
RC22466 (C0205-004) May 30, 2002
Computer Science

IBM Research Report

A Framework for e-Service Management and Invocation in
Application Integration Systems

Xin Zhang, Wei Sun, Sheng Ye, Zhong Tian
IBM China Research Lab
2F, HaoHai, #7, 5th Street
Shangdi, Beijing 100085

China

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

A Framework for e-Service Management and Invocation
in Application Integration Systems

Xin ZHANG, Wei SUN, Sheng YE, Zhong TIAN
({zxin, weisun, yesheng, tianz}@cn.ibm.com)

IBM China Research Lab
2F, HaoHai, #7, 5th Street, Shangdi, BEIJING, 100085, CHINA

Abstract

Application integration is the key to building new business process based on
heterogeneous, distributed legacy applications or systems. As more and more
applications are exposed in the form of e-Services over a network, service-oriented
integration is developing on the horizon of the application integration frontier.
Therefore, the management and invocation of distributed and diverse-form e-Services
become a challenge for application integration system. In this paper, we introduce an
Action Invocation Framework to address this problem. By leveraging private UDDI,
this framework could facilitate service registration, categorization & relationship
management, uniform service invocation interface exposure. It also handles the
interface brokering and invocation for diverse forms of e-Services. The embedded
transaction support enables the service to be securely invoked and executed, or rolled
back when errors occur. In this paper, we introduce the initiatives of developing such a
framework, and then the architecture of the framework is presented. At the end of this
paper, a self-service banking application scenario is described, in which AIF facilitates
the e-Services aggregation and transaction requirement.

1.Introduction

As is well known, enterprise business systems consist of many different technology standards
conformance applications, which were built at different stages of the technology evolution
and development. To adapt to the dynamic business requirements, the development of new
processes, new applications are always on demand. But developing from scratch costs huge
direct and indirect investment, so that making use of an application integration system,
building new processes and applications by integrating the heterogeneous legacy applications
has become the direction[1,2,3]. In a nutshell, application integration system allows an
enterprise to build and manage complex business processes or applications by
choreographing the interaction of a number of (internal and external) business functions to
achieve the business goals. It is becoming a trend that more and more business functions are
packaged in e-Service form and exposed over the network. So, service-oriented integration
is developing on the horizon of the integration frontier[4]. These services may be defined
and exposed in different access modes, and they could be local programs, intra-enterprise
software components or Web services provided by the enterprise itself or external partners.
So, to an application integration system, the management and invocation of all the new
process and application related services are becoming a challenge, which would involve
service registration, service interface exposure, interface brokering and invocation. Due to
the technology complexity and shortage of skillful service adapter developers, it is essential
to construct a framework for application integration systems to facilitate the management
and invocation of diverse-form and distributed e-Services.

1

In this paper, we introduce an Action Invocation Framework(AIF) to address the problem.
Here we refer action as the programming level entity of e-Service. This framework manages
distributed, diverse-form actions, such as local Java program, enterprise Java bean(EJB) or
Web services. These actions should be registed in the Action Registry of the framework
according to corresponding registration schema, and the Registry provides uniform
interfaces to external service requesters. The Action Invocation Broker(AIB) would perform
the interface brokering and fulfill the actual invocation. By leveraging private UDDI, the
Registry can provide flexible categorization and relationship management; especially the
invocation broker has transaction support function, so that the service invocation could be
safely performed or rolled back if errors occur. The system architecture and core technology
components of the framework are discussed in length in this paper. A self-service banking
application scenario is also presented.

2. Action Invocation Framework Architecture

e-Services could be distributed and exist in diverse forms. Obviously these different forms of
services have their own specific invocation methods and interfaces. So, to describe the
service invocation interfaces and invoke services case by case is a labored task. If these
services could provide uniform interface, the service invocation will be easy and simple. A
service registry could facilitate storing and providing the uniform interface to service
requestors; the service invocation broker would transform the uniform interface to the
specific actual service invocation interface and perform the invocation.

The Action Invocation Framework(AIF) is designed as a reusable service invocation
middleware. Here action indicates the access interface of e-service. It is the front tier of the
e-service presenting to service requester. Our approach is to handle diversified service
access modes within the framework and provide a uniform action invocation interface to
upper level service requester. Thus service requester can focus more on its own application
logic rather than care much about the difference of service invocation mode[5,6]. Besides
the service brokering, the action management is also covered in our framework for better
service integration.

As illustrated in figure 1, the system includes both design time asset for action registry and
management and runtime asset for action invocation and monitor. The Action Lib stores
action definition and relationship between actions, which is managed by Action
Definition&Relationship Management component. It leverages the private UDDI as a
flexible categorization mechanism which allows user to classify action categorization
strategy. The Action Registry provides user the action registration service.

At runtime, the Action Invocation Broker(AIB) acquires the invocation request, it retrieves
the relative information of the action to be invoked from the Action Lib. By identifying the
action type, AIB requests the corresponding adapter to perform the invocation, and captures
the invocation result to return to the service requester. When transaction is needed for the
action invocation, the AIB will request the Transaction Function Enabler to record
transaction data and process related operations. There Action Invocation Monitor and
Control module provide the service requestor interface to control and monitor current
invoked service.

2

����� � ���
	
� �

��
�� ���������������
������� ���

 �!�� "�#���$�� %�!���� ���

&�'�(�) *�+-,�.�+�.�/�0�1-0�+�(
2 +�(�0�3�4 .�'
0

&�'
(�) *�+
5�0�/�) 6�(�3�.�(�) *�+

&�'
(�) *�+�2 +�7�*�'
.�(�) *�+-8�3�*:9�0�3
; &�2 8�<

����� � ���
	
� �

��
�� ���������������
������� ���

 �!�� "�#���$�� %�!���� ���

&�'�(�) *�+-,�.�+�.�/�0�1-0�+�(
2 +�(�0�3�4 .�'
0

&�'
(�) *�+
5�0�/�) 6�(�3�.�(�) *�+

&�'
(�) *�+�2 +�7�*�'
.�(�) *�+-8�3�*:9�0�3
; &�2 8�<

=�>
?�@ A�BDC B�E�A�>�F�?�@ A�B
GDA�B�@ ?�A�H�F�B�I
>
A�B�?�H�A�J

K-L�MON�P�QSR T RVU�P W�MXN�P�QYR

Service Requester
Action Invocation Interface

LocalJava WebServiceRMI

Adapters

Internet/Intranet

EJB Soap

Action
Invocation
Framework

Figure 1. Action Invocation Framework Architecture

ZO.�(�0�/�*�3�) [�.�(�) *�+
,D.�+�.�/�0�1-0�+�(

&�'
(�) *:+�\V0�4�) +�) (�) *�+�]
5:0�^ .�(�) *:+�6�_�) `
1-.�+�.�/�0�1a0�+�(

EJB

RMI

RMI
service

EJB
service

Web
service

Transaction
Function
Enabler

=�>
?�@ A�BDC B�E�A�>�F�?�@ A�B
GDA�B�@ ?�A�H�F�B�I
>
A�B�?�H�A�J

K-L�MON�P�QSR T RVU�P W�MXN�P�QYR

Service Requester
Action Invocation Interface

LocalJava WebServiceRMI

Adapters

Internet/Intranet

EJB Soap

Action
Invocation
Framework

Figure 1. Action Invocation Framework Architecture

ZO.�(�0�/�*�3�) [�.�(�) *�+
,D.�+�.�/�0�1-0�+�(

&�'
(�) *:+�\V0�4�) +�) (�) *�+�]
5:0�^ .�(�) *:+�6�_�) `
1-.�+�.�/�0�1a0�+�(

EJB

RMI

RMI
service

EJB
service

Web
service

Transaction
Function
Enabler

Based on the framework, we implement a prototype in Java program, which makes it easier
to be reused and migrated in diversified platform.

2.1 Action Description Schema

In the framework, Action is defined as an exposed operation of a certain action target. The
action target can be a Web services port, RMI
object or Local Java Class and other service types.
For Web services, the action is the operation
described in WSDL; For RMI, the action is the
exposed methods; For Local Java Class, the action
is the public method. An action target may expose
several actions, but no matter how many actions
are defined on one action target, they have the
same access method which is determined by the
definition of action target.

2.1.1 The action target definition

Action target defines the service object either residing on local host or at remote site. Its
definition includes service type, and related information needed to find the service object. As
illustrated in Figure3, four supported service types are Local Java, Web services, RMI, EJB.

bdc�e:f�g�h

iDj�k�l�mVe

Operation1

Operation2

OperationN

Actions

Figure 2. Action Definition

3

Field Description
id Action target id

Type ="LocalJava"

PackageName The package name of Java class

ClassName The class name of Java class

Field Description
id Action target id

Type ="WebService"

ServiceName Service name

PortName Port name

Field Description
id Action target id
Type ="RMI"
Host Host to find RMI
Port Port of the finding service on the Host

jndiName Registered JNDI name of the RMI service

Field Description
id Action target id
Type ="EJB"
Target Finding URL
initContext Init Context class name
jndiName Registered Jndi name of the EJB Home object
className Class name of EJB object
pkClassName Key class name(optional)
pkArguments... Parameters to init pkClass instance (optional)

Local Java Class
WebService

EJB
RMI

 Figure3. Action Target Definition

2.1.2 Action definition

In the action definition, it specifies an operation on an action target. The arguments that are
needed to invoke that action are also described.

 Table 1. Action Definition

Return valuesReturns...
Parameters of the operationArguments...
Operation nameoperName
Action target idtargetID
DescriptionDesc
Action idActionID
DescriptionField

2.2 Action Invocation Broker

Action Invocation Broker(AIB) brokers service invocation for service requester. As shown
in figure 5, when an invocation request is submitted to AIB through Action Invocation
Interface, the Invocation Assembly and Validation module assembles the invocation request
and checks its validity by querying Action Lib, then translates the request into an internal
request command. The Invocation Handler handles the request command and triggers
corresponding adapter to perform the invocation. The Monitor and Control Agent provides
interface to manage AIB. When transaction feature is required, the Transaction Function
Enalber is involved to manage action invocation chain at the demand of Invocation Handler.

4

n�o�p�q r�s
t
q u

v�w�x�y z�w�{�|�x�}
~ w:x�z�{�w:��������x�z

LocalJavaAdapters
��� ���:�����������
�
� ����� ���������
��� ���������������

�:���:�����������:�������:�����

 ¡�¢�£�¤�¥�¦�§ £:¡�¨�©�©�ª�«a¬�­ ®
¥�¡�¯�°V¥�­ § ¯�¥�¦�§ £:¡

 ¡�¢�£�¤�¥�¦�§ £�¡�±�¥�¡�¯:­ ª�²

WebServiceRMIEJB

³�´�µ�¶�³�´�·
¸
¹ º�»�¼�½�¾ ¿ À ¼
º�¹ º�Á ¼

ÂDÃ
Ä�Å Æ ÇOÈ�É�Ê Å È�Ë

Ì�Í ¾�º�Î ¾�½ ¿�À ¼�º
Ï�¼�º�¿ Ð�Ñ�¿

Transaction�
Function�
Enabler

2.3�Action�Invocation�Interface�

In� our� implementation,� three� layers� of� interfaces� are� provided:� as� we� take� Java� as� the
implementation� language,�a� Java�API� is�defined�as� the�Native�Action� Invocation�Interface.
For� service� requester� that� is� also� constructed� in� Java� code� or� support� Java� call,� it� can
leverage�this�interface�for�more�efficiency�and�better�data�type�supporting;�A�Generic�Action
Invocation�Interface�is�also�defined�as�a�command�line�interface�which�combines�invocation
request� and� related� parameters� into� an� XML� document� to� minimize� the� requirement� for
service�requester;�The�third�interface�is�so�called�Remote�Action�Invocation�Interface�which
is�provided�by�wrapping�AIB�itself� into�a�Web�services�so�that�it�can�be�accessible�through
network.�The�basic�structure�of�an�invocation�request�is�as�follows:

Table�2.��Basic�Structure�of�Invocation�Request

Parameters�of�the�operationTransactionID
Invocation�mode(Sync/Asyn)InvocationMode
Action�return�value�list,�in�name/value�pairReturns
Action�parameter�list,�in�name/value�pairArguments
Action�idActionID
DescriptionField

2.4�Service�Categorization�and�Relationship�Management

In� an� application� integration� system,� normally� service� requestor� needs� a� tool� to� search
available�services�and�acquire�information�about�where�to�find�them,�and�how�to�use�them.
As�building�complex�services�by�embedding�other�ones�may�result�in�mutual�dependence,�all
services� should� be� managed� for� reference� integrity.� To� answer� these� challenges,� Service
Registry�is�designed�in�this�framework�to�facilitate�all�the�service�management�work.

In� private� UDDI,� each� service� type� is� identified� by� a� registered� tModelKey.� Each� Web
services�can�be�published�as�a�certain�service�type�by�given�CategoryBag,� thus�allowing�us
to� search� and� manage� published� Web� services[7].� By� leveraging� the� flexible� category
management�mechanism�provided�by�private�UDDI,�the�Service�Category�Manager�provides
user�interface�to�define�the�service�categories.�All�the�services�would�be�listed�under�specific
category,� which� would� facilitate� the� service� searching� and� categorization.� Category� is
something�related�to�the�properties�of�actions.�It�provides�an�easy�way�to�organize,�search,
and� manage� actions.� User� should� register� all� services� into� the� Registry� through� registry

5

management� interface,� in� which� the� invocation� method,� interface,� function� descriptions,
transaction� utilities'� interfaces� of� these� services� are� defined� and� kept.� Then� actions� can� be
searched�by�their�type,�owner,�invocation�method,�register�time,�etc.

There� could� be� mutual� dependency� and� cross� reference� among� services� on� an� application
integration� system.� This� kind� of� relationship� is� managed� by� the� Services� Relationship
Manager.� The� relationship� is� defined� at� design� time� when� a� service� is� registered� in� the
service�registry,�and�then�recorded.�Because�of�every�service�in�the�registry�are�identified�by
a�unique�ID,� so� the�cross� reference�would�not�be� influenced�even�if� the� referenced�service
interface�is�updated.�A�service�can�not�be�delete�from�the�registry�if�it�is�referenced�by�other
services.� So,� the� service� relationship� management� could� help� to� maintain� the� services
reference�integrity�in�the�registry.

2.5�Transaction�Support

Transaction�capability�is�more�and�more�in�demand�for�application�to�handle�the�execution�of
mission�critical�process.�For�example,�a�finished�payment�operation�shall�be�rolled�back�if�a
logistics�operation�is�proven�to�be�failed�later�in�a�purchase�process.�When�an�application�is
composed� by� choreographing� diversified� services,� the� generic� requirement� emerges� to
achieve� application� level� transaction� by� leveraging� the� transactional� capability�of� underline
individual� services.� It� is� really� a� labored� work� for� application� to� handle� all� kinds� of� �
transactional/non-transactional�actions.�The�challenge�exists�that�the�long-running�feature�of
application�level�process�demands�for�a�relaxed�transaction�model.�

AIB� meets� the� gap� by� devising� the� Transaction� Function� Enabler(TFE).� The� TFE� module
wraps� different� services� transaction� capability� and� presents� a� uniform� interface� for� upper
service� requester.�Moreover,� it� tracks� the� service� invocation�sequence�and�parameters� in�a
transaction� so� as� to� automatically� perform� the� rollback� and� commit� operations� at
application's� demand.� Thus� it� simplifies� the� enablement� effort� for� application� level
transaction�support.�Currently�only�flat�transaction�model�is�supported.

For� services� that� will� be� invoked� in� a� transactional� process,� they� shall� register� their
transaction� capability� in� action� lib.� For� some� types� of� action� targets� which� can� provide
transaction�capability� for�upper�application� in� their
own� mechanisms,� its� supporting� mode� and� related
parameters�shall�be�registered.�For�example,�on�the
base�of�EJB�transaction�capability,�application�level
transaction� can� be� enabled� by� client-demarcating
transaction� programming[8].� AIB� also� defines� an
easy� to� implement� interface� for� two-phase
transaction� support.� By� specifying� transaction
operations�include�begin,�prepare,�commit,�rollback
operations� in� Action� Target� definition,� a
service-based�two-phase�transaction�support�can�be
constructed.�Compensation�model�is�also�supported
by�defining�an�undo�operation�on�action�base[9].

When� a� service� requester� begins� a� new� transaction� by� requesting� AIB,� AIB� delegates� the
request� to� the� TFE.� TFE� initializes� a� new� instance� of� transaction� context� and� assigns� a

AIB

Transaction�ID
Action�request�parameters

Action

Action

Action�Dispatch
Transaction(ID)

Context
Transaction(ID)

Context
Transaction(ID)

Context

Figure�5.�Transaction�Context

Transaction
Function
Enabler

6

unique� transaction� ID� to� the� requester.� The� following� action� invocation� requests� in� that
transaction� shall� be� accompanied� by� that� transaction� ID.� TFE� will� handle� diversified
transaction� supporting� method� of� lower� level� services.� It� performs� the� begin� transaction
operation� on� each� action� target� each� time� the� action� target� is� first� instantiated.� And� it
invokes� related� operations� according� to� the� request� of� application� level� transaction.� The
parameters�and�status�of� invoked�actions�in�the�same�transaction�are�tracked�by�TFE�in�the
transaction�context.

When�a�transaction�meets�its�end,�the�service�requester�informs�AIB�to�finish�the�transaction
by� specifying� its� transaction� ID.� TFE� checks� the� corresponding� transaction� context� and
scans� for� executed� actions'� context.� TFE� commits� those� two-phase� commit� actions� after
voting,� and� skips� those� compensatory� actions.� After� commits,� TFE� clears� the� transaction
context.� When� a� transaction� need� to� roll� back� in� case� that� an� error� is� encountered,� the
requester�sends�a�rollback�request�to�AIB�with�the�transaction�ID,�TFE�scans�the�context�of
executed� actions,� rolls� back� requests� of� those� two-phase� commit� actions� and� invokes
compensation�actions�to�undo�the�effect.�The�rollback�sequence�is� in�reverse�order�of�their
executing�sequence.�

Through�wrapping�service�transaction�capability�and�tracking�their�invocation,�TFE�enables
an� easy� way� as� a� flexible� choice� for� service� requester� to� implement� the� application� level
transaction.

3.�Application�Scenario

Let's� have� a� close� look� at� how� AIB� brokers� service� invocation� in� a� self-service� banking
application.�In�this�scenario,�a�bank�wants�to�provide�an�easy-to-use�stock�purchase�service
to�its�customers.�The�bank�has�already�owned�a�finance�assistant�service�to�serve�customers
to� transfer� and� exchange� money� from� their� account.� That� enables� online� trade� between
customer� and� stock� agent.� With� an� external� stock� information� service� and� an� additional
purchase�report�component,�the�stock�purchase�application�can�be�built�by�integrating�these
services.� The� application� is� hosted� in� the� bank� to� serve� customer� with� timely� stock
information�and�deal�the�purchase�request�at�customer's�demand.�A�customer�first�navigates
stock� information� online.� After� he� selects� stock� and� inputs� the� total� amount� he� wants� to
purchase,�the�application�begins�to�check�his�account.�If�local�currency�is�insufficient�for�the
purchase,� the� deficient� amount� shall� be� supplied� by� changing� the� foreign� currency� in
customer's�account�into�local�currency.�Then�the�application�withdraws�the�money�from�the
customer's� account,� and� deposits� money� into� the� stock� agent's� account.� At� the� end� of� the
purchase� process,� the� result� will� be� reported� to� the� customer.� If� something� goes� wrong
during� the� purchase,� the� purchase� need� to� be� canceled� and� both� customer's� account� and
agent's�account�shall�be�recovered�to�original�status.

Using�an�application�integration�system,�the�stock�purchase�process�aggregates�five�actions
from� two� service� providers,� the� bank� and� stock� purchase� agent.� Given� that� the�process� is
hosted�in�the�bank�company,�these�actions�are�provided�in�different�modes:

Ò Query�online�stock�information,�provided�as�Web�services�by�stock�service
provider

Ò Withdraw�money�from�customer's�account,�provided�as�RMI�service�by�bank�
Ò Exchange�currency,�provided�as�RMI�service�by�bank

7

Ò Deposit�money�in�the�agent's�account,�provided�as�RMI�service�by�bank
Ò Report�dealing�result,�provided�as�Local�Java�class�by�bank

The�actions�are�registered�in�the�Action�Lib�as�illustrated�in�figure�6.

Actions:

Field Description
id StockService
Type WebService
ServiceName stockInfoget
PortName selectStock

Action�Targets:
Field Description
ActionID queryStock
Desc query�online�stock�information
targetID StockService
operName queryStock
Arguments String�stockID
Returns String�currentPrice

A

E

B

C
D

Field Description
ActionID reportLog
Desc Report�trade�result
targetID ReportService
operName reportLog
Arguments
Returns

Field Description
id ReportService
Type LocalJava
PackageName com.cbank.pfact
ClassName reportTradeField Description

ActionID withdrawMoney
Desc withdraw�money�from�customer's�account
targetID PersonalFinanceAgent
operName withdraw
Arguments String�accountID,�....
Returns Boolean�success

Field Description
id PersonalFinanceAgent
Type RMI
Host svr1.cbank.com
Port 900
jndiName onlineActAgent

Field Description
ActionID exchangeMoney
Desc Agiotage�Money
targetID PersonalFinanceAgent
operName agiotage
Arguments String�accountID�....
Returns Boolean�success

Field Description
ActionID depositMoney
Desc Deposit�money�to�agent
targetID PersonalFinanceAgent
operName deposit
Arguments String�accountID,�....
Returns Boolean�success

� Figure�6.�Registered�Actions�in�Action�Library

To�guarantee� the�secure�operations�on�the�customer�bank�account,�a� transaction�is�needed
during�the�purchase.�As�shown�in�the�figure�7,�we�define�a�transaction�which�contains�action
B,�C,�and�D�in�the�process.�They�are�actions�in�one�action�target�which�supports�two-phase
commit.

Internet

AIB

A B

C D

A

Stock�
Purchase�
Process

begin end

E

E B C D

A��Select�Stock
B��Withdraw�from�customer�account
C��Exchange�currency
D��Deposit�on�agent�account���
E��Report�trade�result

Actions

Action�Lib Web��Service Local��Call RMI RMI RMI

Transaction�Function�Enabler

Transaction

Figure�7.�Stock�Purchase�Scenario

When�a�user�comes�online,�a�new�instance�of�the�purchase�process�is�initialized�to�serve�him.
Firstly�action�A� is� invoked� to�help� the�customer� to�navigates� stock� information.�When� the
customer� submits� his� purchase� request,� the� transaction� begins.� AIB� receives� a� transaction
start�request�from�application�and�then�informs�the�TFE�to�prepare�transaction�context�and
return� a� unique� ID.� Since� the� local� currency� of� the� customer� is� insufficient,� the� exchange

8

currency� action(action� C)� is� invoked.� Since� it's� the� first� time� to� invoke� the� action� on� this
action�target,�AIB�begins�the�action�target's�transaction,�and�saves�the�action�target�instance
in�the�transaction�context.�When�the�exchange�currency�action�finished�without�problem,�the
process� goes�on� to� withdraw�money� from� customer's�account(action� B).� Recognizing� that
this�invocation�has�the�same�transaction�ID,�TFE�invokes�action�B�in�the�same�transaction�on
the�action�target�instance�as�action�C.�The�same�thing�happens�to�action�D�that�deposits�on
agent�account.�If�everything�is�fine,�the�process�sends�transaction�finish�request�to�AIB.�TFE
checks� the� transaction� context,� finds� all� listed� action� targets,� and� performs� commit
operations�on�all�participated�action�targets�if�voting�with�success,�otherwise�rolls�back�each
action�target.�If�the�transaction�is�committed�successfully,�the�process�generates�a�report�to
customer(action��E).�If�the�transaction�is�failed,�it�is�rolled�back�and�an�error�report�will�be
generated.

5�Summary

Application�integration�system�is�believed�to�be�the�key�to�aggregating�existing�applications
so� as� to� composite� new� business� service� within� enterprise� or� among� trading� partners.� As
distributed� computing� technologies� are� getting� mature,� more� and� more� applications� are
provided� in� the� form� of� � e-services� over� the� network.� Obviously,� the� distributed� and
diverse-form� e-services� should� be� managed� to� facilitate� easy� access� by� the� application
integration�system.�AIF�introduced�in�this�paper� is�designed�as�a�framework�to�provide�the
service� management� and� invocation� functions.� Service� registration,� categorization� and
relationship� management,� uniform� service� invocation� interface� exposure,� diverse� interfaces
brokering�and�transaction�support�are�the�core�advantages�of�this�framework.�Although�it�is
originated� from� the� service� management� requirement� of� application� integration� system,� it
also�suits�for�applications�which�need�to�invoke�and�manage�existed�e-services.

Reference

[1]Recoupling�B2B�Investments.�p77-p79,�May�2000,�eAI�Journal
[2]Colin,Osborne:�Integration�is�Everything.�p25,�January�2001,�eAI�Journal
[3]Greg,�Olsen:�An�Overview�of�B2B�Integration.�p28-p36,�May�2000,�eAI�Journal
[4]Meeting�the�Enterprise�Challenage:�The�State�of� Integration�in�Todays�Business�World,
Hurwitz�group
[5]WFMC�Workflow�Reference�Model.�http://www.wfmc.org/standards/docs/tc003v11.pdf
[6]WFMC�Workflow�Client�Application�Application�Programming�Interface�(Interface�2�&
3)�Specification�http://www.wfmc.org/standards/docs/if2v20.pdf
[7]�UDDI�Technical�White�Paper.�http://www.uddi.org
[8]�Java�Transaction�Service�API�1.0,�sun.com.�http://java.sun.com/products/jta/index.html
[9]�H.�Garcia-Molina,�K.�Salem:Sagas.�Procs.�ACM-SIGMOD,�California,�1987.

9

