
RC22454 (W0205-159) May 20, 2002
Computer Science

IBM Research Report

Performance Analysis of Simultaneous Multithreading in a
PowerPC-based Processor

F. N. Eskesen, M. Hack, T. Kimbrel, M. S. Squillante
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

R. J. Eickemeyer, S. R. Kunkel
IBM Server Group

Rochester, MN 55901

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Performance Analysis of Simultaneous Multithreading
in a PowerPC-based Processor

F.N. Eskesen,y M. Hack,y T. Kimbrel,y M.S. Squillante,y R.J. Eickemeyer,z S.R. Kunkelz
y IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

z IBM Server Group, Rochester, MN 55901

Abstract

Simultaneous multithreading (SMT) is an approach to
address the well-known problems of memory accesses in-
creasingly dominating processor execution time and of lim-
ited instruction level parallelism. Previous research has ex-
plored the benefits and limitations of SMT based on specific
processor architectures under a variety of workloads. In
this paper, we present a performance analysis of SMT in
a PowerPC-based wide superscalar processor architecture
under a broad range of workloads, which includes combi-
nations of TPC-C, SPECint and SPECfp. Although some
of our results are consistent with previous work, our re-
sults also demonstrate some differences and we use these
results to explore and identify the primary causes of such
differences. This includes an investigation of thread charac-
teristics that work well together in SMT environments, and
thread characteristics that do not work well together.

1 Introduction

The design of current and future processor architectures
depends upon a large number of key tradeoffs and tech-
nology issues. Two such tradeoffs/issues, which continue
to be the focus of current and future processor designs,
are due to memory accesses increasingly dominating the
execution time of processors and to the limited degree of
instruction-level parallelism. One approach to addressing
these well-known problems is called simultaneous multi-
threading (SMT), in which multiple threads are allowed to
issue multiple instructions every cycle.

A number of studies in the research literature have ex-
plored various aspects of SMT. This includes an evaluation
of the benefits and limitations of SMT within the context of
a specific processor architecture, such as fairly recent high-
performance, out-of-order, superscalar processor architec-
tures [13, 5, 12, 2]. A broad range of application and system
workloads have been considered in many of these studies,

including workloads based on database management sys-
tems [7]. SMT has also been considered for other uses,
such as the speculative execution of multiple paths of ex-
ecution [15] and the recovery of transient faults [11, 14].
Furthermore, the Intel Xeon processor MP family features
a version of SMT [6].

In contrast, no previous research has investigated the
benefits and limitations of SMT within the context of a
PowerPC-based wide superscalar processor architecture.
One of the primary objectives of this paper, therefore, is
to present such a performance analysis of SMT under a
broad range of workloads, including various combinations
of TPC-C, SPECint and SPECfp. There are several impor-
tant differences between the PowerPC-based architecture of
interest in our study and the processor architectures of pre-
vious studies and we explore the impact of some of these
differences on SMT design and performance issues. These
issues are examined through detailed trace-driven simula-
tion. We have made significant modifications to the Turan-
dot simulator [9, 10] , which models a superscalar proces-
sor based on the PowerPC architecture, in order to support
SMT. Following the operatic theme of our colleagues, our
SMT version of the Turandot simulator is dubbedFigaro
reflecting the competition between Figaro and the Conte di
Almaviva for the affection of Figaro’s fiancee Susanna.

The present study was originally started as an immediate
follow-on to some of our previous research in the area of
coarse-grained multithreading [4, 3]. Coarse-grained mul-
tithreading was the natural choice in this previous work be-
cause the processor of interest executed instructions in or-
der [1]. However, our follow-on study turned to consider an
existing out-of-order PowerPC-based processor model (i.e.,
the one supported by Turandot), and thus SMT is the natural
choice. We further sought to explore the benefits and limi-
tations of SMT within the context of such an existing wide
superscalar architecture that is not optimized in any major
way to maximize SMT performance. Given the focus of
this workshop on duplicating and deconstructing previous
results, we primarily consider instances of this PowerPC-
based processor model parameterized under technology as-

1

sumptions that are consistent with those of previous work in
the area. Our on-going research also considers instances of
this suboptimal SMT processor model under assumptions
based on current and next-generation technology.

Although some of the results from our study are consis-
tent with previous work, our results also demonstrate some
differences. In particular, while our results illustrate simi-
lar performance trends to previous work, the magnitude of
performance improvements is generally smaller and in cer-
tain instances we observe performance degradation. Our
analysis explores some of the primary causes of these dif-
ferences. This includes an investigation of thread character-
istics that work well together in SMT environments (such as
those found in SPECint and TPC-C), thus providing signif-
icant performance benefits, and thread characteristics that
do not work well together (such as those found in SPECfp),
thus providing smaller improvements and in some cases re-
sulting in performance degradation. To quantify these ef-
fects, we introduce the notions of application citizenship
and selfishness. Our results also demonstrate and quantify
the performance impact of different design parameters on
the benefits and limitations of SMT within the context of
PowerPC-based processors. Our results illustrate some of
the complex tradeoffs that must be considered to extend an
existing processor design in order to incorporate SMT, as
well as to design an SMT processor from the ground up. It
is our hope that some of the lessons learned in this study
will be useful when attempting to optimize a processor de-
sign for SMT.

Unlike most previous studies, we focus on the more
modest and near-term realizable case of a processor with
two hardware threads. This is consistent with the number of
threads used in a few recent processors that exploit multi-
threading [1, 6]. Furthermore, this choice allows us to carry
out a full spectrum of experiments on a relatively large set of
benchmarks, pairing each benchmark with each of the oth-
ers. We are then able to make interesting observations about
the behavior of particular combinations of benchmarks by
analyzing the trends thus obtained.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the processor architecture and workloads
used in our study, as well as the Figaro simulator. A rep-
resentative set of our results are then presented, followed
by some concluding remarks in Section 4.

2 Processor Architecture and Workloads

We briefly summarize in turn the processor architecture
and trace-based workloads considered in our study. Then
we describe our modifications and enhancements to the Tu-
randot simulator in order to evaluate SMT performance.

2.1 Processor architecture model

Turandot [9, 10] simulates a PowerPC-based superscalar
processor architecture with 32 general-purpose registers
(GPRs), 32 floating point registers (FPRs), 8 condition code
registers (CCRs), and 32 special-purpose registers (SPRs).
The number of physical registers is larger than the number
of architected registers for register renaming. In Figaro we
simulate 128 GPRs, 128 FPRs, 128 SPRs and 64 CCRs,
each of which has separate multiported register files.

Our processor organization has 2 fixed-point units, 2
floating-point units, 2 memory load/store units, and 1
branch unit. Each unit has a separate path to place its re-
sult in the corresponding destination. The maximum num-
ber of instructions fetched in a cycle is 8, the maximum
number dispatched is 9, and the maximum number retired
is 6. Decode requires three cycles, and the width of this por-
tion of the pipeline is 4. Note that the PowerPC instruction
set architecture includes certain complex instructions, such
as load/store-multiple, load-with-update and string instruc-
tions, which are decomposed in the decode/expand stage
into multiple simpler operations, or micro-operations. The
L1D miss queue size is 8. The retirement queue has a max-
imum size of 100, and the maximum number of inflight
instructions is 150. The pipeline has a single fetch stage,
3 decode/expand stages, a rename/dispatch stage, an issue
stage, a register read stage, an execute stage, a write back
stage, and a retire stage. The floating point unit adds 3 cy-
cles to this, and a load or store that hits in the data cache
adds 2. The branch prediction table consists of 16K single-
bit histories.

The memory system has the following characteristics:
ITLB/DTLB: separate 128-entry, 2-way set-associative
first level instruction and data translation look-aside buffers;
TLB2: a unified, 1024-entry, 4-way set-associative second
level translation look-aside buffer;
L1I: a 2-way set-associative 64-KByte first level instruction
cache with line size 128 bytes;
L1D: a 2-way set-associative 32-KByte first level data
cache with line size 128 bytes;
L2: a unified, 4-way set-associative 2-MByte second level
cache with line size 128 bytes.

The set of miss latencies in these cache structures are
provided in Table 1. The base configuration parameters are
for the most part unchanged from the original Turandot pro-
cessor model. Moreover, they are consistent with those used
across the wide range of previous SMT studies. The num-
ber of renaming registers is slightly larger than the original
Turandot model (128 vs. 96), and the I and D caches were
made 2-way associative. The instruction buffer is shared
between the two threads, so that a stalling thread can fill up
the buffer and hinder the progress of the other thread. Thus,
the architecture is not optimized for SMT, and this explains

2

in part our somewhat pessimistic results.

ITLB DTLB TLB2 L1I L1D L2

10 7 40 11 10 80

Table 1. Set of Cache and TLB latencies

2.2 Workload

We use PowerPC 601 instruction and data reference
traces of the TPC-C benchmark running under AIX together
with DB2, seven SPEC95 integer benchmarks (compress,
gcc, go, ijpeg, li, m88ksim, perl), and five SPEC95 float-
ing point benchmarks (hydro2d, mgrid, su2cor, swim, tom-
catv), compiled by the xlc compiler. These traces were
collected by the Server Group Performance Team at IBM
Austin. A subset of the SPECfp benchmarks is chosen in
order to keep the number of combinations of pairwise runs
to a reasonable number. We exclude the SPECint program
Vortex from our pairwise comparisons because we found
that in SMT mode, its TLB performance degraded terribly
due to orders of magnitude more misses. This appears to
be an artifact of the compiler’s data layout, and rectifying
the problem is beyond the scope of this study. However,
we do explore the causes of these problems in isolation (see
Section 3.1).

Our traces are of two different kinds:

1. Each SPEC trace is for a single process, with no ker-
nel code, and no segment escapes – each segment is
assumed to be a unique entity. (The PowerPC ISA in-
cludes address segmentation. At any time there are 16
active segments indexed by a set of registers, and each
instruction or data address references one of these. A
segment escape changes the value of a segment reg-
ister.) Each trace is stitched together from sampled
chunks of two million instructions each, in order to
capture the behavior of the entire run of the benchmark
rather than of only a single phase.

2. The TPC-C trace is for multiple processes, includes
kernel code, and uses segment escapes extensively.
It also consists of stitched-together two-million-
instruction chunks, but the gaps between chunks are as
small as the trace tool could manage, so that the trace
represents a nearly-continuous stream of execution.

2.3 Modifications to Turandot simulator

The Turandot simulator was written by Mayan Moudg-
ill [9, 10] in order to experiment with different machine con-
figuration parameters. Turandot simulates cycle-by-cycle,

keeping track of instructions as they progress through the
instruction pipeline and of the associated state of TLBs and
data caches. Instructions are pre-decoded in order to in-
crease the speed of the simulation. Data values are never
simulated (and in trace-driven mode they are neither avail-
able nor necessary).

We modified Turandot primarily by supporting multiple
threads to be used as instruction sources. Here the term
thread is used in the hardware context, representing an in-
struction source and associated register set.

2.3.1 Basic modifications

In addition to the obvious changes made to support multiple
threads (which we omit in the interest of space), the follow-
ing modification to the base Turandot simulator was nec-
essary to support SMT. We observed via an analysis of our
traces that the PowerPCisync instruction was more preva-
lent in the TPC-C trace than originally expected. Our ini-
tial implementation of Figaro would drain the entire queue
(for all threads) when an isync was encountered. We were
able to boost SMT performance significantly (4.8%-6.3%,
depending on the latency set) by allowing other threads to
continue fetching if one thread is blocked with an isync. We
allow alternate threads to fetch when one thread is process-
ing the isync instruction.

2.3.2 Branch misprediction

Our simulator models the effects of branch misprediction
more accurately than the base Turandot simulator. We
found this to be necessary to avoid overly optimistic projec-
tions for SMT, since wrong-path instructions from a mispre-
dicting thread interfere with those of the other thread(s). We
integrated the Intermezzo trace augmenting tool [10] into
our simulator to simulate wrong-path instructions.

Extending Intermezzofor multithreading required a
plausible mechanism for purging mispredicted instructions
from the hardware pipeline after a mispredicted branch in-
struction was executed. We chose to pessimistically keep
purged instructions in the pipeline, consuming resources,
until retirement.

2.3.3 Thread selection

We call any thread that is not stalled on an I-cache miss
ready. On a given cycle, instructions are fetched from a
single ready thread in the instruction fetch stage. We have
experimented with the following thread selection policies.
Next-ready.This policy alternates between threads that are
ready. If a reference misses in the cache but hits in the
prefetch buffer (which requires one extra cycle), the thread
is allowed to hold on to the fetch unit and complete its fetch
on the next cycle.

3

Priority. One thread is given priority for a fixed number of
cycles. Other threads are given control only when the pri-
ority thread cannot fetch. After the fixed number of cycles,
the next thread gets a turn as the priority thread.
Every-cycle. The next thread is selected for fetching
whether or not it is ready.
Coarse-grain. The current thread continues to be selected
until it encounters a miss in both the instruction cache and
the prefetch buffer, at which point selection starts from the
next ready thread. When both threads are waiting on a miss,
selection resumes with the first thread to have its outstand-
ing miss satisfied.
Instruction count. Instructions are fetched from the thread
that currently has the fewest instructions in the pipeline.
This policy attempts to improve throughput by favor-
ing threads whose instructions move quickly through the
pipeline. This policy gave the best performance in a pre-
vious study [12].
Operation count. Similar to the previous policy, but count-
ing expanded micro-operations rather than instructions.
Branch count. The thread with the fewest unresolved pre-
dicted branches is selected. This policy attempts to maxi-
mize the number of useful instructions fetched by avoiding
those which are likely to be wrong-path instructions.
Miss count. The thread with the fewest outstanding cache
misses is selected. This policy is designed to favor threads
which are performing well in the cache and thus likely to
maximize pipeline utilization.

A few subtle issues arise with the thread selection poli-
cies which depend upon where thread selection decisions
are made in the simulator. In particular, if the SMT
fetch unit under the next-ready policy alternates between
ready threads every cycle without considering effects fur-
ther down in the pipeline, then the fetch unit switches be-
tween ready threads regardless of whether any instructions
were fetched on the previous cycle. Thus, if the instruction
buffer fills and causes the fetch unit to stall for an odd num-
ber of cycles, successive fetches will come from the same
thread even though the other thread is ready; the fetch unit
was not ready when it was the second thread’s turn, and
so it “loses out.” This may cause one thread to be starved,
and therefore we refer to this policy characteristic as “un-
fair”. On the other hand, a policy that switches threads only
when instructions are actually fetched in the previous cy-
cle is called “fair”. Interestingly, under the TPC-C work-
load Figaro shows that the unfair next-ready selection pol-
icy outperforms the fair next-ready policy slightly. The un-
fair policy results in higher utilization of the fetch buffer,
and there are more stalls due to the maximum number of
inflight instructions being reached than under the fair pol-
icy. The unfair fetch unit does a better job of keeping the
pipeline full. A natural additional hypothesis for the im-
proved performance was that the unfair policy, by staying

with one thread longer, exhibits better locality. This hy-
pothesis, however, was not borne out by the cache and TLB
miss statistics.

To examine these issues in more detail, Figaro di-
vides the selection mechanisms into their basic components.
Specifically, the “fair” or “unfair” selection decisions are
considered only if the I-fetch unit is ready. The fair policy
does not allow a thread switch in a cycle where no instruc-
tions were fetched (for whatever reason) but the thread ap-
pears to be ready, whereas the unfair policy will allow this
switch. Fair and unfair apply to all selection mechanisms.

When instructions are fetched, the fair and unfair poli-
cies are identical. When no thread switch occurs, there is
also no policy difference. Thus, it is only necessary to focus
on cycles where no instructions were fetched and a thread
switch occurred. While fetching may not occur for several
reasons, our analysis of the trace-based workloads shows
that such cases occur relatively infrequently. Hence, the dif-
ferences between fair and unfair are relatively small, though
nonnegligible in some cases.

2.3.4 Page mapping and address offsetting techniques
to improve cache performance

In cases of drastic increases in miss rates relative to a single-
threaded architecture, the key to better performance proba-
bly lies in larger or more associative cache structures, page
mapping and data layout techniques to reduce cache con-
flicts, or a combination of both. A previous study [7] ex-
amined OS page mapping and address offsetting strategies
to use in conjunction with SMT. If avoidable cache conflicts
are present due to artifacts of the traces (i.e., two traces’ data
segments overlap in the caches, say, though both would fit
in the cache if properly offset), these techniques may help.

In order to study the effects of real-storage allocation
policies (page mapping policies), we modified the Figaro
simulator to include a model of address translation, allow-
ing three separate page allocation policies. Four address
translation policies were provided.
NODAT. No translation of the address in the trace.
COLOR. Addresses are allocated by page-coloring, which
leaves the cache index bits unchanged by translation. This
preserves spatial locality with respect to equivalence con-
flicts.
BINHOP. Pages are allocated sequentially per thread, so
that temporal locality within a thread will tend to avoid
cache equivalence conflicts.
RANDOM. Pages are allocated from a pseudo-random se-
quence (ignoring threads), wiping out both spatial and tem-
poral locality effects.
In all cases, real storage was assumed to be unbounded, so
that no page replacement took place.

4

3 Results

As previously noted, the present study was originally
started a few years ago as an immediate follow-on to some
of our previous research in the area of coarse-grained mul-
tithreading [4, 3]. Over this relatively long period of time, a
very large number of experiments were performed with the
Figaro simulator under a broad range of parameter settings,
workloads and processor model configurations. The results
of these simulation experiments have varied significantly,
in absolute value, across this entire spectrum of configura-
tions, exactly as one would expect. It is important to point
out, however, that the relative trends of these simulation re-
sults have always remained consistent throughout this long
sequence of experiments.

In this section we discuss a representative sample of our
findings. Our primary focus is on the results obtained un-
der technology assumptions and configuration settings that
are consistent with those of previous studies in the area.
This makes it possible for us to draw closer and more repre-
sentative comparisons with the spectrum of previous work.
In a similar manner, we also discuss results obtained from
a version of the Figaro simulator that is configured to be
as close to the SMT model in [12] as possible; see Sec-
tion 3.6. Our on-going research further considers instances
of the PowerPC-based processor model under assumptions
based on current and next-generation technology so that ad-
ditional comparisons can be drawn with the results of previ-
ous work, thus also supplementing earlier studies based on
older technologies.

The primary performance measures presented are the
average number of instructions executed per cycle (IPC)
and the miss ratios of all caches. We computeIPC and
other statistics for SMT simulations and compare to single-
threaded performance as follows. In SMT mode our sim-
ulator halts when one trace runs out of instructions. Thus
our SMT measurements reflect only multi-threaded perfor-
mance. We record the position in the trace of the second
thread, the one that did not run to completion, and extract
the statistics for that initial portion of the trace from a sin-
gle threaded run. The combined single-threadedIPC of
the two traces is then computed by adding the total number
of instructions executed and dividing by the total number of
cycles on the two single-threaded runs (one complete and
one partial). Thus we are comparing single-threaded and
multi-threaded performance on exactly the same set of in-
structions.

3.1 Base configuration results

For all benchmarks except TPC-C, we obtained the best
SMT results across all pairwise comparisons using the fair
next-ready thread selection policy (note that this is slightly

different from the results in Section 3.4 which are based on
a subset of the pairwise comparisons). Thus we use this
policy version of the SMT model defined in Section 2 as
our base SMT configuration. Table 2 shows the percentage
IPC improvement (which if negative indicates a degradation
rather than an improvement) due to SMT, broken down in
several ways. First, the results are shown for each bench-
mark when paired with all the other benchmarks. Among
these pairings, the minimum, maximum, numbers of pos-
itive and negative improvements, and average are shown.
After the per-benchmark statistics, the same data are shown
for several aggregations: all pairs of two SPECint bench-
marks, all pairs of two SPECfp benchmarks, all pairs of
one SPECint benchmark and one SPECfp benchmark, and
finally all pairs of benchmarks including the twelve SPEC
benchmarks and TPC-C.

benchmarks min max < 0 � 0 avg

compress 10.50 48.40 0 12 33.77
gcc 9.20 43.90 0 12 26.76
go 11.80 48.40 0 12 31.61

hydro2d -2.00 16.10 2 10 8.72
ijpeg 9.90 46.00 0 12 29.32

li 6.40 45.30 0 12 26.35
m88ksim 7.90 42.50 0 12 26.68

mgrid -5.60 24.70 3 9 12.54
perl 11.20 47.60 0 12 29.39

su2cor 3.40 26.70 0 12 17.18
swim -5.60 18.80 3 9 8.17

tomcatv -5.50 14.60 2 10 7.22
TPC-C 10.90 38.90 0 12 26.67

2 SPECint 32.20 48.40 0 21 39.42
2 SPECfp -5.60 8.40 5 5 1.47

SPECint/fp 6.40 26.70 0 35 15.53
all pairs -5.60 48.40 5 73 21.88

Table 2. Base configuration IPC percentage
improvement summary

As can be seen in the table, we observe a substantial per-
formance gain with integer applications including SPECint
and TPC-C, but little or no gain and even degradation with
SPECfp, and something in between with a combination. As
will be seen, in the combination cases, the SPECfp applica-
tion performs well and the integer application does not. We
explore the reasons for these results in later sections.

Primary statistics affecting performance, of course, are
cache miss rates. Tables 3 and 4 show the single-threaded
cache and TLB miss statistics we measured for each bench-
mark and the increases in miss rates summarized over the
SMT simulation runs, respectively. The measurements in

5

L1I L1D L2 ITLB DTLB TLB2

0.0002 3.8756 0.0327 0.0000 0.2244 0.0012
0.5062 0.2714 0.0107 0.0046 0.0229 0.0008
0.0833 1.8875 0.0047 0.0001 0.0008 0.0002
0.0016 1.7928 1.2500 0.0001 0.2891 0.0268
0.0031 0.1110 0.0320 0.0000 0.0029 0.0010
0.0045 0.3136 0.0032 0.0001 0.0002 0.0002
0.0017 0.0640 0.0162 0.0001 0.0023 0.0011
0.0017 0.9319 0.4743 0.0001 0.0534 0.0116
0.0005 0.0097 0.0014 0.0000 0.0012 0.0001
0.0009 2.6336 0.5298 0.0001 0.3012 0.0141
0.0006 1.3199 0.8194 0.0000 0.0843 0.0341
0.0002 5.0593 1.0255 0.0000 0.0684 0.0324
2.0321 1.7660 0.6979 0.3210 0.8607 0.3277

Table 3. Base configuration single-thread
miss rates

measure min max avg global

L1I -20.1 1128 65.9 20.4
L1D 8.9 1285 68.2 36.5

L2 < 0:001 42.00 8.02 9.54
ITLB < 0:001 974 82.9 22.5

DTLB 20.8 78432 2472 280
TLB2 < 0:001 2097 59.4 20.0

mispred -26.90 21.20 1.47 5.28
useless fetch -63.9 -7.8 -37.4 -36.7

Table 4. Miss rate increase summary

Table 3 are for the13 benchmarks in alphabetical order as
in Table 2, whereas Table 4 shows summary statistics over
all 78 pairings of the13 benchmarks. While the TPC-C miss
rates seem to be low, we note that they are consistent with
those provided in [8]; the TPC-C trace used in our study is
a slightly more recent version of the one used in [8], which
was obtained with the same tool and in the same environ-
ment as our trace. Such low miss rates for TPC-C helps to
further explain our somewhat pessimistic results.

Table 4 shows the increase in branch misprediction rate
under SMT and the decrease in the number of useless in-
structions fetched. Although the misprediction rate in-
creases slightly, useless instruction fetches are substantially
decreased; a benefit of SMT is that speculation need not be
as aggressive. Some of the miss rate increases seem alarm-
ing. However, this reflects only an insignificant miss rate
increasing to a small or modest one. A more accurate mea-
sure of the increase, perhaps, is that indicated in the column
labeled “global increase.” Here we report the increase in
the total number of misses, over all 78 pairings of bench-

marks, relative to the number of misses in the corresponding
156 single thread runs (12 runs each of each the 13 bench-
marks). Though still substantial, these increases are much
more manageable. Still, some indicate stress and the need
for a larger or more associative structure. We will return to
the miss rates later in the paper when we analyze the reasons
for performance of particular pairings of benchmarks.
Vortex benchmark. We conducted several experiments to
see if we could eliminate the problem with the TLB miss
rates when simulating vortex and another application. With
our base parameter settings, vortex (and its running mate)
suffered increases under SMT ranging from 93% to 2200%
in DTLB misses, and from 89% to 9000% in TLB2 misses.
The SMT IPC decrease ranged from�2% to�78%; there
were no increases. Doubling TLB sizes helped with the
TLB2 misses, bringing the increases in miss rate down to
a modest range of 10-50% and the worst IPC decrease to
�38%; four pairings of benchmarks showed an IPC in-
crease, the greatest being 11%. However, the increased
size did not help with the level 1 DTLB misses. Increas-
ing the DTLB associativity from 2 to 4 (without changing
any sizes) was the key to relieving the problem, bringing the
DTLB miss increases to 22-194%, the TLB2 miss increases
to 11-89%, and the SMT IPC change to a range of�11 to
+12% with an average of 4.6%.

3.2 Pipeline utilization

Turandot captures utilization statistics for several
pipeline stages of interest. Figure 1 shows the utilization
of the fetch, dispatch, and retire stages for single-threaded
TPC-C in terms of the percentage of cycles on which a given
number of instructions/operations passed through each of
these stages. Figure 2 shows this information for TPC-C
with two threads.

Clearly the fetch bandwidth is adequate. The large spike
at 4 in the number of instructions dispatched is due to the
upstream decode pipeline width of 4. To determine whether
this is a bottleneck, we increased the decode width to 9
for a subset of our benchmarks – comp, gcc, su2cor, swim,
and TPC-C – and only gcc’s single-threaded throughput in-
creased significantly, from 1.08 to 1.17 IPC. On the 10 pair-
wise SMT runs between these 5 bechmarks similar results
were obtained: we saw only a 1-2% increase in IPC rela-
tive to decode width 4 for those runs not involving gcc, and
increases of 4-8.5% for those runs involving gcc.

With two threads, the number of cycles in which one in-
struction is retired decreases. This is because during the cy-
cles in which one thread retires only one instruction, the sec-
ond thread may also retire some instructions. This moves
some of these cycles from retiring one instruction to the
bars with more than one instruction retired. Also, as is to
be expected, the number of cycles in which 8 or 9 instruc-

6

tions retire increases with two threads.

1 2 3 4 5 6 7 8 9

Instructions/Operations Processed Per Cycle

5

10

15

P
er

ce
nt

ag
e

of
 C

yc
le

s

Comparison of Pipeline Stage Utilizations for single-threaded TPC-C

Fetch
Dispatch
Retire

Figure 1. Utilization of pipeline stages for
single-thread TPC-C.

1 2 3 4 5 6 7 8 9

Instructions/Operations Processed Per Cycle

5

10

15

P
er

ce
nt

ag
e

of
 C

yc
le

s

Comparison of Pipeline Stage Utilizations for TPC-C with SMT

Fetch
Dispatch
Retire

Figure 2. Utilization of pipeline stages for 2-
thread TPC-C.

3.3 Analysis of thread citizenship

We define two qualities of an application,selfishnessand
citizenship. Selfishness is the relative speed of an applica-
tion when running in SMT mode as measured by its IPC as a
percentage of its single-threaded IPC. (A large value of self-
ishness is not entirely a bad thing despite the name; it means
that the application performs well in SMT mode.) Citizen-
ship is the fraction of single-threaded IPC that is achieved
by theotherapplication sharing the processor.

Table 5 shows the selfishness and citizenship measured
for each of our benchmarks, averaged over all other bench-
marks, along with the standard deviation (std-dev) and coef-
ficient of variation (cv). The benchmarks are listed in order
of decreasing selfishness and citizenship, respectively.

We make two observations regarding these results. First,
citizenship has lower variation than selfishness, despite its

benchmarks selfishness std-dev cv

su2cor 69.8 13.1 0.19
tomcatv 68.7 9.4 0.14

mgrid 67.5 13.7 0.20
hydro2d 64.2 11.1 0.17

perl 62.0 15.0 0.24
swim 61.6 12.5 0.20
comp 60.8 13.3 0.22
ijpeg 60.4 15.2 0.25

TPC-C 59.9 14.2 0.24
go 55.1 14.6 0.26

m88ksim 54.9 13.7 0.25
gcc 54.8 14.5 0.27

li 52.3 14.5 0.28

citizenship std-dev cv

go 76.3 3.9 0.05
li 74.1 3.4 0.05

comp 73.0 8.9 0.12
gcc 71.8 4.5 0.06

m88ksim 71.8 4.0 0.06
ijpeg 68.9 4.6 0.07
perl 67.6 5.8 0.09

TPC-C 66.7 4.4 0.07
su2cor 47.2 6.4 0.13
swim 46.4 5.3 0.11
mgrid 45.2 5.6 0.12

hydro2d 44.4 8.0 0.18
tomcatv 38.6 5.7 0.15

Table 5. Benchmark citizenship

much wider range of values. Thus, the application a2 that
a given application a1 shares the processor with is a better
predictor of a1’s performance loss due to sharing than a1
itself. Second, floating point applications are bad citizens,
whereas integer applications are good citizens.

As a possible explanation for this, we offer the follow-
ing. Table 6 shows the single-thread L2 cache miss rates per
100 instructions and per 100cyclesby application, sorted in
ascending order of the latter measure. Note that the order
closely agrees with that of citizenship. Note also the sharp
gap between the SPECfp and integer applications in both
lists. We propose that overall performance is dominated
(unsurprisingly) by memory performance, and that an ap-
plication is forced to live with the memory penalty of an ap-
plication it shares the processor with. We note that TPC-C is
on the “wrong” side of the sharp drop in citizenship. That is,
TPC-C is a better citizen than one would guess based on its
miss rate. One explanation for this is TPC-C’s high instruc-
tion cache miss rates. While data cache misses decrease

7

citizenship, since they cause a thread’s instructions to back
up in the pipeline and consume resources and also cause
cache pollution, instruction caches misses increase citizen-
ship: the thread blocks and lets the other thread use the
pipeline resources. This is borne out by simulations with
infinite instruction and data caches: with an infinite data
cache, TPC-C’s citizenship increased to 69%, and with an
infinite instruction cache, it decreased to 61%. We hypoth-
esize that TPC-C’s high citizenship is also due in part to the
high prevalence of the PowerPCisync instruction, which
blocks the thread and leaves all resources free for the other
thread.

benchmarks L2 misses (cycles) L2 misses (instrs)

perl 0.0014 0.0014
go 0.0037 0.0047
li 0.0045 0.0032

gcc 0.0116 0.0107
m88ksim 0.0256 0.0162

comp 0.0291 0.0327
ijpeg 0.0491 0.0320

TPC-C 0.4589 0.6979
su2cor 0.5294 0.5298
mgrid 0.7390 0.4743
swim 1.2916 0.8194

tomcatv 1.2997 1.0255
hydro2d 1.4848 1.2500

Table 6. L2 misses per 100 cycles and per 100
instructions

3.4 Thread selection policy results

In Table 7 we report the results obtained by varying the
thread selection mechanism as described in Section 2.3.3,
where (F) and (U) respectively denote the fair and un-
fair versions of a given policy. Because it would require
78 � 12 = 1248 simulator runs otherwise, we report results
only for a subset of the benchmarks: all pairs of compress,
gcc, su2cor, swim, and TPC-C. Note that fair every cycle
actually outperforms fair next ready in one case (compress
and gcc), and has a slightly better average on the subset
of pairwise comparisons considered in Table 7. This is in
contrast to fair next ready providing the best SMT results
across all pairwise comparisons with the exception of TPC-
C. For one pair of benchmarks (su2cor and swim), the fair
coarse grain policy results in one benchmark (su2cor) being
starved, presumably because the other (swim) fits entirely
in the instruction cache. We omit this pair in the statistics
for this policy. These results tend to differ in various ways
from the corresponding results presented in [12].

policy min max < 0 � 0 avg

(F) branch count -2.10 32.50 2 8 11.11
(F) every cycle -2.20 37.20 1 9 17.29

(F) coarse grain -5.80 6.50 4 5 0.09
(F) miss count -6.30 30.70 1 9 11.89
(F) instr. count -3.20 31.40 1 9 14.77
(F) next ready -1.90 35.80 1 9 17.25
(F) op. count -4.10 29.50 1 9 13.36

(F) priority -3.30 20.20 1 9 8.31
(U) branch count -2.20 32.50 1 9 11.19

(U) every cycle -2.30 34.90 1 9 16.92
(U) coarse grain -4.30 20.30 1 9 9.39
(U) miss count -6.30 29.50 1 9 11.85
(U) instr. count -3.10 31.70 1 9 15.01
(U) next ready -2.20 33.30 1 9 16.50
(U) op. count -3.90 29.80 1 9 13.66

(U) priority -2.90 25.70 1 9 12.13

Table 7. Thread selection policy IPC percent-
age improvement summary

3.5 Page mapping results

Results of these experiments using the TPC-C trace,
single- and multi-threaded, appear in Table 8. Case 1 rep-
resents the NODAT vs COLOR comparison, Case 2 rep-
resents the COLOR vs RANDOM comparison, and Case 3
represents the RANDOM vs BINHOP comparison. “Lines”
denotes the number of cache lines transferred. COLOR and
NODAT are nearly indistinguishable. BINHOP appears to
be best in terms of throughput for two threads. RANDOM
and BINHOP were identical for one thread. Though the
miss rate reductions are impressive, the speedup in terms of
IPC/CPI is modest: BINHOP is 1.7% faster than NODAT.

one thread CPI L2I / L2D misses L2 lines

Case 1 +0.3% +0.1% / +0.6% +0.07%
Cases 2,3 +0.3% +10.2% / +2.9% +3.0%

two threads CPI L2I / L2D misses L2 lines

Case 1 +0.1% +0.2% / +4.7% 0%
Case 2 +1.3% +13.7% / +8.0% +8.7%
Case 3 +0.3% +4.3% / +1.9% +1.7%

Table 8. page mapping results (relative)

These results agree substantially with those reported
in [7]: large effect on L2 miss rates, small effect on L1
miss rates (in the absence of address offsetting, a mecha-
nism which we did not investigate at the time), except that

8

we see a much smaller effect on IPC than they do. A partial
explanation for this difference may be their 8-thread SMT
vs our 2-thread: IPC results were only given for 8 threads,
and miss rates for 8 threads show a much greater difference
between COLOR and BINHOP than for 2 threads.

3.6 Analysis and comparison to previous results

The magnitude of our results are somewhat more modest
than those of Tullsen et al. [12]. That study found a through-
put increase of about 1/3 on average with two threads, using
only a simple round-robin fetch policy as we do. We find a
similar increase for SPECint benchmarks, but no improve-
ment (and even a slight degradation) for SPECfp, a smaller
increase for mixed SPECint and SPECfp, and a slightly
smaller improvement for TPC-C combinations.

To analyze these issues in more detail, we parameterized
our Figaro SMT model to be as close to the SMT model
in [12] as possible. Our results did indeed show improved
SMT performance, but we saw a corresponding improve-
ment in the single-thread performance which maintained a
comparable relative performance improvement for SMT to
that shown above.

There are a number of possible explanations for these
differences between our results and those presented in [12].
They include both architectural differences and workload
differences, each of which are discussed in turn.

The PowerPC instruction set architecture contains com-
plex instructions that are expanded into multiple simpler op-
erations, each comparable to an Alpha instruction, at the de-
code stage. We parameterized our simulator to expand the
instructions before they were fetched by the simulated pro-
cessor to examine the effects of this difference. The results
were very little changed, unsurprisingly; the bottlenecks ap-
pear to be further down the pipeline.

The major difference in cache organizations is that they
assume an intermediate level of cache (which we would call
L1.5, if we had it) with latency modestly greater (12 cycles
vs. 6) than L1, and 256 kilobyte size. This cache is more
than twice the combined sizes of our L1 instruction and data
caches, and has only slightly greater latency.

They assume more (floating point) and more flexible
(other) functional units: 3 FPUs compared to our 2, and 6
integer/branch units, 4 of which process loads and stores,
compared to our 3 integer units, 2 load/store units, and
2 branch units. They also consider a somewhat longer
pipeline. Another architectural difference concerns the reg-
ister file size. They assume 32 registers per thread plus 100
excess registers for renaming (for each of the floating point
and integer register files); we assume 128 registers regard-
less of the number of threads. With respect to the decode
bandwidth, they assume a bandwidth of 8 whereas ours is
4.

In terms of workload differences, they use SPEC92
benchmarks whereas we use SPEC95 and TPC-C. (A sub-
sequent paper [7] reports on simulations using an OLTP
workload, but reports only results for eight threads.)
Moreover, these benchmarks were obtained under dif-
ferent compilers (Multiflow vs. xlc/xlf). Our re-
sults in Section 3.5 suggest that this may have an im-
portant impact on the differences between our results.
Finally, the larger cache footprints of our workload
(see http://www.specbench.org/osg/cpu95/whatsnew.html)
increase cache contention, possibly reducing the SMT per-
formance gain.

We also believe our current simulation results to be
somewhat pessimistic with respect to the potential perfor-
mance benefits of SMT. There are several reasons for this.
First, the Turandot simulator does not model in complete
detail some sources of latency that cause pipeline under-
utilization, e.g., bus conflicts. This means that our single-
threaded results tend to be somewhat better than reality, and
thus there is less latency for SMT to hide. Second, our han-
dling of mispredicted branch instructions in Figaro uses the
pessimistic approach of keeping purged instructions in the
pipeline, consuming resources, until retirement; see Sec-
tion 2.3.2. Furthermore, there are many opportunities for
optimization to take full advantage of SMT. As previously
noted, one of our objectives was to explore the benefits
and limitations of SMT within the context of an existing
PowerPC-based wide superscalar processor model that is
not optimized in any major way to maximize SMT per-
formance. There are a number of techniques that could be
employed in this minimally modified PowerPC-based pro-
cessor to achieve the maximum performance improvements
that may be possible with SMT.

One such area of optimization concerns split versus
shared structures in the SMT architecture. Several queue
structures, perhaps most importantly the instruction buffer
(into which instructions are fetched from the cache and from
which they move to the decoder), can be designed either as
a single queue shared by the threads or split into separate
structures, one for each thread. The tradeoff here is between
flexibility in the number of entries that can be dedicated to
a single thread (all of them in the case of a shared structure,
but only half of them in the case of a split structure) versus
the ability to select which thread’s instructions to process
(possible in the case of a split structure, not possible in the
case of a shared structure). The queues are shared in our
current simulator. A possible enhancement to the simulator
would allow split structures in order to examine this trade-
off. Because instructions are dispatched in fetch order, a
downstream stall in one thread can stall the other thread’s
dispatch if there is a full rename, or similar, queue.

Many other optimizations are possible. This includes in-
creasing the number of threads, which would do a better job

9

of hiding the larger latencies that might be found with cur-
rent and next-generation technology, but at the expense of
greater chip area. A longer pipeline would also show larger
relative benefits for SMT. We are exploring some of these
issues as part of on-going research.

4 Concluding Remarks

In this paper we presented a performance analysis of
SMT within the context of a PowerPC-based wide super-
scalar processor architecture under a broad range of work-
loads, which included combinations of TPC-C, SPECint
and SPECfp. There are several important differences be-
tween this PowerPC-based architecture and the processor
architectures of previous studies, and we explored the im-
pact of some of these differences on SMT design and per-
formance issues. Although some of our results are consis-
tent with previous work, our results also demonstrate some
differences which we investigated to identify the primary
causes of such differences. This includes an investigation of
thread characteristics that work well together in SMT envi-
ronments, thus providing significant performance benefits,
and thread characteristics that do not work well together,
thus providing smaller improvements and in some cases re-
sulting in performance degradation.

Acknowledgements

We thank our colleagues Hal Kossman, Jaime Moreno,
Mayan Moudgill, Mike Wazlowski and Eric Wu for many
fruitful discussions regarding various aspects of this re-
search. We further thank Mayan Moudgill for his help and
assistance in our modifications of the Turandot simulator.
We also thank the anonymous referees for helpful com-
ments on an earlier draft of this paper. Finally, we thank
Jerry Bozman for suggesting Mozart’s “Le Nozze di Fi-
garo” (The Marriage of Figaro) for the name of our SMT
simulator.

References

[1] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R.
Kunkel. A multithreaded PowerPC processor for commer-
cial servers. IBM Journal of Research and Development,
44(6):885–898, November 2000.

[2] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm,
and D. M. Tullsen. Simultaneous multithreading: A foun-
dation for next-generation processors.IEEE Micro, October
1997.

[3] R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, B.-H. Lim,
M. S. Squillante, and C. E. Wu. Evaluation of multithreaded
processors and thread-switch policies. InProceedings of the
International Symposium on High Performance Computing,
November 1997.

[4] R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, M. S. Squil-
lante, and S. Liu. Evaluation of multithreaded uniprocessors
for commercial application environments. InProceedings
of the 23rd Annual International Symposium on Computer
Architecture, pages 203–212, May 1996.

[5] M. Gulati and N. Bagherzadeh. Performance study of a mul-
tithreaded superscalar microprocessor. InProceedings of
the Second International Symposium on High-Performance
Computing, pages pages 291–301, February 1996.

[6] Intel Corporation. Intel Xeon processor family for servers
with hyper-threading technology: Offering increased server
performance through on-processor thread-level parallelism.
White Paper, 2002.

[7] J. Lo, L. A. Barroso, S. J. Eggers, K. Gharachorloo, H. M.
Levy, and S. Parekh. An analysis of database workload
performance on simultaneous multithreaded processors. In
Proceedings of the 25th Annual International Symposium on
Computer Architecture, 1998.

[8] A. M. Maynard, C. M. Donnelly, and B. R. Olszewski. Con-
trasting characteristics and cache performance of technical
and multi-user commercial workloads. InProceedings of the
International Conference on Architectu ral Support for Pro-
gramming Languages and Operating Systems, pages 145–
156, October 1994.

[9] M. Moudgill, P. Bose, and J. Moreno. Validation of Tu-
randot, a fast processor model for microarchitecture explo-
ration. In Proceedings of the IEEE International Perfor-
mance, Computing and Communications Conference, pages
452–457, February 1999.

[10] M. Moudgill, J.-D. Wellman, and J. Moreno. Environment
for PowerPC microarchitecture exploration.IEEE MICRO,
pages 15–25, May/June 1999.

[11] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. Detailed
design and evaluation of redundant multithreading alterna-
tives. InProceedings of the 29th Annual International Sym-
posium on Computer Architecture, May 2002.

[12] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.
Lo, and R. L. Stamm. Exploiting choice: Instruction fetch
and issue on an implementable simultaneous multithreading
processor. InProceedings of the 23rd Annual International
Symposium on Computer Architecture, pages 191–202, May
1996.

[13] D. M. Tullsen, S. J. Eggers, and H. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. InPro-
ceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 392–403, June 1995.

[14] T. N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-
fault recovery using simultaneous multithreading. InPro-
ceedings of the 29th Annual International Symposium on
Computer Architecture, May 2002.

[15] S. Wallace, B. Calder, and D. M. Tullsen. Threaded multi-
ple path execution. InProceedings of the 25th International
Symposium on Computer Architecture, June 1998.

10

