RC22466 (C0205-004) May 30, 2002
Computer Science

IBM Research Report

A Framework for e-Service Management and Invocation in
Application Integration Systems

Xin Zhang, Wei Sun, Sheng Ye, Zhong Tian
IBM China Research Lab
2F, HaoHai, #7, 5th Street
Shangdi, Beijing 100085
China

— = Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

—
-—
-
v

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. Ithas been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distributionoutside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g payment of royalties). Copies may be requested from IBM T. J. Watson Research Center, P. O. Box 218,
Yorktown Heights, NY 10598 USA (email reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home

A Framework for e-Service Management and Invocation
in Application Integration Systems

Xin ZHANG, Wei SUN, Sheng YE, Zhong TIAN
({zxin, weisun, yesheng, tianz} @cn.ibm.com)
IBM China Research Lab
2F, HaoHai, #7, 5th Street, Shangdi, BEIJING, 100085, CHINA

Abstract

Application integration is the key to building new business process based on
heterogeneous, distributed legacy applications or systems. As more and more
applications are exposed in the form of e-Services over a network, service-oriented
integration is developing on the horizon of the application integration frontier.
Therefore, the management and invocation of distributed and diverse-form e-Services
become a challenge for application integration system. In this paper, we introduce an
Action Invocation Framework to address this problem. By leveraging private UDDI,
this framework could facilitate service registration, categorization & relationship
management, uniform service invocation interface exposure. It also handles the
interface brokering and invocation for diverse forms of e-Services. The embedded
transaction support enables the service to be securely invoked and executed, or rolled
back when errors occur. In this paper, we introduce the initiatives of developing such a
framework, and then the architecture of the framework is presented. At the end of this
paper, a self-service banking application scenario is described, in which AIF facilitates
the e-Services aggregation and transaction requirement.

1.Introduction

As is well known, enterprise business systems consist of many different technology standards
conformance applications, which were built at different stages of the technology evolution
and development. To adapt to the dynamic business requirements, the development of new
processes, new applications are always on demand. But developing from scratch costs huge
direct and indirect investment, so that making use of an application integration system,
building new processes and applications by integrating the heterogeneous legacy applications
has become the direction[1,2,3]. In a nutshell, application integration system allows an
enterprise to build and manage complex business processes or applications by
choreographing the interaction of a number of (internal and external) business functions to
achieve the business goals. It is becoming a trend that more and more business functions are
packaged in e-Service form and exposed over the network. So, service-oriented integration
is developing on the horizon of the integration frontier[4]. These services may be defined
and exposed in different access modes, and they could be local programs, intra-enterprise
software components or Web services provided by the enterprise itself or external partners.
So, to an application integration system, the management and invocation of all the new
process and application related services are becoming a challenge, which would involve
service registration, service interface exposure, interface brokering and invocation. Due to
the technology complexity and shortage of skillful service adapter developers, it is essential
to construct a framework for application integration systems to facilitate the management
and invocation of diverse-form and distributed e-Services.

In this paper, we introduce an Action Invocation Framework(AIF) to address the problem.
Here we refer action as the programming level entity of e-Service. This framework manages
distributed, diverse-form actions, such as local Java program, enterprise Java bean(EJB) or
Web services. These actions should be registed in the Action Registry of the framework
according to corresponding registration schema, and the Registry provides uniform
interfaces to external service requesters. The Action Invocation Broker(AIB) would perform
the interface brokering and fulfill the actual invocation. By leveraging private UDDI, the
Registry can provide flexible categorization and relationship management; especially the
invocation broker has transaction support function, so that the service invocation could be
safely performed or rolled back if errors occur. The system architecture and core technology
components of the framework are discussed in length in this paper. A self-service banking
application scenario is also presented.

2. Action Invocation Framework Architecture

e-Services could be distributed and exist in diverse forms. Obviously these different forms of
services have their own specific invocation methods and interfaces. So, to describe the
service invocation interfaces and invoke services case by case is a labored task. If these
services could provide uniform interface, the service invocation will be easy and simple. A
service registry could facilitate storing and providing the uniform interface to service
requestors; the service invocation broker would transform the uniform interface to the
specific actual service invocation interface and perform the invocation.

The Action Invocation Framework(AIF) is designed as a reusable service invocation
middleware. Here action indicates the access interface of e-service. It is the front tier of the
e-service presenting to service requester. Our approach is to handle diversified service
access modes within the framework and provide a uniform action invocation interface to
upper level service requester. Thus service requester can focus more on its own application
logic rather than care much about the difference of service invocation mode[5,6]. Besides
the service brokering, the action management is also covered in our framework for better
service integration.

As illustrated in figure 1, the system includes both design time asset for action registry and
management and runtime asset for action invocation and monitor. The Action Lib stores
action definition and relationship between actions, which is managed by Action
Definition&Relationship Management component. It leverages the private UDDI as a
flexible categorization mechanism which allows user to classify action categorization
strategy. The Action Registry provides user the action registration service.

At runtime, the Action Invocation Broker(AIB) acquires the invocation request, it retrieves
the relative information of the action to be invoked from the Action Lib. By identifying the
action type, AIB requests the corresponding adapter to perform the invocation, and captures
the invocation result to return to the service requester. When transaction is needed for the
action invocation, the AIB will request the Transaction Function Enabler to record
transaction data and process related operations. There Action Invocation Monitor and
Control module provide the service requestor interface to control and monitor current
invoked service.

Service Requester

e = Action Invocation interface

Action Runtime | Design time

lnvocatlon Action Invocation R Aictioni
onitor an egistration

Framework Honitor and i

I
I

I

I

I

L I
I

I

I

I

I

I

Action Invocation Broker
Transaction (AIB)
Function

Action Management
Interface

Enabler ‘\ A ?
- Categorization

Management

Action Definition&
Relationship
management

Adapters

Private UDDI

Action
Categorizati

Figure 1. Action Invocation Framework Architecture

Based on the framework, we implement a prototype in Java program, which makes it easier
to be reused and migrated in diversified platform.

2.1 Action Description Schema
In the framework, Action is defined as an exposed operation of a certain action target. The

action target can be a Web services port, RMI
object or Local Java Class and other service types.

For Web services, the action is the operation Action Operat'°”1
described in WSDL; For RMI, the action is the Operat|0n2 Action
exposed methods; For Local Java Class, the action Target

is the public method. An action target may expose
several actions, but no matter how many actions
are defined on one action target, they have the
same access method which is determined by the

Operat|onN

Figure 2. Action Definition

definition of action target.

2.1.1 The action target definition

Action target defines the service object either residing on local host or at remote site. Its
definition includes service type, and related information needed to find the service object. As
illustrated in Figure3, four supported service types are Local Java, Web services, RMI, EJB.

WebService

Local JavaClass Field Description
Field Description id Action target id
id Action target id Type —"WebService"
Type ="LocalJava ServiceName | Service name
PackageName | The package name of Java class PortName Port name
ClassName The class name of Java class
EJB
RMI Field Description
Field [Description | [id Action target id
id Action target id Type ="EJB"
Type ="RMI" Target Finding URL
Host Host to find RMI initContext Init Context class name
Port Port of the finding service on the Host jndiName Registered Jndi name of the EJB Home object
indiName | Registered JNDI name of the RMI service className Class name of EJB object
pkClassName | Key class name(optional)

pkArguments... | Parameters to init pkClass instance (optional)

Figure3. Action Target Definition

2.1.2 Action definition

In the action definition, it specifies an operation on an action target. The arguments that are
needed to invoke that action are also described.

Table 1. Action Definition

Field Description

ActionID Action id

Desc Description

targetID Action target id

operName Operation name
Arguments... Parameters of the operation
Returns... Return values

2.2 Action Invocation Broker

Action Invocation Broker(AIB) brokers service invocation for service requester. As shown
in figure 5, when an invocation request is submitted to AIB through Action Invocation
Interface, the Invocation Assembly and Validation module assembles the invocation request
and checks its validity by querying Action Lib, then translates the request into an internal
request command. The Invocation Handler handles the request command and triggers
corresponding adapter to perform the invocation. The Monitor and Control Agent provides
interface to manage AIB. When transaction feature is required, the Transaction Function
Enalber is involved to manage action invocation chain at the demand of Invocation Handler.

iRequestl Response
A J

Monitor and Invocation Assembly
control Agent and Validation ~—_|

Query ontrol # Req/Resp i
Invocation Infé),

\ Invocation Handler

AN

Figure 4: Action Invocation Broker

Transaction
Function

Context Enabler

2.3 Action Invocation Interface

In our implementation, three layers of interfaces are provided: as we take Java as the
implementation language, a Java API is defined as the Native Action Invocation Interface.
For service requester that is also constructed in Java code or support Java call, it can
leverage this interface for more efficiency and better data type supporting; A Generic Action
Invocation Interface is also defined as a command line interface which combines invocation
request and related parameters into an XML document to minimize the requirement for
service requester; The third interface is so called Remote Action Invocation Interface which
is provided by wrapping AIB itself into a Web services so that it can be accessible through
network. The basic structure of an invocation request is as follows:

Table 2. Basic Structure of Invocation Request

Field Description

ActionID Action id

Arguments Action parameter list, in name/value pair
Returns Action return value list, in name/value pair
InvocationMode | Invocation mode(Sync/Asyn)
TransactionID Parameters of the operation

2.4 Service Categorization and Relationship Management

In an application integration system, normally service requestor needs a tool to search
available services and acquire information about where to find them, and how to use them.
As building complex services by embedding other ones may result in mutual dependence, all
services should be managed for reference integrity. To answer these challenges, Service
Registry is designed in this framework to facilitate all the service management work.

In private UDDI, each service type is identified by a registered tModelKey. Each Web
services can be published as a certain service type by given CategoryBag, thus allowing us
to search and manage published Web services[7]. By leveraging the flexible category
management mechanism provided by private UDDI, the Service Category Manager provides
user interface to define the service categories. All the services would be listed under specific
category, which would facilitate the service searching and categorization. Category is
something related to the properties of actions. It provides an easy way to organize, search,
and manage actions. User should register all services into the Registry through registry

management interface, in which the invocation method, interface, function descriptions,
transaction utilities' interfaces of these services are defined and kept. Then actions can be
searched by their type, owner, invocation method, register time, etc.

There could be mutual dependency and cross reference among services on an application
integration system. This kind of relationship is managed by the Services Relationship
Manager. The relationship is defined at design time when a service is registered in the
service registry, and then recorded. Because of every service in the registry are identified by
a unique ID, so the cross reference would not be influenced even if the referenced service
interface is updated. A service can not be delete from the registry if it is referenced by other
services. So, the service relationship management could help to maintain the services
reference integrity in the registry.

2.5 Transaction Support

Transaction capability is more and more in demand for application to handle the execution of
mission critical process. For example, a finished payment operation shall be rolled back if a
logistics operation is proven to be failed later in a purchase process. When an application is
composed by choreographing diversified services, the generic requirement emerges to
achieve application level transaction by leveraging the transactional capability of underline
individual services. It is really a labored work for application to handle all kinds of
transactional/non-transactional actions. The challenge exists that the long-running feature of
application level process demands for a relaxed transaction model.

AIB meets the gap by devising the Transaction Function Enabler(TFE). The TFE module
wraps different services transaction capability and presents a uniform interface for upper
service requester. Moreover, it tracks the service invocation sequence and parameters in a
transaction so as to automatically perform the rollback and commit operations at

application's demand. Thus it simplifies the enablement effort for application level
transaction support. Currently only flat transaction model is supported.

For services that will be invoked in a transactional process, they shall register their
transaction capability in action lib. For some types of action targets which can provide
transaction capability for upper application in their

own mechanisms, its supporting mode and related Transaction ID

parameters shall be registered. For example, on the l Action request parameters
base of EJB transaction capability, application level '
transaction can be enabled by client-demarcating AIB | Transaction
transaction programming[8]. AIB also defines an FUlilelel]

. - Enabler

easy to implement interface for two-phase .

. oo . Action Dispatch
transaction support. By specifying transaction :
operations include begin, prepare, commit, rollback @ Transacion(®)
operations in Action Target definition, a
service-based two—phase. transactlop support can be Figure 5. Transaction Context
constructed. Compensation model is also supported

by defining an undo operation on action base[9].

When a service requester begins a new transaction by requesting AIB, AIB delegates the
request to the TFE. TFE initializes a new instance of transaction context and assigns a

unique transaction ID to the requester. The following action invocation requests in that
transaction shall be accompanied by that transaction ID. TFE will handle diversified
transaction supporting method of lower level services. It performs the begin transaction
operation on each action target each time the action target is first instantiated. And it
invokes related operations according to the request of application level transaction. The
parameters and status of invoked actions in the same transaction are tracked by TFE in the
transaction context.

When a transaction meets its end, the service requester informs AIB to finish the transaction
by specifying its transaction ID. TFE checks the corresponding transaction context and
scans for executed actions' context. TFE commits those two-phase commit actions after
voting, and skips those compensatory actions. After commits, TFE clears the transaction
context. When a transaction need to roll back in case that an error is encountered, the
requester sends a rollback request to AIB with the transaction ID, TFE scans the context of
executed actions, rolls back requests of those two-phase commit actions and invokes
compensation actions to undo the effect. The rollback sequence is in reverse order of their
executing sequence.

Through wrapping service transaction capability and tracking their invocation, TFE enables
an easy way as a flexible choice for service requester to implement the application level
transaction.

3. Application Scenario

Let's have a close look at how AIB brokers service invocation in a self-service banking
application. In this scenario, a bank wants to provide an easy-to-use stock purchase service
to its customers. The bank has already owned a finance assistant service to serve customers
to transfer and exchange money from their account. That enables online trade between
customer and stock agent. With an external stock information service and an additional
purchase report component, the stock purchase application can be built by integrating these
services. The application is hosted in the bank to serve customer with timely stock
information and deal the purchase request at customer's demand. A customer first navigates
stock information online. After he selects stock and inputs the total amount he wants to
purchase, the application begins to check his account. If local currency is insufficient for the
purchase, the deficient amount shall be supplied by changing the foreign currency in
customer's account into local currency. Then the application withdraws the money from the
customer's account, and deposits money into the stock agent's account. At the end of the
purchase process, the result will be reported to the customer. If something goes wrong
during the purchase, the purchase need to be canceled and both customer's account and
agent's account shall be recovered to original status.

Using an application integration system, the stock purchase process aggregates five actions
from two service providers, the bank and stock purchase agent. Given that the process is
hosted in the bank company, these actions are provided in different modes:

* Query online stock information, provided as Web services by stock service
provider

* Withdraw money from customer's account, provided as RMI service by bank

¢ Exchange currency, provided as RMI service by bank

¢ Deposit money in the agent's account, provided as RMI service by bank
* Report dealing result, provided as Local Java class by bank

The actions are registered in the Action Lib as illustrated in figure 6.

A Field Description
ActionlD __| queryStock Action Targets:
Desc | query online stock information |
targetID StockService — Field Description
operName | queryStock id StockService
Arguments | String stockID Type WebService
Returns String currentPrice ServiceName | stockInfoget
_ — PortName selectStock
E Field Description
ActionID reportLog
Desc Report trade result
targetID ReportService Field Description
operName reportLog id ReportService
—g—gretzmzms Type LocalJava
B PackageName | com.cbank.pfact
Field Description ClassName | reportTrade
ActionID withdrawMoney
Desc withdraw money from customer's account
| targetlD PersonalFinanceAgent | Field [Description
operName | withdraw id PersonalFinanceAgent
Arguments | String accountlD, Type RMI
Returns Boolean success Host svri.cbank.com
Field Description Port 900
ActionlD__| exchangeMoney D [indiName _[onlineActAgent |
Desc Agiotage Money
targetlD PersonalFinanceAgent Field Description
operName | agiotage ActionlD | [depositMoney
Arguments | String accountID ... Desc [Deposit money to agent
Returns | Boolean success targetlD [PersonalFinanceAgent
operName | deposit
. . Arguments | String accountID, ...
Actlons. Returns \ Boolean success

Figure 6. Registered Actions in Action Library

To guarantee the secure operations on the customer bank account, a transaction is needed
during the purchase. As shown in the figure 7, we define a transaction which contains action
B, C, and D in the process. They are actions in one action target which supports two-phase
commit.

Stock :

Purchase
Process

Actions

A Select Stock
B Withdraw from customer account
C Exchange currency

D Deposit on agent account Y rd
E Report trade result AIB

’Transaction Function Enabler‘

O LocallCall RMI/ RMII R\l\}‘
W EaT e (e Led [o]

Figure 7. Stock Purchase Scenario

When a user comes online, a new instance of the purchase process is initialized to serve him.
Firstly action A is invoked to help the customer to navigates stock information. When the
customer submits his purchase request, the transaction begins. AIB receives a transaction
start request from application and then informs the TFE to prepare transaction context and
return a unique ID. Since the local currency of the customer is insufficient, the exchange

currency action(action C) is invoked. Since it's the first time to invoke the action on this
action target, AIB begins the action target's transaction, and saves the action target instance
in the transaction context. When the exchange currency action finished without problem, the
process goes on to withdraw money from customer's account(action B). Recognizing that
this invocation has the same transaction ID, TFE invokes action B in the same transaction on
the action target instance as action C. The same thing happens to action D that deposits on
agent account. If everything is fine, the process sends transaction finish request to AIB. TFE
checks the transaction context, finds all listed action targets, and performs commit
operations on all participated action targets if voting with success, otherwise rolls back each
action target. If the transaction is committed successfully, the process generates a report to
customer(action E). If the transaction is failed, it is rolled back and an error report will be
generated.

5 Summary

Application integration system is believed to be the key to aggregating existing applications
so as to composite new business service within enterprise or among trading partners. As
distributed computing technologies are getting mature, more and more applications are
provided in the form of e-services over the network. Obviously, the distributed and
diverse-form e-services should be managed to facilitate easy access by the application
integration system. AIF introduced in this paper is designed as a framework to provide the
service management and invocation functions. Service registration, categorization and
relationship management, uniform service invocation interface exposure, diverse interfaces
brokering and transaction support are the core advantages of this framework. Although it is
originated from the service management requirement of application integration system, it

also suits for applications which need to invoke and manage existed e-services.

Reference

[1]Recoupling B2B Investments. p77-p79, May 2000, eAl Journal

[2]Colin,Osborne: Integration is Everything. p25, January 2001, eAl Journal

[3]Greg, Olsen: An Overview of B2B Integration. p28-p36, May 2000, eAl Journal
[4]Meeting the Enterprise Challenage: The State of Integration in Todays Business World,
Hurwitz group

[STWEMC Workflow Reference Model. http://www.wfmc.org/standards/docs/tc003v11.pdf
[6]WFMC Workflow Client Application Application Programming Interface (Interface 2 &
3) Specification http://www.wfmc.org/standards/docs/if2v20.pdf

[7] UDDI Technical White Paper. http://www.uddi.org

[8] Java Transaction Service API 1.0, sun.com. http://java.sun.com/products/jta/index.html
[9] H. Garcia-Molina, K. Salem:Sagas. Procs. ACM-SIGMOD, California, 1987.

