that goes from left to right and
top to bottom, moving overlapping nodes rightwards or
downward, respectively.

3.2 The Category Explorer
The CATEGORY EXPLORER can simplify and focus the GRAPH
VIEWER by selecting, hiding, and aggregating the graphs’ nodes.
The CATEGORY EXPLORER interface is similar to the familiar tree
control used by the Windows Explorer and here implemented via
a Java 1.3 JTree. As a tree control it provides the standard
functionality such as choosing levels of detail through turn-
downs. Further, menu items are provided for more systematic
exploration (e.g., Expand All, Expand Next, Select Descendents).
As a control on the GRAPH VIEWER it can select, hide, and
aggregate nodes. When a node is selected in the CATEGORY
EXPLORER the corresponding node (if there is one) in the main
Graph is selected. When nodes are hidden they are grayed out in
the CATEGORY EXPLORER. When aggregation occurs all of the
nodes being aggregated are hidden and therefore grayed out (but
see section 4 for more on this) and the new aggregate node
inherits the links of these nodes.

There are two types of indices that the CATEGORY EXPLORER
shows: Structural (intrinsic) and Extrinsic. Structural indices are
based on analysis of the graph’s nodes and arcs such as measuring
the degree of nodes and creating spanning trees. All the examples
discussed above, in Section 2, are structural indices. In contrast,
an extrinsic index is an independent categorization of the nodes
that need not be consistent or inferable from the graph (e.g.,
example, grouping artists by country of birth). The CATEGORY
EXPLORER can infer seven structural indices: (A) A simple list of
all nodes; (B) Node degree (e.g., all the nodes with two outgoing
arcs are grouped together); (C) Breadth first spanning tree; (D)
Depth first spanning tree; (E) Strong components (i.e., a strong
component is a group of nodes where from any of the nodes you
can get to any other of the nodes); (F) Partial order (i.e., an
ordering of the nodes based on their connections as in Section 2.2
above); (G) Directed acyclic graph (DAG): This retains as much
of the graph as is possible for use as an index.

As this list makes clear, the CATEGORY EXPLORER supports the use
of directed acyclic graphs for indices. This is considerably more
flexible than supporting tree-based indices. One important
difference is that each node in a tree can have at most one parent,
while nodes in a DAG can have many. This is important for
categorization since DAGs allow things to be multiply
categorized, while this is possible with a tree only with great
difficulty.

Thus, In terms of the Model-View-Controller paradigm, the
CATEGORY EXPLORER model is a DAG, but its View is as a tree.
The tree view is defined by “unrolling” the DAG so as to appear
to assign to every node a unique parent. This means that a given
node may appear multiple times in the CATEGORY EXPLORER
View, but represent only a single node in the CATEGORY
EXPLORER Model. Accordingly whenever the node is selected all
versions of it become selected and similar for de-selecting.
Further, the node it corresponds with in the Graph is selected
when it is selected. However, note that selecting a node in the

3

Graph pane does not select it in the CATEGORY EXPLORER. This is
done to simplify the relationship between the CATEGORY
EXPLORER and the Graph, that is, the former acts as a control for
the later, but the GRAPH VIEWER does not control the CATEGORY
EXPLORER. It is often helpful to view directly the DAG that the
CATEGORY EXPLORER is modeling via a Tree control. This graph
can be viewed and manipulated in a GRAPH VIEWER window as
was done in Figure 3. Users can also interactively create
CATEGORY EXPLORER indices, thus allowing data explorations to
be reified for later use and presentation.

4. CATEGORY EXPLORER DILEMMAS
Allowing the CATEGORY EXPLORER index to be a DAG, rather
than a tree, creates some user interface design dilemmas. The
choices are interesting in that each of them has good and bad
aspects and neither seems totally satisfactory. The issue is what
happens in the case where a node appears in two categories and
then one of the categories is aggregated: Should the node
disappear because it is part of the aggregated category or should it
be retained since it is also part of a category that has not been
aggregated. Note that this question is independent of whether or
not we use a Tree View to implement the CATEGORY EXPLORER
DAG model. The issues stems directly from the decision to use a
DAG as an index and occurs no matter what view is provided.

For example, consider the somewhat artificial example in Figure
5. There Orange has been classified as both a Fruit and a Color.
The question is what happens if the Fruit category is aggregated?
One option is to include Orange in the aggregation and to
subsequently hide Orange in the GRAPH VIEWER. However, this
means that Orange has vanished from the Color category. So, if
someone highlighted the members of Fruit in the CATEGORY
EXPLORER no corresponding Orange would appear in the GRAPH
VIEWER. Another option is to include Orange in the Fruit
aggregate, but not hide it in the GRAPH VIEWER. This means that
when Fruit is aggregated it inherits the arcs of Orange, but
Orange still appears as a node. Only after all categories that
contain Orange have been aggregated would Orange be hidden.
So, if Color were aggregated after Paint, then Color would inherit
the arcs of Orange too, but since it was the last non-aggregated
category in which Orange occurs, Orange becomes hidden when
it is aggregated. These two designs I call HideOnAny and
HideIfAll, respectively.

The difficulty is that both design choices have strengths and
weaknesses. In general, there are conflicting design goals:
(A) Keep the information you need close at hand; (B) operations
should be reversible and not order dependent; and (C)
aggregations should simplify the graph not complicate it.

HideOnAny does a better job of simplifying the graph and it is the
information on what will be aggregated is clear and local, but the
effect differs based on the order of aggregations and it can be
difficult to find the aggregation that has caused a node to be
hidden. HideIfAll does the same thing independent of the order of
operations and it is clear what will happen when you disaggregate,
but aggregations can make the graph more complex rather than
simpler (e.g., if all the nodes being aggregated are contained in
other categories) and it can be difficult to find all the categories
that need to be aggregated to hide a node.

5. CONCLUSION AND FUTURE WORK
When the raw material to explore are objects and their
relationships a graph representation can provide powerful
assistance by reformulating the way search and inference is
preformed. Realizing the potential of graph representations for
aiding discovery and presentation requires surmounting the
complexity that is often present in even small to medium
problems. The Raisin system helps manage this complexity by
giving the means to layout a graph well; to index a graph using
categories based on structure and other criteria; to highlight and
abstract via selection, hiding, and aggregation; and to create new
categories that distill the user’s conclusions for analysis and
presentation.

Future work will investigate how well users are able to use these
facilities for given classification and meaning making tasks. Of
particular interest in providing users assistance in designing
taxonomies for use in classifying documents in knowledge
management systems and for use in semi-automatically building
Yahoo-like taxonomies for Web sites. Similarly, future work will
investigate how to heuristically aggregate graphs to reduce the
graph to a manageable size, yet per the user’s cues, retain
sufficient detail that the user’s task is enabled.

6. ACKNOWLEDGEMENTS
This work has benefited greatly from many conversations with
Robert Farrell. Thanks to Donna Gresh and Bernice Rogowitz for
providing the data set on artists’ influences.

7. REFERENCES
1. Larkin, J.H. & Simon, H.A. Why a diagram is (sometimes)

worth ten thousand words. Cognitive Science, 11, 65-99,
1987.

2. Gresh, D. & Rogowitz, B. E. Personal Communication.

3. Herman, I., Melançon, G., Marshall, M.S., Graph
Visualization and Navigation in Information Visualisation: A
Survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1), pp. 24-43, 2000.

4. Cohen, J.D. “Drawing graphs to convey proximity: an
incremental arrangement method.” ACM Trans. Comput.-
Hum. Interact. 4, 3, pp. 197-229. Sep. 1997.

4

