
RC22406 (W0204-087) April 24, 2002
Computer Science

IBM Research Report

FlexFlow: Workflow for Interactive Internet Applications

Rakesh Mohan, Mitchell A. Cohen, Josef Schiefer
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

FlexFlow: Workflow for Interactive Internet Applications

 Page 1

FlexFlow: Workflow for Interactive Internet Applications

Rakesh Mohan, Mitchell A. Cohen and Josef Schiefer

{rakeshm, macohen, josef.schiefer}@us.ibm.com

IBM T.J. Watson Research Center
PO Box 704

Yorktown Heights, NY 10598

Abstract

Traditional workflow systems are not suited for highly interactive online systems.

We present a state-machine based workflow system, named FlexFlow, which

formally describes Internet applications using state charts. The FlexFlow engine

uses these descriptions to directly control the execution of the applications.

FlexFlow helps in generating controls for user interactions on web pages.

Different versions of an application can be generated by visually editing its

FlexFlow description, with minimal incremental effort in rewriting application

software or related web pages. FlexFlow, thus, provides an efficient way to

customize online systems to variations in business processes or to support

different versions of a business processes in the same e-business system for

different sets of industries, organizations, users, or devices. We demonstrate

FlexFlow’s use for rapid prototyping of business processes. We describe how we

have used FlexFlow in commercial platforms for B2B e-commerce.

Keywords: Interactive applications, e-business systems, workflow management,

business process management, e-commerce platforms.

Approximate number of words: 8000

FlexFlow: Workflow for Interactive Internet Applications

 Page 2

1. Introduction

In business systems, abstraction of the process logic from the embedded task logic enables the

business processes to be modified independent of application code. The implementation of an e-

commerce platform at a company often requires a customization of processes, such as an order

process or a Request for Quotes, to the existing environment of that company. Workflow

technology is prevalent for the modeling, analysis and execution of business processes [19][7].

Business process management is critical in a three- or multi-tier environment of e-business

systems. Business rules and process information is extracted from the business logic tier and is

presented in a workflow-based environment, which manages the execution of the business

processes. Consequently, this approach greatly simplifies the application logic at each step.

Business rules become explicit, visible, and rapidly changeable. There is also a need for

stimulating and supporting communication about system changes to be made between the

development team and the business, and between the business and its partners i.e., the customers

and suppliers.

Business processes vary with a company’s business model, and its industry sector. In e-

commerce systems, trading mechanisms, such as auctions and negotiations are varied to suit

particular business partners, product categories or market conditions. Business processes are

customized to the role of the user and the terms and conditions of a contract with the user’s

organization. For example, the registration process for an administrator may be different from

that of a buyer, and whether payment precedes or follows order confirmation may depend on the

terms of a contract. E-commerce platforms thus need to provide both an easy way to modify

business processes and to maintain variations of business processes. The separation of process

and task logic allows both the easy customization of business process and reuse of the task logic

in the variants of a business process.

In most current e-commerce systems, the steps of a business process, or the actions a system

takes in response to user actions in such a process, are not made explicit, but are buried in

software code for both the dynamic pages and the application server. This makes the

FlexFlow: Workflow for Interactive Internet Applications

 Page 3

modification of implemented business processes extremely difficult and fragile. For example, to

change the ordering of the process steps requires substantial rewriting of the software for the

application and the web pages for the user interface. For e-commerce platforms made to be used

by different companies, this presents a big problem as most companies’ business processes differ

from those of other companies to a small or large extent. Thus, deploying such e-commerce

platforms at each different company incurs a large overhead in terms of time and money required

to rewrite the business processes. Often, this overhead actually forces companies to adjust their

business processes to conform to an e-commerce system instead of modifying the system to

match their preferred processes.

In this paper, we present an approach for managing web-based business processes based on state

machines that is more suited for the interactive nature of online systems than traditional

workflow systems. We introduce a system which facilitates communication about system change

with a descriptive model in which “as-is” and “as-to-be” models represent business processes.

Since the e-business environment is so dynamic, change often overtakes models before

delivering any significant results. Business people, rather than information technology experts,

must be able to develop and extend the business process model. Hence, tools are required that

facilitate business experts in communicating their vision and insights via a descriptive model.

First, we will discuss the contribution of this paper in respect to the existing related work. Then,

we give an overview of the FlexFlow system, introduce the FlexFlow process model, and explain

how defining business processes with FlexFlow can drive e-commerce development. We wrap up

with our real world experiences using FlexFlow and where we can go with it next.

2. Contribution and Related Works

Business Process (Re-)Engineering [8] is an important driving force for workflow management.

It aims at increasing the efficiency of business processes and making them easily and quickly

adjustable to the ever changing needs of customers. In contrast to specifications of business

processes, workflow specifications serve as a basis for the largely automated execution of

processes. Workflow specifications are often derived from business process specifications by

refining the business process specification into a more detailed and more concrete form.

Automated and computer-assisted execution means that a workflow management system

FlexFlow: Workflow for Interactive Internet Applications

 Page 4

(WfMS) [7][14][18] controls the processing of activities, which have to be performed in the

workflow. Some activities may have a manual or intellectual part, to be performed by a human.

But the workflow management system is in charge of determining the (partial) invocation order

of these activities. In contrast to business process specifications, this requires a formal

specification of control flow and data flow.

Workflow specifications based on script languages contain control flow and data flow constructs

which are specifically tailored to workflow applications. Such script languages are popular in

current WfMS products. They provide a compact representation and are therefore easy to use. A

drawback of most script languages is their lack of a formal foundation. Their semantics is mostly

’defined’ by the code of the script interpreter used.

Leymann argues in [16] that state transition nets are a good choice when a graphical visualization

of workflow specifications has high priority. In state transition nets, activities are represented by

nodes, and control flow is represented by edges. In fact, almost all WfMS products provide

means for graphical specifications similar to state transition nets.

Considering only net-based methods with a formal foundation, we have to restrict ourselves

more or less to state charts [9] and Petri nets [6][22]. Variants of Petri nets, especially predicate

transition nets, are used in a number of research prototypes as well as in several WfMS products

[5][21]. Some workflow management systems use variants of Petri nets for the internal

representation of the workflow engine, e.g. [23]. State charts [9][12] have received little attention

in workflow management, but they are well established in software engineering, especially for

specifying reactive systems. In the MENTOR project [29], state charts are used as a formal

foundation for workflow specification.

Event-Condition-Action-Rules (ECA) rules, are used in active database systems and have been

adopted by a number of projects in the workflow area (e.g., [15]). ECA rules are used to specify

the control flow between activities. Like for other methods that are not based on nets, the

graphical visualization of sets of ECA rules is a non-trivial task. Large sets of ECA rules are hard

to handle, and a step-wise refinement is not supported [25]. In terms of their formal foundation,

ECA rules are typically mapped to other specification methods, especially variants of Petri nets

or temporal logic.

FlexFlow: Workflow for Interactive Internet Applications

 Page 5

Van der Aalst and Basten discuss in [1] inheritance concepts for changing business processes to

manage ad-hoc changes and evolutionary changes. They argue that today's workflow

management system have problems dealing with both types of changes, because they do not

support dynamically changing processes or the process are supported in a rigid manner, i.e.

changes are not allowed or handled outside of the workflow management system.

2.1 Contributions

Workflow is the dominant technology for modeling and controlling the execution of business

processes [19]. The Workflow Management Coalition defines workflow as "The automation of a

business process, in whole or part, during which documents, information or tasks are passed

from one participant to another for action, according to a set of procedural rules." [30].Workflow

treats processes as an assembly-line of task steps. Let us consider a simple insurance business

process to illustrate workflow. The process starts with a field agent filing and insurance claim.

Next, the claim is placed in the in-basket of a claim adjuster. The claim adjuster goes through

claims in her in-basket one by one. Once she processes a claim she sends them to the in-basket of

the reimbursement handler. Workflow systems are designed primarily for such processes where a

set of documents goes through a number of processing steps. Each process has a worklist, similar

to the "in-box" of our example. The processing stages may be actual people or software

applications, such as a credit check system. The workflow is captured in executable "scripts" and

business processes can be modified by changing their scripts. Usually workflow systems have

visual modeling tools for defining the process and generating the scripts.

The pattern of user interaction with e-commerce business processes is very different from that of

traditional workflow systems. Online business systems are highly interactive. Internet

applications follow the request-response model (mirroring HTTP). In online business systems, a

user takes an action, such as clicking a submit button on a web page. This results in the form data

on that page being sent to the system, the system acting on it and presenting another page to the

user. For example, a user goes to a shopping web site, fills out the login page and clicks the

submit button. This results in her user name and password being sent to the system, which

confirms that she is a legal user and sends her the catalog page. Then the system waits until the

user selects products to fill the shopping basket. This interactive, or conversational, pattern of

FlexFlow: Workflow for Interactive Internet Applications

 Page 6

system action based on a user action and then waiting for the user to initiate the next step is not

well modeled by existing workflow systems. We believe that is a major reason why online e-

business applications do not use workflow systems.

Another problem is that workflows systems are large, complex and expensive. For online

applications, this both increase the cost of deployment and the responsiveness when servicing a

large number of concurrent requests. Microflows [4] have been proposed to address this

drawback of workflow systems. Microflows are small footprint workflow systems crafted for a

particular class of applications. They provide minimal or no support for services provided by full

workflow systems such as transaction management, guaranteed messaging and worklists.

Microflows provide the benefits of abstracting process logic from task logic while at the same

time improving the responsiveness and reducing the cost as compared to industrial strength

workflow systems.

State machines are widely used for implementation of network protocols to describe the

conversation/interaction between a sender and receiver. Business processes for e-Commerce

platforms also interact frequently with each other. Examples are negotiation scenarios between

buyers and sellers, where each party has to maintain the current state of the negotiation to decide

the next actions. State machines have been also used to model negotiations [26]. They have been

used for real-time systems; a system reacts or responds to events with a quick, nearly

instantaneous response [27]. Thus, there is strong evidence to support that state machines would

be useful for interactive, conversational and responsive online business systems.

In this paper, we show how to employ the formal method of state charts [9][12] for the

specification of processes for e-commerce platforms. By using state charts as our specification

method, we are able to model business processes which can be automatically executed by a

workflow engine. Our contribution is the introduction of process state diagrams, which use the

state starts notation for modeling business processes. Furthermore, we introduce the FlexFlow

system, which supports the formal specification of process state diagrams, including the

simulation and execution of these diagrams.

FlexFlow: Workflow for Interactive Internet Applications

 Page 7

UML is widely used in software engineering practice so more developers are conversant with

state diagrams then workflow models. A basic understanding of finite-state-machines (FSMs) is

even more prevalent, and state charts extend the modeling available in FSMs.

In this paper, we present FlexFlow which is both suited for interactive applications and is light-

weight. FlexFlow helps creation and alteration of business processes. It uses state machines to (a)

describe the actions that can be taken by particular user, based on her roles at particular points in

a process, (b) to enforce the validity of user actions, (c) to track the execution of actions within

an instance of the business process, (d) to provide the user interface with a list of actions

available to a user working on an instance of the business process, (e) to provide coordination

between state machines, and (f) to allow different organizations to have varied business

processes.

3. FlexFlow - Overview

Figure 1 shows the lifecycle of business processes in the FlexFlow system. A visual modeling

tool is used to design business processes as process state diagrams. The visual modeling tool

generates from the process state diagrams a XML representation, which is a full description of

the business process. It contains all the information required by the FlexFlow engine to control

the execution of the business process. This XML description is compiled and loaded into the

FlexFlow system database tables. An addition table is used to store the current state of each

instance of a business process running at a given time in the business system. These tables are

used by the FlexFlow engine to (a) control the execution of the business process and (b) to

control the user interface.

FlexFlow: Workflow for Interactive Internet Applications

 Page 8

The visual modeling tool is also used to modify business processes definitions. Different

versions of the business process are stored in the business flow storage. Business processes can

be changed with limited change task logic or computer programs that are implementations of the

business processes. A commerce function is reconfigured simply by reconfiguring its

corresponding state machine.

The FlexFlow system also includes a component for simulating business processes. Thereby,

users and developers can explore process variations to reach a common vision of how the user

might interact with the system to perform a task.

In Section 8 we describe how business processes are coordinated by allowing an instance of one

state machine to trigger an action in one or more instances of the same or different state

S1

S2S3

S5S4

C1

C2

C3C3

C4

Figure 1: FlexFlow - Lifecycle of a Business Process

FlexFlow: Workflow for Interactive Internet Applications

 Page 9

machines. For example, it may be desired that the closing of an auction by a seller in an auction

business process disable the ability of buyers to increase their bids in the bidding business

process.

4. The FlexFlow Process Model

FlexFlow models e-commerce business processes as Unified Modeling Language (UML) state

diagrams [28], which are an adaptation of Harel’s statecharts [9][12]. UML uses state diagrams

to describe the behavior of objects, whereas, FlexFlow uses statecharts describe processes. We

adopt the UML state diagram notation for the FlexFlow process models.

Finite State Machines have serious limitations such as there is no support of hierarchical states,

inheritance and delegation of messages. To address these shortcomings Harel proposed state

charts [9]. State charts have been adapted in the Universal Modeling Language (UML) [28] and

thus are well known and widely used in the software engineering community.

Figure 2: FlexFlow State Charts

UML state charts are directed graphs with nodes called states and the directed edges between

them called transitions (see Figure 2). FlexFlow models interactive online business processes as

state charts. However, unlike UML, where state charts describe the behavior of objects,

FlexFlow state charts describe processes. In addition to the functionality of Harel state charts and

UML state diagrams, FlexFlow adds three key features: the concept of roles, the coordination of

interactions of multiple parties, and the ability to allow different organizations to use different

versions of the business process. Business processes are versioned as different state charts.

FlexFlow: Workflow for Interactive Internet Applications

 Page 10

Versions can be selected based on membership at the organization level. Versions can also be

selected based on other factors including the mode of interaction, such as device, browser, and

messaging method. The UML notation used by FlexFlow consists of states, transitions, events,

guards, and context.

Actions

Actions correspond to task logic being executed at the application server. For FlexFlow they are

atomic units of business work. Actions can appear in states and transitions. An action can be used

to interface to an external system, such as a workflow system handling its own set of

functionality. An action can be a conglomeration, or sequence, of pre-defined internal commerce

actions. All actions caused by the processing of an event are run within the same transaction.

States

States correspond to stages in a business process. A state identifies a precise point within the

process. In a given business process at a given state, the actions that can be taken by various

parties is completely defined by the set of outgoing transitions. A state may have an entry action,

an action that is executed upon entering the state, and an exit action, an action that is executed

upon leaving the state. In FlexFlow, entry actions are allowed to trigger new events which in turn

get processed by FlexFlow.

Transitions

A transition represents a change of the process state. It connects two states, a source state it exits

and a target state it enters. A transition corresponds to an action that is taken in response to an

event. The transitions may further have guards on them. These guards are checked, and the

transition is taken only if they are true. Only one transition out of a state is taken in response to

an event. In UML state diagrams, the actions on the transitions are assumed to be instantaneous.

In FlexFlow most of the processing activity happens on the transition actions. Given the

interactive nature of the applications, these usually take a very short time, but are not

instantaneous.

FlexFlow: Workflow for Interactive Internet Applications

 Page 11

Events

An event is a named message needing to get processed. In Internet applications, an event is

usually a HTTP client request generated by a user pressing a hyperlink, button, etc. on a web

page. It can also be an incoming Simple Object Access Protocol (SOAP) request or a Java

Message Service (JMS) message. It can also be an event generated by another process such as a

scheduler or another FlexFlow process. It can even be an event generated in the same FlexFlow

process by a transition or a state entry action.

Guards

A guard is a set of conditions that need to be true before the action can be taken. Conditions are

Boolean computations on the context of the business process and/or the parameters of the event.

In general, the guards can be rules. In our implementation, an access control condition is always

present in the guard. Thus, the action on a transition is taken only if access is allowed. If no

access control policy is explicitly specified, the default access control mechanism is used.

Context

Context is data associated with a business process. It consists of

• The session information that includes information about the user including roles and

permissions, and

• The data submitted by the user such as form entries and the data stored in the form such as

Start

Seller
Offered

Buyer
Offered

Deal No Deal

Offer [Seller|] Offer [Buyer|] / RecordOffer

Accept [Buyer|] Reject [Seller|]

Offer [Buyer|]

Offer [Seller|]
Accept [Seller|]

Reject [Buyer|]

/ RecordDeal
/ RecordNoDeal

Figure 3: A simple statechart for bilateral negotiation

FlexFlow: Workflow for Interactive Internet Applications

 Page 12

the identification of the process and the identification of the business object. For example, if

a user is submitting a bid for an auction, the context would contain the username and roles,

the amount of the bid. The event would include the number of the auction on which the bid

is made. Also included in the context is more general information about the process such as

auction start and end time, number of bids, etc.

This context can be referenced in guards as well as read and updated in actions.

Start

Seller
Offered

Buyer
Offered

Deal No Deal

Offer [Seller|] Offer [Buyer|]

Accept [Buyer|] Reject [Seller|]

Offer [Buyer|]

Offer [Seller|]
Accept [Seller|]

Reject [Buyer|]

Offer [Seller|]
Offer [Buyer|]

(a)

Start

Seller
Offered

Buyer
Offered

Deal No Deal

FinalOffer [Seller|] / RecordOffer FinalOffer [Buyer|]

Accept [Buyer|] Reject [Seller|]
Accept [Seller|]

Reject [Buyer|]

Negotiating
Offer

Offer [Buyer|Seller]

(b)

Figure 4: Two variations of the bilateral negotiation process.

FlexFlow: Workflow for Interactive Internet Applications

 Page 13

Figure 3 shows a FlexFlow model for a simple bilateral negotiation process between a buyer and

a seller. The top right transition shows that on the event “Offer” the action “RecordOffer” is

taken. The guard checks that the user making the offer is the “Buyer”. As the action for the other

“Offer” transitions is “StoreOffer” we do not show it here for simplicity. There is no action

corresponding to the “Accept” or “Reject” events. On entry to the final state “Deal” a

“RecordDeal” action is taken.

Figure 4 shows two variations of the bilateral negotiation process shown in Figure 3. The process

in Figure 3 forces the buyer and seller to alternate their bids, i.e. once a participant makes and

offer, she has to wait for the other party to make a counter offer. In Figure 4 (a), the parties can

improve their offers without waiting for a counter offer. In Figure 4 (b), the parties can make a

final offer which forces the other party to either accept of reject the offer but does not allow them

to counter offer. As is obvious from the process diagrams, the three variants of the business

process reuse the code for just three actions “RecordOffer”, “RecordDeal” and “RecordNoDeal”.

The FlexFlow system particularly addresses following modifications of business processes:

Business Rules. Business managers can change the business rules of the processes by changing

the business logic guards on the transitions. For instance, a business logic guard can check

whether a particular RFQ needs approval or not.

Control Flows. If business managers change the transitions between the states or add new

transitions they modify the control flow of the process. This way, business managers can for

instance implement loops, skip activities or include new actions in the process.

Access Policies. The transitions include access control guards which check whether a user can

perform an action. These access control guards allow business managers to determine what

actions of the process a user can perform.

Approval Support. The FlexFlow system inherently supports the approval of process activities.

It includes templates for several approval processes which can be used within a process state

diagram. Furthermore, new approval process templates can be specified (for instance a template,

which describes the process for 3 levels of approval).

FlexFlow: Workflow for Interactive Internet Applications

 Page 14

The FlexFlow system also facilitates modifications of the web-application’s user interface

without changing the underlying business logic. The presentation layer of a web-application

communicates by events with the FlexFlow engine. Therefore, this communication mechanism is

independent from the rendering of the web-pages.

5. FlexFlow Process Execution

The FlexFlow system has an engine to manage the execution of business processes. When an

event arrives, an event dispatcher figures out to which business process instances the event

applies and invokes the engine for each. The engine, on invocation, retrieves the process instance

or creates a new one if instance does not yet exist.

The engine selects the set outgoing transitions from the current state of the process that

correspond to the event. For this set of transitions, it selects those where the guard evaluates to

true. If more than one transition survives, the transition with the highest priority is selected. In

case of ties, one of the transitions is chosen at random. The engine then executes the action

corresponding to the transition selected (if any). If the action executes successfully, the engine

updates the process instance’s state based on the state machine transition traversed. If the action

fails, an exception is raised.

An event can cause multiple actions. In addition to the action on the transition, there can be an

exit action on the old state and an entry action on the new state. The FlexFlow engine processes

all actions from one event within a single transaction scope. In other words, the system is left

with either the effect of all the actions executed, or none. If any action fails, the whole

transaction is aborted and the effects of the previous actions whose execution was initially or

subsequently caused by the incoming event are rolled back. Only when all the actions succeed is

the transaction committed. This prevents the process instance from ending up in an “unnatural”

state.

5.1 Event Creation

Events can be created in the following two ways (both shown in Figure 6):

FlexFlow: Workflow for Interactive Internet Applications

 Page 15

• Interaction Controllers handle external interactions with different types of clients

including web browsers, mobile devices, and message queues. For example, a buyer

requests on a web form for an RFQ to be aborted. This HTTP request is received by the

interaction controller which converts it into an event.

• Internal System Actions can trigger events. For example, the RFQ abort action might

create an RFQ Canceled event as the first step in informing all the quotes for the RFQ of

the need for invalidation. Another example if of the scheduler sending an RFQ close

event. The processing of these events run in the same transaction as the system action, but

in a different thread of the engine.

5.2 Cascaded flows

Business flows can be sequenced or cascaded. For example, an RFQ process can be followed by

bilateral negotiation on each of the selected responses. Implementation of cascaded flows is

handled by used of blocks and different versions of FlexFlows. Format conversion commands

are used between cascaded flows.

5.3 Coordination of FlexFlow Processes

Often, related business processes need to be synchronized. In FlexFlow, business processes

coordinate with one another by triggering events. That is, an instance of one state machine can

trigger an event to be processed in one or more instances of the same or different state machines.

Events enable coordination of multiple parties. For example, it may be desired that the closing of

an auction by a seller in an auction business process disable the ability of buyers to increase their

bids in the bidding business process.

Another example for the need of process interaction is with a request for quotes (RFQ) where a

buyer drafts and sends out an RFQ. A number of sellers then create responses (quotes) for the

RFQ. Since the quote process itself is involved (the quote may in draft sate, awaiting approval,

or being modified and resubmitted etc.), considering the buyer’s process and the seller’s process

as different business processes simplifies their modeling and customization. This allows us to

handle scenarios where one seller organization requires approvals before they submit quotes,

while another does not. However, these different business processes need to be coordinated. For

FlexFlow: Workflow for Interactive Internet Applications

 Page 16

example, a quote cannot be submitted before the RFQ is active. In addition, once the RFQ is

closed, the sellers are not allowed to modify nor retract quotes.

RFQ
Quote 1

RFQ
Cancel

[role=Buyer]
Abort

InProcess <RFQ#,
cancel>

Invalid

InProcess

Event

Quote 3

Invalid

[role=RFQ]
Cancel

InProcess

throws

Quote 2

Invalid

InProcess
[role=RFQ]
Cancel

[role=RFQ]
Cancel

Figure 5: Coordination of RFQ Abort by Buyer with Seller's Quotes

Figure 5 shows the interaction of one RFQ machine instance with three corresponding quote

machine instances. The coordination of the FlexFlow process instances is handled by a message

sent from a source to any targets listening to that source. When a process is created, it registers to

listen to other related processes. For example, when a quote for an RFQ is created, it is known

for which RFQ it is a response. The quote registers to listen to the RFQ events. So, when the

RFQ is canceled, its corresponding quote processes receives the cancel event and transitions the

quote processes from the “InProcess” state to the “Invalid” state (i.e. the quote is no longer valid

as the request for quotes has been cancelled).

5.4 The FlexFlow Event Handler

All events arrive first at the FlexFlow event handler. From the event handler’s perspective, there

are two classes of events (both of which are shown in Figure 6):

• Events triggered by interaction controllers simply get routed to the FlexFlow engine. This

includes events working on existing instances and those creating new ones.

FlexFlow: Workflow for Interactive Internet Applications

 Page 17

• Events triggered by existing process instances that need to be processed by all process

instances listening for it. For example, all the quotes listening to their parent RFQ need to

process events coming from the RFQ. To determine which instances are listeners, the

router reads a Flow Instance Event Registry where quote process instances are registered

to listen to the RFQ process to which they belong. The FlexFlow event handler will

duplicate the event for all the listeners, routing each to the Flex Flow engine.

5.5 The FlexFlow Engine

The FlexFlow Engine, the heart of the FlexFlow run-time, receives targeted events from the

event handler and executes the necessary actions. Figure 6 shows how the engine interacts with

the other parts of the system to accomplish this processing.

Business
Process Flows

(State
Machines)

Flow Instances

FlexFlow
Router

Flow Instance
Event Listener

Registry

FlexFlow
Engine

Incoming
Event

Guard
Evaluation

Commerce
Action

Execution
System

invoke
s

arrives

executes

executes

reads reads

reads and
writes

Interaction
Controller

creates

creates

writes

Figure 6: FlexFlow event handler and engine.

FlexFlow: Workflow for Interactive Internet Applications

 Page 18

Retrieve incoming event and its
context of invocation

Is commerce
request on an existing

instance?

Retrieve instance

YES

Create new instance

Set instance state to start state

NO

Retrieve found transition

Is there a
remaining transition in

the state machine which exits the
current instance state and is for

the incoming
event?

YES

Do the guards on the
transition pass?

NO

YES

Execute the transition's action

Set instance state to
transition's target state

Execute the exiting state's exit
action if it has one

Execute the transition's target
state's entry action if it has one

Return
"No transition traversed"NO

action fails? NO

action fails? NO

action fails?YESReturn
Action Failure Reason

YES

YES

NO

Return "Success"
and next available events

Retrieve events from state
machine transitions for which

user passes guards

Set incoming event to null

Is the incoming event null? NO

YES

Figure 7. Flow chart showing engine execution of an incoming event.

FlexFlow: Workflow for Interactive Internet Applications

 Page 19

When receiving an event, the FlexFlow Engine takes the following steps (as shown in Figure 7):

1. The incoming event is retrieved along with its context. The context is generated from the

event including retrieving and marshaling incoming parameters and deriving of user and role

information.

2. The engine determines whether the event applies to a new instance or an existing instance.

Events with a target instance identified use an existing instance that the engine retrieves. For

example, when an RFQ Abort event comes in it includes an identifier for the particular RFQ

for which it is intended (i.e., the RFQ being aborted). Events without a target instance

identified cause the creation of a new instance. The engine determines the state machine for

which it creates an instance based on the business process being started. Once this new

instance is created, it is set to the start state of its underlying state machine. The engine

registers the instance for events from those instances from which it needs to know outgoing

messages. For example, a quote instance is registered to listen to its parent RFQ.

3. The engine looks for a transition to take. First, it gathers those transitions in the instance’s

underlying state machine that:

• exit the current state of the instance

• have an event matching the event being processed

• have guards which can be passed through; the engine calls the guard evaluation to

check if a transition’s guards are satisfied

4. If no transitions were found in the previous step, then:

• If this was the initial pass through the previous step (i.e., the engine is not looking for

null event transitions), the engine returns control to the caller with an error stating

that no transition was traversed.

• If this was not the initial pass through the previous step (i.e., the engine is looking for

null event transitions), the engine retrieves all the transitions exiting the current state.

For each, it calls guard evaluation to determine which the user can take next. The

FlexFlow: Workflow for Interactive Internet Applications

 Page 20

engine returns control to the caller noting the processing succeeded and listing the

next available events.

5. If the engine has come this far without returning, it has a transition that can be traversed. The

first step is to execute the exit action on the current state if there is one. If this action fails to

complete successfully, the engine returns control to the caller with the reason for failure.

6. The engine executes the action on the found transition. If this action fails to complete

successfully, the engine returns control to the caller with the reason for failure.

7. The engine looks for an entry action on the transition’s target state. If one exists, the engine

executes it. If this action fails to complete successfully, the engine returns control to the

caller with the reason for failure.

8. The engine updates the instance’s current state to the transition’s target state.

9. In order to process any automatic (null event) transitions exiting the new current state of the

instance, the engine then sets the incoming event to null and returns to step 3.

During these steps, as shown in Figure 6, the engine uses data from the state machines (also

know as business process flows) and the instances and updates data for the instances as well as

the registry of which instance are listening to which.

6. User Interaction with FlexFlow

We have observed that a common practice for designing web sites, such as e-commerce sites, is

to first mock-up the flow of web pages for user interactions, and then to use this flow to drive

the development of application logic. This practice works when the business process is simple

and when only one party (the user) is interacting with the system. However, this design practice

does not scale to complex business processes, especially where multiple parties are participating

in the business process, such as two users in a bilateral negotiation or a buyer and multiple sellers

in an RFQ, along with schedulers for timeouts etc. Another drawback of this design practice is

that process logic gets embedded both in web pages and application code further complicating

any modification of the business process.

FlexFlow: Workflow for Interactive Internet Applications

 Page 21

6.1 Process Reflection

make
offer

make
offer

accept
reject
offer

deal no
deal

accept
reject
offer

Seller's
 Offer

Buyer's
Offer

No
DealDeal

offer-seller
offer-buyer

offer-buyer

offer-seller

accept-buyer

reject-buyer reject-seller

Start

Figure 8: Controls on web forms for user interactions are created using FlexFlow. The blue

outlined page is for the seller, the green for the buyer. The text in black corresponds to buttons on

the forms.

The FlexFlow process model has sufficient information for deriving user interactions from the

statechart. The process reflection mechanism of FlexFlow allows clients to discover or query

process information at run time. This mechanism can be used to drive the user interface or the

future user interaction. Thus, with FlexFlow, the design practice is to first design the process and

then to automatically derive the flow of user interactions. As the user interaction information is

added dynamically to the web pages at run time, the modifications of the business process get

automatically reflected in the web pages.

Process reflection allows users to query a list of actions that are valid for a given user role at the

current state of the business process. At each given state, the FlexFlow system knows the next

possible set of actions a particular user can perform using the guards on all the outgoing

transitions. Thus, FlexFlow can provide relevant information for the rendering of the user output

(i.e it can determine whether buttons should be enabled or disabled). If web-designers use this

FlexFlow: Workflow for Interactive Internet Applications

 Page 22

reflection mechanism, web-pages can to be shared among different process versions and it

reduces the effort for modifying FlexFlow processes [13].

We illustrate this in Figure 8 for a simple bilateral negotiation. There is web page for each state

for each user where the user can take an action. The seller’s pages are outlined in blue and the

buyer’s pages are outline in green. At the start state, either party can make an offer to start the

negotiation so the both the buyer’s and seller’s page show a button (or other control) for making

an offer. If the seller makes an offer, the process moves to the “Seller Offered” state and the page

for the seller will show no buttons (corresponding to this instance of the bilateral negotiation)

while the buyers page will display the options to make a counter offer or to accept or reject the

current offer. As the controls are generated dynamically via reflection on the process model,

when the process is changed, for example as shown in Figure 4, the controls on the web pages

will show the correct set of actions without any rewriting.

End users may interact with the system using a web. Actions requested by end users are passed to

the FlexFlow engine. The engine processes client inputs depending on the process state machine,

the current state of the process instance and the role of the user. The FlexFlow system also

provides as output to the user interface system, the list of actions that are valid for a given role at

the current state of the business.

Each state corresponds to a view for each of the participants in the process (when the participants

are software agents, these views would be outgoing messages). The FlexFlow statechart clearly

defines for each state in the process the next legal set of actions for each participant. For a user

(with a set of roles) of a business process, the set of outgoing transitions from the current state of

the process, which have an access control guard which will compute to true for a role of the user,

completely define the legal set of events that the user can send to the process.

The action corresponding to a transition specifies the view to be used. We allow for relationships

between states and views displayed to users. The state may specify a default view to be used,

which can be specified in the process state diagram. If the process state machine enters a state

and the executed action does not specify a view, then the default view of the state is being used.

FlexFlow: Workflow for Interactive Internet Applications

 Page 23

If the client requests a view directly, the client view action can correspond to different transitions

depending on which state the process is in. For example, a "query order status" request returns

either a "display pending order" or a "display completed order" view name, which causes one of

two different pages to be displayed to the end user. This could be alternately be implemented by

the “view” action correspond to a “display completed order” transition at the completed order

state and to the transition “display pending order” at the pending order state.

7. Visual Modeling

The FlexFlow engine uses a XML representation of the process definition. To allow business

managers easily create and change FlexFlow processes, we extended popular COTS modeling

tools. Since state charts are a part of the popular UML notation, a number of graphical tools are

available. For managing FlexFlow processes, we have added extensions to both Microsoft

Visio® and Rational Rose®. Therefore, business managers can use a familiar modeling

environment, which provides following key functionalities:

• Easy-to-use modeling interface for creating or modifying business processes by changing,

adding, and/or removing states and transitions from the process state diagram.

• XML generation of the process definition based on the process state diagram.

• Import / Export of the XML process definition

• Management of different versions of process state machines.

• Simulation of the FlexFlow processes

The states and transitions of FlexFlow state diagrams have additional attributes like response

views, additional guard properties or priority settings. Business managers can import and export

XML process definitions via a file or a web-service.

Different versions of a business process can be maintained based on membership at the

organization level. Versions can also be selected based on the mode of interaction, such as

device, browser, and messaging. Figure 9 shows the default version of a RFQ process. By

specifying new flows, the modeling tool allows to manage several variations of a RFQ process.

This way, business managers can model and maintain several RFQ processes (for instance a

FlexFlow: Workflow for Interactive Internet Applications

 Page 24

“Normal RFQ” process, and a “Fast RFQ” process, which is a more compact version of the

normal RFQ process).

Figure 9: Visio Modeling Tool for FlexFlow

Versions can be selected based on the membership at the organization level or on the mode of

interaction, such as device, browser, and messaging.

FlexFlow: Workflow for Interactive Internet Applications

 Page 25

The modeling tool gives the business manager the possibility to simulate the business processes

with existing web-pages or mock-up pages.

8. Process Simulation

In typical web-application users can navigate to a limited number of web-pages based on the

action she takes at the active input location. The number of possible navigation paths can be very

large in a complex graphical user interface, but the number is finite and the options usually are

known. User interfaces also must stay in sync with the underlying business process. Therefore,

process state diagrams reflect the navigation paths of the user at a high level of abstraction.

Process state diagrams can be used to explore hypothetical process models and user interface

concepts based on the understanding of the requirements. Users and developers can study a

process state diagram to reach a common vision of how the user might interact with the system

to perform a task. The business process, business rules and the user experience can be

incrementally and iteratively optimized by simulating the business process with user scenarios

without implementing the business logic. This way, conflicts between the business process and

the user interface can be easily discovered.

Process state diagrams capture the essence of the user-system interactions and task flow without

getting one bogged down too soon in specifying the details of web-pages or data elements. Users

can trace through a process state diagram to find missing, incorrect, or superfluous transitions,

and hence missing, incorrect, or superfluous requirements.

The FlexFlow modeling tool includes a simulation component which allows developing

horizontal prototype which displays the facades of user interface screens from the web-

application, possibly allowing some navigation between them, but they do not show real data or

contain little or no real functionality. The information that appears in response to a client requests

is faked or static, and report contents are hard-coded. Nevertheless, the simulation component

allows a process-oriented navigation through the web-application. It allows users to change the

status of the current process by selecting one of the available actions of the simulation panel. For

the simulation, we can include web-pages of existing web-solutions or new web-pages, which

can be instantly created and modified. Figure 1 shows the simulation of the RFQ process. The

FlexFlow: Workflow for Interactive Internet Applications

 Page 26

buttons in the simulation panel at the bottom of the screen show the available navigations paths

based on the RFQ process state diagram.

Figure 10: Simulation of FlexFlow Processes

Note, that not all page flows are represented by the control flows of a process. For instance

wizards like in Figure 10, or other UI facilitators which have a predefined sequence of

processing steps, are implemented solely in the presentation layer and have no impact the

process itself. UI components of the presentation layer use the process reflection mechanism to

determine functionality, which should be available to the user.

This type of simulation is often enough to give the users a feeling for the web-application and

lets them judge whether any functionality is missing, wrong, or unnecessary. The simulation

FlexFlow: Workflow for Interactive Internet Applications

 Page 27

prototypes represent the concepts to the developers of how the business process might be

implemented. The user’s evaluation of the prototype can point out alternative courses for a

business process, new missing process steps, previously undetected exception conditions, or new

ways to visualize information.

By modeling and executing business processes as state machines, these processes can be

modified with minimal changes to the underlying implementation of the business processes. A

commerce function can be modified simply by reconfiguring its corresponding process state

diagram.

9. Experiences with implementation

Over the past two years, we have deployed two generations of the FlexFlow system in

commercial B2B e-commerce systems, first in IBM’s WebSphere Commerce Suite MarketPlace

Edition ® (WCS MPe), and then in IBM’s WebSphere Commerce Business Edition ® (WCS

BE).

From our experience from the first version several enhancements went into the follow-up. We

found the need for multiple actions to ease customization as well as to simplify modeling.

Integrating with an access control system further improved flexibility while enhancing richness

while caching the business processes in memory provided performance improvements.

9.1 Multiple Actions

In WCS MPe each user request could only cause the traversal of one transition, as we did not

implement UML’s null events. This omission hindered customization as simplifying the business

process meant rewriting actions. This implication is best shown by example. In a piece of a

Request for Quote (RFQ) process, a buyer first submits an RFQ with a particular start time. The

scheduler will then activate the RFQ when the start time is reached. This would like look like:

FutureDraft

Submit [Buyer|] / AddToRFQList

Activate

Activate [Scheduler|] / NotifySellers

FlexFlow: Workflow for Interactive Internet Applications

 Page 28

However, if the company using this business process decides it wants to remove the notion of

RFQs that start in the future and, instead prefers all RFQs start when they are submitted, they

would need to change the state machine to something like:

Draft

Submit [Buyer|] / AddToRFQList AND Schedule

Activate

Notice that the two actions AddToRFQList and Schedule cannot be put on the same transition, so

a new action needs to be written that will perform both actions. The ability to re-configure a

business process without re-writing the application logic is lost.

Implementing null events in WCBE alleviated the need to re-write. A transition with a null event

is automatically taken if its guard is satisfied. Null events enable us to simplify the business

process using the original actions:

ReadyForNotif
yDraft

Submit [Buyer|] /
AddToRFQList

Activate

null [Buyer|] / NotifySellers

Another improvement made in our second version of FlexFlow is the use of UML entry actions

and exit actions. Commonly, reaching a certain state requires an action no matter how the state is

reached. For instance, sellers need to be notified when an RFQ is closed. The notification needs

to be sent out whether a buyer decides to close an RFQ, the Scheduler closes an RFQ when its

end time has been reached, or the RFQ is closed automatically because a threshold on the

number of replies has been satisfied. While we can model the notifications with null events, it is

extremely simplified with one entry action.

FlexFlow: Workflow for Interactive Internet Applications

 Page 29

Closed
entry / NotifySellers

Active
Close [Buyer|]

MaxRepliesReached

null [System|]

Close [Scheduler|]

With one entry action, we can send out a notification no matter what caused us to reach the

closed state.

Allowing an incoming event to cause multiple actions through entry and exit actions as well as

null events raised a new issue. In the initial FlexFlow implementation, any error occurring in an

action caused the action to be undone and the transition not to be taken. Leaving processes in

their initial state enabled user to retry them. Now, with multiple actions, if we only rolled back

one the transition with the error, we could end up in an “unnatural” state. For example, let’s

revisit the section of an RFQ process:

ReadyForNotif
yDraft

Submit [Buyer|] /
AddToRFQList

Activate

null [Buyer|] / NotifySellers

If the submit event transition completes successfully but the null event transition does not, the

process must not be left in the ReadyForNotify state. So, the FlexFlow engine ensures the

atomicity of the processing of all actions from one event. In other words, the system is left with

either the effect of all the actions executed, or none. The engine accomplishes this by executing

all the actions within the same database transaction. If any action fails, the whole transaction is

aborted and the effects of the previous actions whose execution was initially or subsequently

caused by the incoming event are rolled back. Only when all the actions succeed is the database

transaction committed.

FlexFlow: Workflow for Interactive Internet Applications

 Page 30

9.2 Access Control

Originally, FlexFlow used roles to identify those users who were allowed cause a transition in th

process to be taken. In its second release, FlexFlow was integrated with an access control system.

A transition guard now identifies an action group to which the transition belongs. The

administrator of an e-commerce system then defines access control policies that specifies which

users can perform a particular action group on a particular business object based on their

relationship to that object (e.g., creator).

In addition to a greater richness for access control, this integration provided a new layer of

abstraction. Formerly, administrators were forced to create access control policies at the action

level. For example, they might say users with the buyer role can cancel an RFQ. However, a

different policy on a business object may be required based on the current state of the business

process or by the state in which an action will put the process. By allowing administrators to

specify action groups on transitions, all these requirements are met. Now, canceling an auction

can be limited to sellers when the auction is in the “Future” state and not the “Active” state.

9.3 Caching Business Processes

During development of e-commerce systems, business processes change often. However, once

an e-commerce system is running, the processes change quite infrequently. By caching the

business processes in memory, FlexFlow now avoids reading database records to determine the

details of the business process.

9.4 Workflows in FlexFlow

FlexFlow allows workflow type processing. A typical example is a business process for

multilevel approvals. Workflow type processing is exhibited as at each level of approval, a new

set of users become approvers. Figure 11 is the state diagram from such a process. After

FlexFlow handles a submit event, the process will be in a Pending state, unless the value is less

than $100 in which case it is automatically approved. The CreateRequest sets up the first level of

approvers. Each time an approver approves a request, the ProcessApproval action will increment

the approval records level and set up the approvers for that level. Once the correct approval

record is reached, the request becomes approved.

FlexFlow: Workflow for Interactive Internet Applications

 Page 31

Rejected

Pending

Submit [Submitter|]
/ CreateRequest

Start

Approve [Approver|] / ProcessApproval

Reject [Approver|] / RejectRequest

Approved

null
[Approver|(ApprovalLevel > ApprovalsNeeded) or (value < $100)]

/ ApproveRequest

Canceled

Cancel [Submitter|] / CancelRequest

Figure 11: Multilevel Approval

The approval system is a special business sub-process. One can model the approval system with

its own set of one or more state transition diagrams, or directly within the business processes that

use approvals. To model with the former, one can use messages between the business process and

the approval sub-process (see “Coordination of FlexFlow Processes”). When modeling with the

latter, transitions and states, such as those shown in Figure 11, are put into that process’ FlexFlow

state diagram.

One could code the actions and model the process to be integrated with an external approval

system such as a Lotus Notes-based approval system. Similarly, comprehensive workflow

systems can be integrated within the state machine. Messages coming from external systems get

translated into FlexFlow events. Actions within FlexFlow can send messages to these external

systems.

10. Conclusions

Web-applications are difficult to build with traditional workflow management systems. In this

paper, we presented an approach for managing web-based business processes. We introduced a

state machine based model for the specification of business processes. Since e-commerce

FlexFlow: Workflow for Interactive Internet Applications

 Page 32

environment are very dynamic and change frequently, we argued that a descriptive model in

which business processes are represented “as-is” and “as-to-be” models are advantageous

compared to workflow management systems, where separate models are used. We have shown

the FlexFlow system which supports the modeling, simulation and execution of process state

machine.

Further problems we want to consider in the future include the management of hierarchical states

as well as the concurrent execution of FlexFlow processes:

• FlexFlow state machines can be denoted as super-states, whereby each super-state

corresponds to a state machine. We want to extend our model to allow states to be nested an

arbitrary number of times. Nested states would also allow a notional simplicity for handling

duplicate transitions and interrupts.

• Concurrent process state machines sometimes need to be synchronized with each other. Web-

applications with many business processes demand a possibility to start business processes

together, run them independently until a certain state and finally re-synchronize them. Forks

and joins will allow us to specify more complex transitions to allow this kind of

synchronization.

• Besides forks and joins, we want to include synch vertex in our process model in order to

synchronize concurrent regions in a process state machine. A synch vertex is different from

a state in the sense that it is not mapped to a Boolean value (active, not active), but an

integer. It is used in conjunction with forks and joins to insure that one region of a state

machine leaves a particular state or states before another region can enter a particular state

or states.

References

[1] Wil van der Aalst, T. Basten, Inheritance of Workflows - An approach to tackling problems

related to change, http://wwwis.win.tue.nl/~wsinwa/wf_inh.ps, 2001.

FlexFlow: Workflow for Interactive Internet Applications

 Page 33

[2] Ahmed K. Elmagarmid and Weimin Du. Workflow Management: State of the Art vs. State of
the Market. In Advances in Workflow Management Systems and Interoperability, pages 1-17,
August 1997.

[3] Grady Booch, Ivar Jacobson, and James Rumbaugh, The Unified Modeling Language User
Guide, Addison-Wesley, 1999.

[4] Dragos A. Molescu, Ralph E. Johnson, A Micro Workflow Framework for Compositional
Object Oriented Software Development, OOPSLA, 1999.

[5] Ellis, C.A., Nutt, G.J., Modeling and Enactment of Workflow Systems, 14th International
Conference on Application and Theory of Petri Nets, 1993

[6] Genrich, H.J., Predicate/Transition Nets. In: Advances in Petri Nets, 1986, Springer, LNCS 254

[7] Georgakopolaus, Diimitiros and Hornik, Mark, An Overview of Workflow Management: From
Process Modeling to Workflow Automation Infrastructure, Distributed and Parallel Databases, 3,
119-153, 1995.

[8] Hammer, M., Champy, J., Reengineering the Cooperation, A Manifesto for Business Revolution,
New York, 1993

[9] Harel D., Statecharts: A Visual Formalism for Complex Systems, Science of Computer
Programming, Vol. 8, 1987.

[10] D. Harel et. al., “STATEMATE: A Development Enivronment for Complex Reactive Systems,”
IEEE Transactions on Software Engineering, April 1990.

[11] Harel D., Politi, M., Modeling Reactive Systems with Statecharts, McGraw-Hill, 1991.

[12] Harel, D., On Visual Formalisms, Communications of the ACM Vol.31 No.5, 1988

[13] Ian Horrocks, Constructing the User Interface with Statecharts, Addison-Wesley, 1999.

[14] Jablonski, S., Bussler, C., Workflow-Management, Modelling Concepts, Architecture, and
Implementation, International Thomson Computer Press, 1996

[15] Kappel, G., Lang, P., Rausch-Schott, S., Retschitzegger, W.: Workflow Management Based on
Objects, Rules, and Roles, IEEE Bulletin of the Technical Committee on Data Engineering, Vol.
18/1, March 1995, pp. 11-17.

[16] Leymann, F., Altenhuber, W., Managing Business Processes as an Information Resource, IBM
Systems Journal Vol.33 No.2, 1994

[17] Raul Medina-Mora, Harry K.T. Wong, and Pablo Flores. ActionWorkflow as the enterprise
integration technology. Bulletin of IEEE Technical Committee on Data Engineering,
16(2):49-52, 1993.

[18] Mohan, C.: State of the Art in Workflow Management Research and Products, SIGMOD,
Montreal, Canada, 1996

[19] Mohan, C., Recent Trends in Workflow Management Products, Standards and Research, NATO,
1997.

[20] Peter Muth, Jeanine Weissenfels and Gerhard Weikum, What Workflow Technology can do for
Electronic Commerce, Current Trends in Database Technology, Idea Group Publishing, 1998

[21] Oberweis, A., Modeling and Execution of Workflows with Petri-nets, Teubner, 1996

[22] Reisig, W., Petri Nets: An Introduction, Springer, 1985

FlexFlow: Workflow for Interactive Internet Applications

 Page 34

[23] Reuter, A., Schwenkreis, F., ConTracts - A Low-Level Mechanism for Building General-
Purpose Workflow Management Systems, IEEE Computer Society, Bulletin of the Technical
Committee on Data Engineering, 18(1):4-10, 1995

[24] Marek Rusinkiewicz and Amit Sheth. Specification and Execution of Transactional Workflows.
In W. Kim, editor, Modern Database Systems: The Object Model, Interoperability, and
Beyond. Addison-Wesley, 1994.

[25] Simon, E., Kotz-Dittrich, A.: Promises and Realities of Active Database Systems, International
Conference on Very Large Data Bases, Zurich, 1995,

[26] J. Sprinkle, C.P. van Buskirk and G. Karsai, Modeling Agent Negotiation, Proceedings of the
IEEE Systems, Man, and Cybernetics Conference, October 2000.

[27] Tsai J.J.P., Yang, S., Bi, Y., Smith, R., Distirbuted Real-Time Systems, John Wiley and Sons
Inc., 1996

[28] Unified Modeling Language Specification, version 1.4,
http://www.omg.org/technology/documents/formal/uml.htm, 2001

[29] Weißenfels, J., Wodtke, D., Weikum, G., Kotz Dittrich, A., The MENTOR Architecture for
Enterprise-wide Workflow Management, Workflow and Process Automation in Information
Systems, 1996

[30] Workflow reference model. Technical report, Workflow Management Coalition, Brussels,
Brussels, 1994.

