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ABSTRACT 
A program’s performance can be significantly improved by 
removing unwanted synchronization that causes time consuming 
tasks to run serially instead of in parallel. In large programs, 
especially those using libraries, it is usually difficult to manually 
detect unwanted synchronization.  We describe an approach for 
automatically detecting unwanted synchronization in Java 
programs, including a detailed algorithm for computing the 
monitors involved in the synchronization. Our approach is 
highly scalable and is thus applicable to programs of realistic 
size. We have implemented this approach and tested it on 
several real problems, some of which are large. We present 
computational experience on both small and large examples, 
demonstrating that unwanted synchronization exists in practice, 
and that significant performance improvements are obtainable 
when unwanted synchronization is removed. 

Categories and Subject Descriptors 
D.1.3 [Programming Techniques]: Concurrent Programming; 
D.1.5 [Programming Techniques]: Object-oriented 
Programming; D.2.5 [Software Engineering]: Testing and 
Debugging 

General Terms 
Algorithms, Performance, Languages 

Keywords 
Invocation graph, Java, locking, monitors, static analysis, 
synchronization 

1. INTRODUCTION 
     Synchronization is necessary to eliminate race conditions       
arising when two or more threads of execution simultaneously 
access a shared resource.  The simplest example is multiple 
threads making concurrent modification of a field’s value. 
Synchronization forces these threads to execute serially. If the 
synchronization is necessary, this loss of efficiency is 
unavoidable.  

     In this paper we are concerned with improving a program’s 
performance by analyzing its use of synchronization.  We 

introduce three terms.  If it can be proven that the removal of a 
specific synchronization will not change program behavior, we 
say that the synchronization is unnecessary; otherwise, the 
synchronization is necessary.  For example, if eliminating a 
synchronization could cause a race condition, the 
synchronization is necessary.  Next, we say that a 
synchronization is unwanted if it causes significant performance 
degradation.  Thus there can be two types of unwanted 
synchronization: necessary and unwanted, or unnecessary and 
unwanted.  In the first case, the only hope of eliminating the 
synchronization would be to restructure the code.  In the latter 
case, the synchronization could be removed.  Thus three issues 
should be considered: 

1. Identify places in the program where synchronization 
may occur that can result in performance degradation 
or dangerous system failure (e.g. a remote call which 
could hang). 

2. Identify whether the synchronization is necessary;  if it 
is not, it may be removed. 

3. If the synchronization is necessary, identify 
transformations of the code, if possible, to eliminate 
the synchronization. 

The objective and primary contributions of this paper are in the 
first of these issues, identifying the synchronization of expensive 
or dangerous operations.  We present empirical results 
demonstrating that unwanted synchronization has a significant 
detrimental impact on performance.  Our analysis can be used in 
conjunction with other tools to distinguish necessary from 
unnecessary synchronization (issue 2).  Furthermore, they  may 
use the results of our analysis as a starting point.  The results of 
our analysis also provide detailed execution sequence 
information which would help in determining how to change the 
code, if required (issue 3). 

     We are motivated by experiences with code deployed in very 
large web based applications that perform poorly or fail when 
unwanted synchronization is present.  Examples include 
synchronized calls to database operations and LDAP servers.  
Symptoms of unwanted synchronization which we have 
observed include slow and erratic response times and 
throughput and application hangs.  These problems in the 
application can even lead to entire site outages.  The effects of 
unwanted synchronization surface most commonly under heavy 
workloads in production environments where minor problems 
with hardware, network or software components can trigger 
severe problems from unwanted synchronization.  These 
problems are very hard to simulate during system test.  Our 
experience is that the unwanted synchronization can be found 
with a set of sophisticated runtime analysis tools, but with much 
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greater difficulty.  We have also observed that the skills 
required, and cost to diagnose and repair the problem are much 
higher once the code is deployed in a production environment.  
This paper describes an approach which will identify the 
occurrences of unwanted synchronization prior to deploying the 
code in a production environment, when the cost for 
modification is much lower. 

     Our algorithm is based on an augmented invocation graph 
[12].  The input to the algorithm is the code for a program, a list 
of relevant entry points (head methods), and a set of methods 
(tail methods) for which synchronization is unwanted.  The 
algorithm determines whether any tail methods are in any 
execution paths from the head methods where they could be 
executing under the constraints of synchronization. We assume a 
closed world analysis.  Furthermore, we do not require 
developers to add annotations to the program to guide the 
analysis. 

     The invocation graph we use represents intraprocedural and 
interprocedural analysis. It includes a control flow graph for 
each invoked method.  The interprocedural graph contains edges 
(A, B), representing the invocation of method B from within 
method A.  The edge is augmented with method A’s program 
counter for the call site to B. 

     After the invocation graph is constructed, we distinguish 
three types of nodes.  A head is a node whose target method 
begins an execution path in which we are interested; it may be a 
root of the graph, or its method may initiate actions relevant to 
synchronization, such as the start of a new thread (e.g. 
java.lang.Thread.run).  A tail is a node whose method 
execution is potentially time consuming (e.g.,. computationally 
expensive, system calls outside the Java runtime, or calls to 
remote resources), or may not return due to system or software 
failure. Therefore we don’t want the tail method to be 
synchronized.  One way to identify tail methods is to analyze 
execution traces of running programs.  Typical examples are 
methods which create sockets, connect to databases, make 
Remote Method Invocation (RMI) calls, perform directory 
lookups, initiate expensive database queries, parse XML 
documents, or write to local files.   The heads are automatically 
generated by our system, but the user may pick a subset of the 
system choices.  The tails are provided as input to our algorithm.  
Our algorithm determines source nodes, the places where 
synchronization originates, and it identifies paths from the heads 
to the tails and passing through the sources.  In Java the sources 
arise either via synchronized methods or synchronization blocks 
of code. 

     Once the synchronized nodes have been identified, further 
investigation is required to determine whether the 
synchronization is in fact unnecessary or if the program could be 
restructured (perhaps automatically) to make it unnecessary. For 
example, a race detection algorithm such as Choi et al. [7], [8] 
might indicate that races could occur, or the application might 
need synchronization, because it uses a resource without its own 
locking model.Finally, if the synchronization is found to be 
unnecessary, it could be eliminated either by the developer or by 
a transformation program, thereby obtaining a performance 
improvement and a more stable system.  Detecting 
synchronization requirements (e.g., race detection) and code 
restructuring issues are outside the scope of this paper. 

     In summary, the contributions of this paper are as follows: 

o Abstraction. We create a new abstraction, the monitor 
dataflow graph, which is useful for 
detecting and tracking synchronization 
points. 

o Analysis.   We produce an algorithm for the 
computation of monitor sets and prove that 
it always terminates.  Although the 
algorithm is stated for Java, only minor 
modifications are required for other 
languages and systems that support 
monitors. 

o Scalability. Our approach uses the two preceding 
pieces to detect unwanted synchronization, 
and it has been shown to work for large 
programs whose invocation graphs have 
O(105 ) nodes and edges. 

     The organization of the paper is as follows.  We discuss 
related work in Section 2, and we give several detailed examples 
in Section 3.  Section 4 presents the basic pieces of our 
approach.  Section 5 points out limitations of our technique and 
suggests further work. 

2. RELATED WORK 
     The literature focuses on two different techniques for dealing 
with the unnecessary synchronization when it is found.  

     The most prevalent approach is to transform programs 
automatically to more optimal counterparts.  Fitzgerald et al. 
[13] used static analysis to detect if no thread objects are ever 
started; in that case, all synchronization may be removed. 
Aldrich et al. [2] used an analysis based on a CFA(1) [24] call 
graph (and a CFA(0) call graph for the larger problems) to 
eliminate unnecessary synchronization where a monitor is 
accessible to only one thread, where a monitor is entered by the 
same thread multiple times, and where one monitor is nested 
within another. They succeeded in eliminating up to 70% of the 
synchronization and improving runtimes by as much as 5%.  A 
number of authors employed “escape analysis,” i.e. deriving 
conditions under which objects are reachable only by single 
threads.  Bogda and Hölzle [4] located such objects with a flow 
insensitive and context insensitive analysis; they were able to 
get speedups of up to 36%.  Choi et al. [6] and Blanchet [3] 
applied escape analysis to both stack allocation and 
synchronization removal; they removed averages of 51% and 
20% of synchronizations on test programs and got speed 
improvements of up to 23% and 44%, respectively.  Whaley and 
Rinard [28] added a “points to” analysis to the escape analysis 
to achieve synchronization removal on test cases between 24% 
and 64%.  Ruf [22] tracked objects synchronized by only one 
thread but also partitioned aliased expressions into equivalence 
classes to get the effect of context sensitive analyses.  His 
methods achieved impressive optimizations of both single and 
multiple threaded programs.  Finally, S�lcianu and Rinard [23] 
also created a new abstraction, the “parallel interaction graph,” 
to compute pointer, escape, and ordering information in multiple 
threads.  They eliminated some synchronization between objects 
that span multiple threads, and their approach was especially 
useful for the use of region-based storage allocation. 



 

 

     A second approach is to use the unnecessary synchronization 
information in performing further manual analysis to decide how 
to tune the original design, possibly by making extensive 
program changes.  Heydon and Najork [15] discussed the effect 
of removing synchronization from methods in the Java core 
libraries. They used the srcjava Java runtime as a 
performance debugging tool, utilizing reporting features within 
it to monitor aspects of program performance for a Web crawler 
they had designed. They identified places where synchronization 
inside the Java runtime library significantly affected 
performance and manually identified cases where the 
synchronization was unnecessary and could be removed. After 
removing it, the fraction of cycles spent on synchronization 
dropped from 20% to 1.5%.  Gunther [14] observed that 
performance in servlets could be improved by avoiding 
unnecessary synchronization, especially in the major methods 
such as service, doGet, or doPost; he recommended the 
use of fine-grained synchronized blocks to protect critical 
sections of the code. 

     Thus several techniques exist for detecting unnecessary 
synchronization. All of the work deals with problems of 
moderate size and complexity (e.g. javac, jacacup, pizza, 
jlex), typically of size O(104)–O(105) lines of source code.  
Usually unnecessary synchronization was detected via static 
analysis or related techniques Most of these analyses focus on 
reducing the overhead caused by the synchronization itself, i.e. 
the cost of performing locking and unlocking operations. This 
paper, on the other hand, focuses on the potentially much larger 
gains obtainable by allowing threads to proceed in parallel when 
unwanted synchronization is removed. In some cases, the payoff 
approaches a factor of the number of threads. 

3. MOTIVATING EXAMPLES 
     Our fundamental observation is that when “out of the box” 
operations are synchronized, their cost is proportional to the 
amount of time the call takes to execute.  Since our objective is 
to improve throughput, removing such synchronization achieves 
speedups by exploiting parallelism.  These results apply to any 
scenario that involves a remote call.  In Java, these include calls 
to databases (JDBC), directories (JNDI / LDAP), network 
operations, EJBs, servlets, JSPs, authentication, and web 
services.  We also observe that unsynchronized operations out-
perform synchronized ones for CPU-bound (“in the box”) cases 
as well.   
     Web applications often need to obtain information from 
remotely located resources.  Portal servers generate web pages 
by pulling resources (e.g., XML and HTML documents, 
graphics) to generate customized web pages.  Also, clients 
retrieve configuration values (e.g., security authorization 
policies) that reside in a server. 
     We provide several examples of the preceding observations.   
We use a simplified program to illustrate the problem.  In Figure 
1 the class webExampleSyn simulates the effects of multiple 
clients performing interactions on the web.  The main method 
uses the constructor (lines 11–13) to create n threads and then 
starts them.  Each thread calls the run method that invokes 1000 
network-based interactions, each of which begins by opening a 
network (URL) connection and fetching a properties file (line 
31).  The getProperties method creates an input stream 
from a Uniform Resource Locator (line 18) and uses it to load 

the properties (line 19).  In our terminology, 
webExampleSyn.run is a head, because it initiates the 
execution of threads.  The method java.util.Proper-
ties.load is a tail, an expensive operation.  Our analysis 
identifies the synchronization sources, one of which is 
webExample.getProperties, since it is declared as 
synchronized.  We ran this program on an IBM IntelliStation 
with one 933 MHz Pentium III processor, 1GB of memory, 
Windows 2000, and Java JRE 1.3.1 accessing property files of 
various sizes on an IBM IntelliStation M Pro with one 400 MHz 
Pentium II processor, 256M of memory, and Windows NT.  The 
two machines were on the same local area network.  The results 
appear in Table 1.  The number of threads and size of the 
property file are in columns 1 and 2, respectively, and all other 
columns give running times in milliseconds.  There are two sets 
of data: when getProperties is not synchronized (col. 3–4) 
and when it is synchronized (col. 5–6).  The Elapsed time 
column indicates how long it took for all the threads to 
complete.  The Work time column is the sum of the times across 
all threads to complete the URL and load methods (lines 18 and 
19); the cost of all other instructions was found to be negligible.  
Table 1 shows that the response time per thread is longer in the 
unsynchronized case than the synchronized case.  However, we 
met our objective of improving throughput, as measured by the 
inverse of Elapsed time.  

     Note that in most cases  

Elapsed time � Work time (synchronized) 

and  

Elapsed time � Work time / Threads (unsynchronized),  

indicating no overlap and nearly perfect thread processing 
overlap, respectively.  Although there are instances where the 
synchronized times are smaller, for the most part 
unsynchronized outperforms synchronized; sometimes the 
differences are striking, e.g. a 229% increase for 16 threads and 
file size 10,000. 

     Suppose the application designer concluded that the input 
stream (line 18) could be created once (i.e. moved after line 29) 
and passed into getProperties by each thread.  The results 
would be as in Table 2.  The unsynchronized cases win more 
often than before, but by smaller amounts.  However, there are 
still considerable gains by removing synchronization, e.g. a 68% 
increase for 16 threads and file size 10,000. 

     For this simple example our algorithm reports the path from 
run to getProperties and from getProperties to 
load.  The designer may examine the paths generated by our 
analysis and reassess whether synchronization is really 
necessary.  The information provided localizes the places where 
changes are most likely required to avoid the synchronization. 

     As a second example, we replace the property file access by a 
call to a servlet that has a simulated execution time specified as 
a number of milliseconds.  The results appear in Table 3.  Note 
that in the synchronized case, the times grow linearly.  But, the 
unsynchronized data show the benefits of parallelism, i.e. again 
Elapsed time � Work time / Threads. 



 

 

     For a third example, we replace the property file access by a 
CPU-bound computation, the multiplication of 50x50 matrices 
on a two-processor machine.  As Table 4 shows, we get 
increases of between 23% and 61% in Elapsed time for 

synchronized cases vs. unsynchronized ones. 

     Our final example is a large one, with an invocation graph of 
more than 25,000 nodes and more than 60,000 edges.  The 
application includes a serialized data structure with a 

        ... 
     5. public class webExampleSyn extends Thread { 
            ...       
     8.     private int threadNumber; 
            ... 
    11.     public webExampleSyn( int threadNumber ) { 
    12.         this.threadNumber = threadNumber; 
    13.     } 
    14.      
    15.     static private synchronized Properties getProperties( ) { 
    16.         Properties props = new Properties( ); 
    17.         try { 
    18.             InputStream is = new URL( ... ).openStream( ); 
    19.             props.load( is ); 

20. is.close( ); 
21.  } 

                ... 
    25.         return props; 
    26.     } 
    27.      
    28.     public void run( ) { 
    29.         System.out.println( "Thread " + threadNumber + " started." ); 
    30.         for ( int i = 0; i < 1000; i++ ) { 
    31.             Properties props = getProperties( ); 
    32.             // Do processing involving the properties ... 
    33.         } 
    34.     } 
    35.  

36. public static void main( String[ ] s ) { 
            ... 

    39.         int n = Integer.parseInt( s[0] ); 
    40.         Thread[ ] thread = new Thread[ n ]; 
    41.         for ( int i = 0; i < n; i++ ) 
    42.             ( thread[ i ] = new webExampleSyn( i ) ).start( ); 
    43.         ... 
    53.     } 
    54. } 
 

Figure 1. Web client  example 
 

Table 1. Web client  example, URL in loop 
 

  Unsynchronized Synchronized 
Threads  File size Elapsed time Work time Elapsed time Work time 

1 10 5,812 5,718 5,766 5,671 
16 10 77,578 1,202,875 88,578 87,954 

128 10 634,140 77,808,115 715,063 710,232 
1 1,000 15,422 15,313 15,141 15,001 
4 1,000 65,453 248,767 60,703 60,264 

16 1,000 335,281 5,033,210 231,344 230,286 
1 4,000 422,625 422,453 417,485 417,264 
4 4,000 315,250 1,191,122 1,699,000 1,698,640 

16 4,000 1,137,625 17,631,950 7,044,157 7,041,796 
1 10,000 537,703 537,609 536,828 536,735 
4 10,000 668,266 2,634,600 2,100,438 2,100,201 

16 10,000 2,697,156 42,432,394 8,866,797 8,865,391 
 



 

 

StringBuffer field.  Our analysis runs in 218 sec., 
producing 10,368 paths from heads to sources and 7,373 paths 
from sources to tails.  For instance, our algorithm locates the 
path, i.e. the calling sequence, shown in Figure 2 from a method 
java.langStringBuffer.readObject, with 
undocumented synchronization, to the tail 
java.net.InetAddress.getByName, found to be costly 
by Heydon and Najork [15].  This path could cause a bottleneck 
and is unlikely to be discovered by a human. 

4. MONITOR COMPUTATION 
     In this section we derive the quantities required for our 
unwanted synchronization analysis.  First we describe an 
enhanced control flow graph called the monitor dataflow graph.  
Then we formally define the sets and functions that are needed.  
Finally, we present the monitor dataflow algorithm that 
describes how to compute the sets and functions.  We omit 
discussion of the path generation, since it can be computed in a 
number of ways, e.g. see [9]. 

Table 2. Web client  example, URL out of loop 
 

  Unsynchronized Synchronized 
Threads  File size Elapsed time Work time Elapsed time Work time 

1 10 313 187 312 219 
16 10 6,875 100,395 9,266 9,190 

128 10 101,765 10,742,483 81,031 81,888 
1 1,000 359 249 344 281 
4 1,000 1,000 3,375 2,391 2,281 

16 1,000 7,250 108,291 9,344 9,297 
1 4,000 687 593 531 423 
4 4,000 1,375 4,750 2,656 2,563 

16 4,000 6,890 106,193 10,454 10,453 
1 10,000 640 562 2,000 1,922 
4 10,000 1,687 6,096 3,203 3,047 

16 10,000 7,172 90,072 12,015 12,158 
 

Table 3. Servlet  example 
 

  Unsynchronized Synchronized 
Threads  Wait Elapsed time Work time Elapsed time Work time 

1 1 21,033 20,904 21,113 20,987 
8 1 22,049 174,459 160,598 160,126 

32 1 27,143 803,804 637,345 636,314 
1 10 20,951 20,818 21,012 20,865 
8 10 22,120 174,828 162,052 161,633 

32 10 27,662 805,704 644,326 643,235 
1 100 111,236 111,098 111,215 111,073 
8 100 111,536 890,232 884,225 883,783 

32 100 114,974 3,628,926 3,535,043 3,533,103 
1 1000 1,011,294 1,011,172 1,012,453 1,012,253 
8 1000 1,011,182 8,088,108 8,099,932 8,098,954 

32 1000 1,011,823 32,695,932 33,088,823 33,086,292 
 

Table 4. CPU-bound example 
 

 Unsynchronized Synchronized 
Threads  Elapsed time Work time Elapsed time Work time 

1 7,828 7,750 7,813 7,718 
2 9,532 18,799 15,328 15,127 
4 21,797 82,544 30,563 30,376 
8 46,828 350,546 61,172 60,604 

16 98,563 1,431,629 122,610 121,564 
32 200,125 5,709,709 246,391 244,935 

 



 

 

4.1 INVOCATION GRAPH 
     Our starting point is the Java Bytecode Analysis (JaBA) 
system [18], [19].  It takes as input the object code of a 
collection of Java classes, and produces an interprocedural 
invocation graph [12] and data flow analysis.  These form the 
basis upon which the monitor dataflow graph is constructed: 
 
• The intraprocedural analysis of each method referenced in 

the call graph is path insensitive and flow sensitive. A path 
insensitive control flow graph analyzes all paths through all 
basic blocks in each method.  The control flow graph is flow 
sensitive, because it considers the order of execution of the 
instructions within each basic block, accounting for local 
variable kills and casting of object references.   However, 
instance and class (static) fields are flow insensitive because 
field kills are not respected, though casting of object 
references is respected. 

• Each node in the invocation graph contains the following 
state: 

o the target method; 
o for instance methods, an allocation site (or type) for 

each of the method’s potential receivers; 
o all parameters to the method, represented as a vector 

of sets of possible allocation sites (or possible types); 
o a set of possible return value allocation sites (or types) 

from this method at this node; 

o the set of basic blocks which comprise the target 
method; 

o the set of monitor objects used by monitorenter and 
monitorexit instructions; 

• Each node in the invocation graph is uniquely identified by 
its calling context, namely, the target method, the set of 
possible receiver types, and the parameters’ types.  Thus the 
graph is context sensitive. 

• The edges in the invocation graph are directed, where each 
edge points from a call site within a method to a target 
method. 

• The invocation graph is rooted and may contain cycles. 
• Our implementation of the invocation graph allows bi-

directional traversal, even though the edges in the graph are 
unidirectional.  Therefore, from any node n within the 
invocation graph, we can find the set of its predecessor nodes, 
which we denote by �(n); similarly, the set of successor nodes 
is indicated by �(n).  We use the same successor / predecessor 
notation for the basic blocks in the control flow graph. 

• Each node, edge, and basic block is labeled with a monitor 
set, described in the next subsection. 

     In addition to the invocation graph, a data flow analysis is 
performed with a precision to the level of allocation sites, as in 
the Cartesian Product Algorithm [1].  It is important to observe 
that the number of objects in a Java program as modeled by the 
monitor dataflow graph is always finite.  There are a finite 
number of calls to new in the object code, and the elements of 
arrays and other collections are modeled as single elements. 

 1. StringBuffer.readObject Line 1090 calls  
 2. ObjectInputStream.defaultReadObject Line 525 calls  
 3. ObjectInputStream.inputClassFields Line 2268 calls  
 4. ObjectInputStream.readObject Line 372 calls  
 5. ObjectInputStream.inputClassDescriptor Line 942 calls  
 6. ObjectStreamClass.setClass Line 572 calls  
 7. ObjectStreamClass.lookupInternal Line 118 calls  
 8. ObjectStreamClass.init Line 407 calls  
 9. AccessController.doPrivileged calls  
10. ObjectStreamClass$2.run Line 426 calls  
11. ObjectStreamClass.access$200 Line 52 calls  
12. ObjectStreamClass.computeSerialVersionUID Line 861 calls 
13. MessageDigest.getInstance Line 129 calls  
14. Security.getImpl Line 809 calls  
15. Security.reloadProviders Line 183 calls  
16. AccessController.doPrivileged calls  
17. Security$2.run Line 187 calls  
18. Provider.loadProvider Line 152 calls  
19. ClassLoader.loadClass Line 257 calls  
20. Launcher$AppClassLoader.loadClass Line 381 calls  
21. ClassLoader.loadClass Line 325 calls  
22. URLClassLoader.findClass Line 203 calls  
23. AccessController.doPrivileged calls  
24. URLClassLoader$ClassFinder.run Line 542 calls  
25. URLClassPath.getResource Line 139 calls  
26. URLClassPath$FileLoader.getResource Line 688 calls  
27. URLClassPath.check Line 346 calls  
28. SecurityManager.checkConnect Line 1048 calls  
29. SocketPermission.<init> Line 214 calls  
30. SocketPermission.init Line 373 calls  
31. InetAddress.getByName 
 

Figure 2. Large example. 
 



 

 

    We now give a more precise definition of the head nodes.  A 
head node is any successor of the invocation graph root node.  
The user can prune the set of head nodes and/or add additional 
head nodes.  

4.2 MONITOR SET DEFINITION 
     In this section we formalize the notion of Java 
synchronization monitors.  We describe sets of monitors 
associated with nodes, edges, or basic blocks of the monitor 
dataflow graph.  The monitor set for a node indicates all 
monitors that may be used as locks when the node’s target 
method is invoked.  Since the method may contain synchronized 
blocks, different edges leading out of the node may have 
different monitors that arise from those synchronized blocks.  
The monitors are propagated along edges and nodes in a manner 
that will be made clear by our formalism. 

     Let G = (N, E) be the monitor dataflow graph, derived from 
the invocation graph described in the previous section, 
representing a collection of Java classes with a specified set of 
entry points.  The nodes N are given by a set of triples n =  (M, 
R, P), where M is the target method and R and P are the sets of 
possible receiver types and parameter types, respectively. Each 
method consists of a set B of basic blocks b.  Because in Java a 
method has only one entry point, there is a unique basic block b0 
for which �(b0) = �.  The edges are described by a set of triples e 
= (n, b, n�), where n = (M, R, P) and n� = (M�, R�, P�) are nodes 
and b is a basic block in M ending with an edge to M�.  This 
definition allows the possibility of more than one edge between 
a single pair of nodes.  We can of course define paths v1 � v2 � 
… � vm, where the vi are all either nodes or basic blocks and vi  
= �(vi–1), i = 2, …, m, i.e.,  vi is a successor of vi–1. Paths may 
include cycles. 
     A Java expression of the form  
 

synchronized(o) { … } 
 

is represented in object code by a matching pair of  
monitorenter and monitorexit instructions.  We require 
that the basic blocks of any method be well formed, in that they 
correspond to legal Java code.  This assumption ensures that 
synchronized blocks will be properly balanced: for each 
monitorenter instruction, there exists a matching set of 
monitorexit instructions.  There may be more of the latter 
than the former, because Java compilers insert extra 
monitorexits in catch and finally blocks. 
     A monitor object is a pair (o, c), where o is an object in the 
Java program and c (the counter) is a positive integer bounded 
by a fixed constant �.  A monitor set is a collection of monitor 
objects in which all the objects o are distinct.  We have observed 
that in the monitor dataflow graph model of a Java program, the 
total number of Java objects is finite.  Hence the number of 
different possible monitor sets for that program is finite. 
     In the Java virtual machine specification [20] there is no 
value provided for the maximum counter size �; presumably it 
is so large that other significant resource limits would be 
reached first.  We simply assume that � is larger than any 
nesting of monitorenter-monitorexit pairs in the program 
we are analyzing. 
     There is a natural partial order �, based on counter values, on 
the set of all monitor sets: m1 � m2, if for each (o, c) � m1, (o, d) 
� m2 for some counter d, c � d � �.  One can then define < as m1 

< m2 if m1 � m2 and m1 � m2.  For a fixed Java program the set of 
all possible monitor sets for that program satisfies an important 
condition: any ascending chain of the form  
 
 m1 < m2 < … < mk < … is finite.  (4.2.1) 
 
     We next want to define monitor sets for basic blocks, edges, 
and nodes.  For a given method M with basic block set B and b 
� B, we first motivate the definition of the monitor set �(b).  
Suppose exactly one basic block, say bn � b (where n represents 
monitorenter) contains a monitorenter instruction 
associated with object o, and another basic block, say bx (where 
x represents monitorexit) contains the matching 
monitorexit instruction.  Suppose also that there are no 
possible paths of basic blocks with cycles.  If there is a path  
 

bn � … �  b � … � bx 

 
of basic blocks from bn to bx which includes b, we would say 
that (o,1) is in �(b), i.e. all the instructions in b execute under 
the guard of the monitor object o.  Of course, we have to allow 
for cycles and synchronization blocks nested c levels deep. The 
natural generalization and formal definition, which handles both 
cycles and nesting is as follows.  For a fixed object o, let c be 
the largest positive integer such that there exist: 

• A set of integers  n1, …, nc representing blocks 
containing monitorenter instructions; 

• A set of integers x1, …, xc  representing blocks 
containing monitorexit instructions; 

• A collection of basic blocks such that 
inb in B 

contains a monitorenter instruction for which o is 
the associated object, i = 1, …, c; 

•  A collection of basic blocks such that 
ixb in B 

contains one of the monitorexit instructions 
corresponding to 

inb ’s monitorenter instruction, i 

= 1, …, c.   
• A path of the form: 

1nb �…�
2nb �…�

cnb �…� b  �…�
cxb �…�

2xb �
1xb  

 
Then we say that (o, c) is in �(b) if c � �, and (o, �) is in �(b) if 
c > �, where �, is the maximum possible counter value for any 
monitor object.  In the absence of cycles c will be less than �, 
by the assumption we made about �.  However, when cycles are 
present, then monitor objects of the form (o, �) may exist. 
     Next, for edges e and nodes n, the definitions of the monitor 
sets �(e) and �(n) are recursive and interdependent.  We give a 
three-part definition for �(e).  An edge e = (n, b, n�) joins a node 
n to a node n� via a call from a basic block b. Hence any 
monitors in effect at the node n or the block b will be in force 
for e.  Thus a monitor object (o, c) is in �(e) if either of the 
following conditions holds:  

i. (o, c) � �(b); 
ii. (o, c) �  �(n). 

However, when (o, p) �  �(n) and (o, q) �  �(b), then both the 
edge and block contribute to synchronizing the successors of e. 
For example, (o, p) could arise via p consecutive calls of a 
synchronized method, and (o, q) could come from q nested 



 

 

synchronized blocks.  Backing out of the synchronization would 
require p + q levels.  Therefore, 

iii. if (o, p) �  �(n) and (o, q) �  �(b), then (o, p + q) is in 
�(e) when p + q � �, and otherwise (o, �) is in �(e). 

 
     Finally, a node n = (M, R, P) will be guarded by monitors on 
any edge which leads to n.  Furthermore, n will have monitors if 
its target method M is declared to be synchronized. With 
these observations we can see that a monitor object (o, c) is in 
�(n) for node n = (M, R, P) if one of the following three 
conditions holds:  

i. M is static and synchronized, o is the class 
object of the class which declares M.  Either c = 1 or (o, c 
– 1) � �(e) for an edge ending at n; 

ii. M is synchronized, but not static, o is any 
element of R, and either c = 1 or (o, c – 1) � �(e) for an 
edge ending at n; 

iii. M is not synchronized, and (o, c) � �(e) for an edge 
ending at n. 

 
     Observe that the monitor sets for basic blocks capture only 
local behavior within a single method, i.e. their computation 
only requires an intraprocedural analysis.  The monitor sets for 
nodes and edges necessitate interprocedural analysis using the 
results of the basic block computation.  All the �(b) are 
computed first, and then used to compute �(e) and �(n) together. 

4.3 MONITOR DATAFLOW 
ALGORITHM 
     Next we present the monitor dataflow algorithm for 

computing the monitor sets according to the preceding 
definitions.  It breaks into two pieces, one which handles basic 
blocks and one which deals with nodes and edges.  They appear 
in Figures 3 and 4. 

     The monitor dataflow algorithm can be viewed as 
calculations on a semilattice [17] with � as the join operation.  
We introduce two other operations, + and –, involving monitor 
sets. The state transformation functions are defined using + and 
– in Figure 3, and + in Figure 4.  We first define all three 
operations for a monitor set m and an object o.   

     We define plus (+), corresponding to monitorenter, as 
follows:  

• if (o, c) � m for some c, we replace (o, c) in m by (o, 
min(c + 1, �));  

• otherwise, we add (o,1) to m.   

The resulting set is m + o.   

      For the minus (–) operation, corresponding to 
monitorexit,  

• if (o,1) � m, we remove it from m;  

• if (o, c) � m for c > 1, we replace (o, c) in m by (o, c – 
1).   

The resulting set is m – o.  Note the importance of our 
assumption that � is larger than the maximum nesting in 
programs to be analyzed.  Choosing an � that is too small will 
result in premature removal of o from the monitor set m. 

     For the union (�) of a set m with an object o,  

    1. �(b) � � for all basic blocks b 
    2. queue � b0 (the entry basic block) 
    3. while queue � �: 
    4.   b � pop(queue) 
    5.   mb � �(b) 
    6.   if b has monitorenter with object O then mb � mb + O 

    7.   if b has monitorexit with object O then mb � mb – O 
    8.   for all s � �(b): 
    9.     ms � �(s) 
   10.     �(s) � ms � mb 

11. if �(s) � ms then push(s) 
 

Figure 3. Computing  ����(b). 
 

 1. �(x) � � for all call sites and edges. 
 2. Compute in(x), �, and � for all call sites and edges. 
 3. push n with in(n) � � or with in(e) � � and e=(n,b,n’) for some b and n’. 
 4. while queue � �: 
 5.   pop(n) 
 6.   �(n) � �(n) + in(n) 
 7.   for all edges e=(n,b,n’) leaving n: 
 8.     �(e) � in(e) + �(n) 
 9.     t � �(n’) � �(e) 
10.     if t � �(n’) then: 
11.       �(n’) � t 
12.       push(n’) 
 

Figure 4. Computing ����(n), ����(e), and source functions ���� and ����. 
 



 

 

• if o does not appear in any monitor object of m, add 
(o, c) to m;  

• if (o, d) � m with d < c, replace (o, d) by (o, c) in m.  

• if (o, d) � m with d � c, m remains unchanged.  

The resulting set is m � (o, c).   

     We extend +, –, and �  to operations on two sets m1 and m2 
by computing m1 (+, –, or �) o for each o �  m2. 

     The union operation expresses the fact that a graph node 
successor inherits the monitor sets of its predecessors: if node i 
has monitor set mi, i = 1, 2, and node 2 is a successor of node 1, 
then at some point in the computation m2 will be replaced by m1 
� m2.  In terms of the partial ordering � introduced earlier, the 
union operation satisfies  

 m1 � m1 � m2 for all m1 and m2.  (4.2.2) 

Given a method with a set B of basic blocks, the piece of the 
monitor dataflow algorithm for computing �(b) for each b � B 
appears in Figure 3.  Steps 1 and 2 initialize all the sets and 
prime the queue with the entry basic block.  Steps 3–11 perform 
a fixed point iteration to refine the definitions of each �(b).  A 
basic block is popped (step 4), and its current monitor set is 
saved (step 5).  The saved value is updated if the block ends 
with either a monitorenter or monitorexit, using the + or – 
operation, respectively (steps 6, 7).  Then for each successor of 
the popped block (step 8), we compute the union of its monitor 
set with the saved value (steps 9–10), thus propagating 
predecessors’ monitor sets to successors.  If the successor’s 
monitor set changed, the successor is added to the queue (step 
11).  Without this test, the algorithm would loop endlessly in the 
presence of cycles.  

     The portion of the monitor dataflow algorithm for computing 
�(e) and �(n) for nodes and edges appears in Figure 4.  It also 
computes two functions that are needed for reporting source 
information, i.e. where synchronization originates.  For each 
object o contained in a monitor object (o, c), the node source 
function �(o) is the set of nodes whose target methods are 
synchronized on the object o.  The edge source function �(o) is 
the set of edges each of which is contained within the basic 
block sequence initiating the synchronization under object o via 
a matched monitorenter-monitorexit pair. 

     The main idea of the algorithm is to propagate monitor sets 
from predecessors to successors in the monitor dataflow graph, 
by passing the monitor sets and associated nodes into a queue 
and performing a fixed point iteration (steps 4–12).  Step 1 
defines all �(e) and �(n) to be null sets, and then initial values 
in(e) and in(n) are computed (step 2).  The value in(e) is simply 
�(b), where e = (n, b, n�). The value in(n) is the result of carrying 
out parts i and ii of the definition of �(n) in Section 4.2.  At this 
time the source maps are also computed, and they are simply 
inversions of in(e) and in(n): e [respectively n] � �(o) 
[respectively �(o)] if  (o, c)  �  in(e) [respectively in(n)] for 
some c.   Step 3 initializes the queue with all the relevant nodes 
for which computation should begin.  They are any nodes n 
whose initial value in(n) is non-empty or which begin an edge, 
that is, e = (n, …), whose initial value in(e) is non-empty.  The 
main loop (steps 4–12) begins by popping a node (step 5) and 
updating its monitor set value to include the initial values (step 
6).  Then the monitor information is propagated from all edges e 

= (n, b, n�) leaving n (steps 7–12).  The edge monitor set is 
updated to include the monitors which cover the entire node 
(step 8), and the monitors of the edge apply to the successor 
node n� (steps 9–11).  If the computation changed the 
successor’s monitor set, it is placed back on the queue (steps 
10–12).  Note that in updating we use the + operator in steps 6 
and 8, because we want to reflect the cumulative change in the 
counters (see condition iii in the definition of  �(e) in Section 
4.2).  In relating a successor’s monitor set to that of its 
predecessor, we use the � operator, as mentioned earlier in the 
definition of union. 

     We conclude this section by proving that the algorithms in 
Figures 3 and 4 always terminate.  In both algorithms a basic 
block or graph node x is pushed onto the queue only if �(x) 
changes as the result of a union operation 

�(x) � �(x) � m 

for some monitor set m, that is,  

�(x) < �(x) � m. 

However, by (4.2.1) and (4.2.2), this condition can hold for a 
fixed x only a finite number of times.  Thus the queue empties 
after a finite number of steps, and the algorithms always 
terminate.  Our proof is similar to that of Kildall [17]. 

     We remark that the interprocedural control and data flow 
precision in our analysis is crucial.  We identify attributes such 
as parameter types and receiver types associated with method 
invocations.  With less precision, our results would be more 
conservative.  As an example, in Figure 1 load() is 
synchronized.  However, our analysis concludes that there is a 
unique receiver props for each thread.  Hence this particular 
synchronization is not of concern, since each thread has its own 
separate monitor. 

     In the worst case, the algorithm is exponential.  However, on 
realistic applications, the runtime is quite reasonable.  For 
example, an analysis of ECPerf [25], with an analysis scope of 
20,000 classes, it ran for less than five minutes.   

     Although we have stated our algorithms in the context of 
analyzing Java code, they can be applied to any language that 
supports monitors.  Examples that come to mind are Concurrent 
Euclid [16], Concurrent Pascal [5], Mesa/Cedar [26], and 
Modula-2 [10]. 

5. ASSESSMENT AND FUTURE WORK 
     It is appropriate to compare our approach to the use of 
dynamic techniques, including runtime profilers.  There are at 
least three weaknesses of only using runtime profiling:  

o the tools to profile a large set of library routines are 
not always available to all developers;  

o programmers usually do not have access to a 
comprehensive set of test cases to profile;  

o profiling usually can not adequately cover all load 
conditions that may arise, especially in complicated 
web application environments.  This includes the 
simulation of a large number of failure scenarios that 
are hard to replicate. 

The advantage of our approach is that all paths through the code 
are covered, and unwanted synchronization can be discovered 



 

 

during development, before the code goes into production where 
it is much more expensive to diagnose and repair.  Because our 
approach is conservative and can generate false positives, the 
developer must analyze the results.  The key is to minimize the 
false positive rate.  However, the results from our algorithm can 
be used to direct the use of a runtime profiler.  We suspect that 
the combination can further reduce the false positive rate.  We 
believe that profiling and static methods are complementary and 
can best be used together (e.g., Choi et al.[7]).   

     Another important question is how we handle native methods 
(methods written in a language other than Java).  This is more a 
question about the underlying JaBA static analysis framework 
rather than about the algorithms presented in this paper.  In fact, 
the JaBA implementation includes hand coded implementations 
of the most widely used native methods.  However, we do not 
have a complete model of all native methods in the Java runtime 
libraries.  Native methods must be added as needed to achieve  
complete control and data flow analyses. 

     The next issue is the modeling of Java reflection. As with 
native methods, the issue is about how the interprocedural 
control and data flow analyses handle it.  We have successfully 
constructed a prototype of JaBA that handles 
Class.forName() and Class.newInstance().  In 
some cases the names of the classes are known, because the 
names are string constants.  In cases where the name of the class 
is computed or read from an external source (e.g., a file), cast 
operations on the result of newInstance() are used to get a 
first order approximation of the classes being instantiated. Class 
hierarchy analysis can also be used to determine the possible 
classes to instantiate. In some cases, programmers will need to 
provide assistance in identifying which classes should be 
instantiated by the newInstance() calls. We believe that 
other Java reflection methods can also be handled, including 
calls to methods (including constructors) and access to fields. 

     The next challenge is with modeling Java’s dynamic loading 
and binding of classes during runtime.  JaBA models 
ClassLoader trees, which is important in defining name 
spaces for complex applications.  In server environments, and 
particularly those that conform to the J2EE1, the analysis can be 
closed world, since all of the code to be deployed in the server is 
known.  Dynamically loaded code from unknown sources (e.g., 
mobile code from a web site) is not part of the J2EE 
programming model.  So, the algorithms we describe in this 
paper are sufficient for a large and important set of applications.  
The algorithms would need to be extended to handle open world 
analysis where the classes being called are outside the analysis 
scope.  In particular, the reporting of unwanted synchronization 
would need to identify places where the interprocedural analysis 
might call code outside the analysis scope, and therefore not 
identify synchronized tail nodes and/or sources of 
synchronization. 

     Our algorithm detects unwanted synchronization.  The next 
step is to identify whether the synchronization is actually 
necessary.  The addition of race detection (see e.g. [7], [8]) is 
one possible approach to determine whether the synchronization 
is really required.  In the presence of potential race conditions, 

                                                                 
1 J2EE is a trademark of Sun Microsystems, Inc. 

there is a need to identify program transformations that can 
eliminate the unwanted synchronization.  One possible approach 
is to use program slicing [11], [27] to identify statements in the 
program that require synchronization versus those parts of the 
program for which synchronization is unwanted. 

    An important issue is the integration of this algorithm into a 
tool with acceptable usability characteristics.  In particular, 
mechanisms are needed to minimize the potentially large 
number of paths that may be reported.  Specifically, 
synchronization often is necessary.  We need to develop 
reporting filters that can be applied to omit paths with such 
synchronization sources. 

    In our prototype, we made a number of simplifying 
assumptions.  At the moment, our implementation of the 
algorithm does not process catch and finally blocks.  
Handling of catch blocks should be straightforward when the 
invocation graph contains edges for thrown and caught 
exceptions. 

6. CONCLUSIONS 
     In this paper we have presented an approach to improving 
program performance by automatically calculating paths in an 
invocation graph from head nodes to tail nodes that have been 
identified as having unwanted synchronization.  The paths go 
through the program points that originate the synchronization 
and thus create the opportunity to assess the feasibility of 
removing the synchronization, perhaps via a program 
restructuring.  For large applications our approach performs an 
analysis that can not be done manually.  The algorithms can be 
integrated within software development environments so that the 
programmer can identify unwanted synchronization trouble 
spots while the code is being developed.  Since our prototype 
works on object code, it can handle middleware and 
applications, even when the source code is unavailable.  While 
our algorithm and prototype described in this paper were written 
for Java, the basic concept and algorithms applies to other 
languages and runtimes that have a comparable structure for 
monitor enters / exits. 
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