
RC22552 (W0209-004) September 3, 2002
Computer Science

IBM Research Report

Detecting Unwanted Synchronization in Java Programs

George Leeman, Aaron Kershenbaum, Larry Koved, Darrell Reimer
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Detecting Unwanted Synchronization in Java Programs
George Leeman, Aaron Kershenbaum, Larry Koved, Darrell Reimer

IBM Thomas J. Watson Research Center
P. O. Box 704, Yorktown Heights, NY 10598

(914)784-7702

{ gbl, aaronk, koved, dreimer }@us.ibm.com

ABSTRACT
A program’s performance can be significantly improved by
removing unwanted synchronization that causes time consuming
tasks to run serially instead of in parallel. In large programs,
especially those using libraries, it is usually difficult to manually
detect unwanted synchronization. We describe an approach for
automatically detecting unwanted synchronization in Java
programs, including a detailed algorithm for computing the
monitors involved in the synchronization. Our approach is
highly scalable and is thus applicable to programs of realistic
size. We have implemented this approach and tested it on
several real problems, some of which are large. We present
computational experience on both small and large examples,
demonstrating that unwanted synchronization exists in practice,
and that significant performance improvements are obtainable
when unwanted synchronization is removed.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming;
D.1.5 [Programming Techniques]: Object-oriented
Programming; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms
Algorithms, Performance, Languages

Keywords
Invocation graph, Java, locking, monitors, static analysis,
synchronization

1. INTRODUCTION
 Synchronization is necessary to eliminate race conditions
arising when two or more threads of execution simultaneously
access a shared resource. The simplest example is multiple
threads making concurrent modification of a field’s value.
Synchronization forces these threads to execute serially. If the
synchronization is necessary, this loss of efficiency is
unavoidable.

 In this paper we are concerned with improving a program’s
performance by analyzing its use of synchronization. We

introduce three terms. If it can be proven that the removal of a
specific synchronization will not change program behavior, we
say that the synchronization is unnecessary; otherwise, the
synchronization is necessary. For example, if eliminating a
synchronization could cause a race condition, the
synchronization is necessary. Next, we say that a
synchronization is unwanted if it causes significant performance
degradation. Thus there can be two types of unwanted
synchronization: necessary and unwanted, or unnecessary and
unwanted. In the first case, the only hope of eliminating the
synchronization would be to restructure the code. In the latter
case, the synchronization could be removed. Thus three issues
should be considered:

1. Identify places in the program where synchronization
may occur that can result in performance degradation
or dangerous system failure (e.g. a remote call which
could hang).

2. Identify whether the synchronization is necessary; if it
is not, it may be removed.

3. If the synchronization is necessary, identify
transformations of the code, if possible, to eliminate
the synchronization.

The objective and primary contributions of this paper are in the
first of these issues, identifying the synchronization of expensive
or dangerous operations. We present empirical results
demonstrating that unwanted synchronization has a significant
detrimental impact on performance. Our analysis can be used in
conjunction with other tools to distinguish necessary from
unnecessary synchronization (issue 2). Furthermore, they may
use the results of our analysis as a starting point. The results of
our analysis also provide detailed execution sequence
information which would help in determining how to change the
code, if required (issue 3).

 We are motivated by experiences with code deployed in very
large web based applications that perform poorly or fail when
unwanted synchronization is present. Examples include
synchronized calls to database operations and LDAP servers.
Symptoms of unwanted synchronization which we have
observed include slow and erratic response times and
throughput and application hangs. These problems in the
application can even lead to entire site outages. The effects of
unwanted synchronization surface most commonly under heavy
workloads in production environments where minor problems
with hardware, network or software components can trigger
severe problems from unwanted synchronization. These
problems are very hard to simulate during system test. Our
experience is that the unwanted synchronization can be found
with a set of sophisticated runtime analysis tools, but with much

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or� commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

greater difficulty. We have also observed that the skills
required, and cost to diagnose and repair the problem are much
higher once the code is deployed in a production environment.
This paper describes an approach which will identify the
occurrences of unwanted synchronization prior to deploying the
code in a production environment, when the cost for
modification is much lower.

 Our algorithm is based on an augmented invocation graph
[12]. The input to the algorithm is the code for a program, a list
of relevant entry points (head methods), and a set of methods
(tail methods) for which synchronization is unwanted. The
algorithm determines whether any tail methods are in any
execution paths from the head methods where they could be
executing under the constraints of synchronization. We assume a
closed world analysis. Furthermore, we do not require
developers to add annotations to the program to guide the
analysis.

 The invocation graph we use represents intraprocedural and
interprocedural analysis. It includes a control flow graph for
each invoked method. The interprocedural graph contains edges
(A, B), representing the invocation of method B from within
method A. The edge is augmented with method A’s program
counter for the call site to B.

 After the invocation graph is constructed, we distinguish
three types of nodes. A head is a node whose target method
begins an execution path in which we are interested; it may be a
root of the graph, or its method may initiate actions relevant to
synchronization, such as the start of a new thread (e.g.
java.lang.Thread.run). A tail is a node whose method
execution is potentially time consuming (e.g.,. computationally
expensive, system calls outside the Java runtime, or calls to
remote resources), or may not return due to system or software
failure. Therefore we don’t want the tail method to be
synchronized. One way to identify tail methods is to analyze
execution traces of running programs. Typical examples are
methods which create sockets, connect to databases, make
Remote Method Invocation (RMI) calls, perform directory
lookups, initiate expensive database queries, parse XML
documents, or write to local files. The heads are automatically
generated by our system, but the user may pick a subset of the
system choices. The tails are provided as input to our algorithm.
Our algorithm determines source nodes, the places where
synchronization originates, and it identifies paths from the heads
to the tails and passing through the sources. In Java the sources
arise either via synchronized methods or synchronization blocks
of code.

 Once the synchronized nodes have been identified, further
investigation is required to determine whether the
synchronization is in fact unnecessary or if the program could be
restructured (perhaps automatically) to make it unnecessary. For
example, a race detection algorithm such as Choi et al. [7], [8]
might indicate that races could occur, or the application might
need synchronization, because it uses a resource without its own
locking model.Finally, if the synchronization is found to be
unnecessary, it could be eliminated either by the developer or by
a transformation program, thereby obtaining a performance
improvement and a more stable system. Detecting
synchronization requirements (e.g., race detection) and code
restructuring issues are outside the scope of this paper.

 In summary, the contributions of this paper are as follows:

o Abstraction. We create a new abstraction, the monitor
dataflow graph, which is useful for
detecting and tracking synchronization
points.

o Analysis. We produce an algorithm for the
computation of monitor sets and prove that
it always terminates. Although the
algorithm is stated for Java, only minor
modifications are required for other
languages and systems that support
monitors.

o Scalability. Our approach uses the two preceding
pieces to detect unwanted synchronization,
and it has been shown to work for large
programs whose invocation graphs have
O(105) nodes and edges.

 The organization of the paper is as follows. We discuss
related work in Section 2, and we give several detailed examples
in Section 3. Section 4 presents the basic pieces of our
approach. Section 5 points out limitations of our technique and
suggests further work.

2. RELATED WORK
 The literature focuses on two different techniques for dealing
with the unnecessary synchronization when it is found.

 The most prevalent approach is to transform programs
automatically to more optimal counterparts. Fitzgerald et al.
[13] used static analysis to detect if no thread objects are ever
started; in that case, all synchronization may be removed.
Aldrich et al. [2] used an analysis based on a CFA(1) [24] call
graph (and a CFA(0) call graph for the larger problems) to
eliminate unnecessary synchronization where a monitor is
accessible to only one thread, where a monitor is entered by the
same thread multiple times, and where one monitor is nested
within another. They succeeded in eliminating up to 70% of the
synchronization and improving runtimes by as much as 5%. A
number of authors employed “escape analysis,” i.e. deriving
conditions under which objects are reachable only by single
threads. Bogda and Hölzle [4] located such objects with a flow
insensitive and context insensitive analysis; they were able to
get speedups of up to 36%. Choi et al. [6] and Blanchet [3]
applied escape analysis to both stack allocation and
synchronization removal; they removed averages of 51% and
20% of synchronizations on test programs and got speed
improvements of up to 23% and 44%, respectively. Whaley and
Rinard [28] added a “points to” analysis to the escape analysis
to achieve synchronization removal on test cases between 24%
and 64%. Ruf [22] tracked objects synchronized by only one
thread but also partitioned aliased expressions into equivalence
classes to get the effect of context sensitive analyses. His
methods achieved impressive optimizations of both single and
multiple threaded programs. Finally, S�lcianu and Rinard [23]
also created a new abstraction, the “parallel interaction graph,”
to compute pointer, escape, and ordering information in multiple
threads. They eliminated some synchronization between objects
that span multiple threads, and their approach was especially
useful for the use of region-based storage allocation.

 A second approach is to use the unnecessary synchronization
information in performing further manual analysis to decide how
to tune the original design, possibly by making extensive
program changes. Heydon and Najork [15] discussed the effect
of removing synchronization from methods in the Java core
libraries. They used the srcjava Java runtime as a
performance debugging tool, utilizing reporting features within
it to monitor aspects of program performance for a Web crawler
they had designed. They identified places where synchronization
inside the Java runtime library significantly affected
performance and manually identified cases where the
synchronization was unnecessary and could be removed. After
removing it, the fraction of cycles spent on synchronization
dropped from 20% to 1.5%. Gunther [14] observed that
performance in servlets could be improved by avoiding
unnecessary synchronization, especially in the major methods
such as service, doGet, or doPost; he recommended the
use of fine-grained synchronized blocks to protect critical
sections of the code.

 Thus several techniques exist for detecting unnecessary
synchronization. All of the work deals with problems of
moderate size and complexity (e.g. javac, jacacup, pizza,
jlex), typically of size O(104)–O(105) lines of source code.
Usually unnecessary synchronization was detected via static
analysis or related techniques Most of these analyses focus on
reducing the overhead caused by the synchronization itself, i.e.
the cost of performing locking and unlocking operations. This
paper, on the other hand, focuses on the potentially much larger
gains obtainable by allowing threads to proceed in parallel when
unwanted synchronization is removed. In some cases, the payoff
approaches a factor of the number of threads.

3. MOTIVATING EXAMPLES
 Our fundamental observation is that when “out of the box”
operations are synchronized, their cost is proportional to the
amount of time the call takes to execute. Since our objective is
to improve throughput, removing such synchronization achieves
speedups by exploiting parallelism. These results apply to any
scenario that involves a remote call. In Java, these include calls
to databases (JDBC), directories (JNDI / LDAP), network
operations, EJBs, servlets, JSPs, authentication, and web
services. We also observe that unsynchronized operations out-
perform synchronized ones for CPU-bound (“in the box”) cases
as well.
 Web applications often need to obtain information from
remotely located resources. Portal servers generate web pages
by pulling resources (e.g., XML and HTML documents,
graphics) to generate customized web pages. Also, clients
retrieve configuration values (e.g., security authorization
policies) that reside in a server.
 We provide several examples of the preceding observations.
We use a simplified program to illustrate the problem. In Figure
1 the class webExampleSyn simulates the effects of multiple
clients performing interactions on the web. The main method
uses the constructor (lines 11–13) to create n threads and then
starts them. Each thread calls the run method that invokes 1000
network-based interactions, each of which begins by opening a
network (URL) connection and fetching a properties file (line
31). The getProperties method creates an input stream
from a Uniform Resource Locator (line 18) and uses it to load

the properties (line 19). In our terminology,
webExampleSyn.run is a head, because it initiates the
execution of threads. The method java.util.Proper-
ties.load is a tail, an expensive operation. Our analysis
identifies the synchronization sources, one of which is
webExample.getProperties, since it is declared as
synchronized. We ran this program on an IBM IntelliStation
with one 933 MHz Pentium III processor, 1GB of memory,
Windows 2000, and Java JRE 1.3.1 accessing property files of
various sizes on an IBM IntelliStation M Pro with one 400 MHz
Pentium II processor, 256M of memory, and Windows NT. The
two machines were on the same local area network. The results
appear in Table 1. The number of threads and size of the
property file are in columns 1 and 2, respectively, and all other
columns give running times in milliseconds. There are two sets
of data: when getProperties is not synchronized (col. 3–4)
and when it is synchronized (col. 5–6). The Elapsed time
column indicates how long it took for all the threads to
complete. The Work time column is the sum of the times across
all threads to complete the URL and load methods (lines 18 and
19); the cost of all other instructions was found to be negligible.
Table 1 shows that the response time per thread is longer in the
unsynchronized case than the synchronized case. However, we
met our objective of improving throughput, as measured by the
inverse of Elapsed time.

 Note that in most cases

Elapsed time � Work time (synchronized)

and

Elapsed time � Work time / Threads (unsynchronized),

indicating no overlap and nearly perfect thread processing
overlap, respectively. Although there are instances where the
synchronized times are smaller, for the most part
unsynchronized outperforms synchronized; sometimes the
differences are striking, e.g. a 229% increase for 16 threads and
file size 10,000.

 Suppose the application designer concluded that the input
stream (line 18) could be created once (i.e. moved after line 29)
and passed into getProperties by each thread. The results
would be as in Table 2. The unsynchronized cases win more
often than before, but by smaller amounts. However, there are
still considerable gains by removing synchronization, e.g. a 68%
increase for 16 threads and file size 10,000.

 For this simple example our algorithm reports the path from
run to getProperties and from getProperties to
load. The designer may examine the paths generated by our
analysis and reassess whether synchronization is really
necessary. The information provided localizes the places where
changes are most likely required to avoid the synchronization.

 As a second example, we replace the property file access by a
call to a servlet that has a simulated execution time specified as
a number of milliseconds. The results appear in Table 3. Note
that in the synchronized case, the times grow linearly. But, the
unsynchronized data show the benefits of parallelism, i.e. again
Elapsed time � Work time / Threads.

 For a third example, we replace the property file access by a
CPU-bound computation, the multiplication of 50x50 matrices
on a two-processor machine. As Table 4 shows, we get
increases of between 23% and 61% in Elapsed time for

synchronized cases vs. unsynchronized ones.

 Our final example is a large one, with an invocation graph of
more than 25,000 nodes and more than 60,000 edges. The
application includes a serialized data structure with a

 ...
 5. public class webExampleSyn extends Thread {
 ...
 8. private int threadNumber;
 ...
 11. public webExampleSyn(int threadNumber) {
 12. this.threadNumber = threadNumber;
 13. }
 14.
 15. static private synchronized Properties getProperties() {
 16. Properties props = new Properties();
 17. try {
 18. InputStream is = new URL(...).openStream();
 19. props.load(is);

20. is.close();
21. }

 ...
 25. return props;
 26. }
 27.
 28. public void run() {
 29. System.out.println("Thread " + threadNumber + " started.");
 30. for (int i = 0; i < 1000; i++) {
 31. Properties props = getProperties();
 32. // Do processing involving the properties ...
 33. }
 34. }
 35.

36. public static void main(String[] s) {
 ...

 39. int n = Integer.parseInt(s[0]);
 40. Thread[] thread = new Thread[n];
 41. for (int i = 0; i < n; i++)
 42. (thread[i] = new webExampleSyn(i)).start();
 43. ...
 53. }
 54. }

Figure 1. Web client example

Table 1. Web client example, URL in loop

 Unsynchronized Synchronized
Threads File size Elapsed time Work time Elapsed time Work time

1 10 5,812 5,718 5,766 5,671
16 10 77,578 1,202,875 88,578 87,954

128 10 634,140 77,808,115 715,063 710,232
1 1,000 15,422 15,313 15,141 15,001
4 1,000 65,453 248,767 60,703 60,264

16 1,000 335,281 5,033,210 231,344 230,286
1 4,000 422,625 422,453 417,485 417,264
4 4,000 315,250 1,191,122 1,699,000 1,698,640

16 4,000 1,137,625 17,631,950 7,044,157 7,041,796
1 10,000 537,703 537,609 536,828 536,735
4 10,000 668,266 2,634,600 2,100,438 2,100,201

16 10,000 2,697,156 42,432,394 8,866,797 8,865,391

StringBuffer field. Our analysis runs in 218 sec.,
producing 10,368 paths from heads to sources and 7,373 paths
from sources to tails. For instance, our algorithm locates the
path, i.e. the calling sequence, shown in Figure 2 from a method
java.langStringBuffer.readObject, with
undocumented synchronization, to the tail
java.net.InetAddress.getByName, found to be costly
by Heydon and Najork [15]. This path could cause a bottleneck
and is unlikely to be discovered by a human.

4. MONITOR COMPUTATION
 In this section we derive the quantities required for our
unwanted synchronization analysis. First we describe an
enhanced control flow graph called the monitor dataflow graph.
Then we formally define the sets and functions that are needed.
Finally, we present the monitor dataflow algorithm that
describes how to compute the sets and functions. We omit
discussion of the path generation, since it can be computed in a
number of ways, e.g. see [9].

Table 2. Web client example, URL out of loop

 Unsynchronized Synchronized
Threads File size Elapsed time Work time Elapsed time Work time

1 10 313 187 312 219
16 10 6,875 100,395 9,266 9,190

128 10 101,765 10,742,483 81,031 81,888
1 1,000 359 249 344 281
4 1,000 1,000 3,375 2,391 2,281

16 1,000 7,250 108,291 9,344 9,297
1 4,000 687 593 531 423
4 4,000 1,375 4,750 2,656 2,563

16 4,000 6,890 106,193 10,454 10,453
1 10,000 640 562 2,000 1,922
4 10,000 1,687 6,096 3,203 3,047

16 10,000 7,172 90,072 12,015 12,158

Table 3. Servlet example

 Unsynchronized Synchronized
Threads Wait Elapsed time Work time Elapsed time Work time

1 1 21,033 20,904 21,113 20,987
8 1 22,049 174,459 160,598 160,126

32 1 27,143 803,804 637,345 636,314
1 10 20,951 20,818 21,012 20,865
8 10 22,120 174,828 162,052 161,633

32 10 27,662 805,704 644,326 643,235
1 100 111,236 111,098 111,215 111,073
8 100 111,536 890,232 884,225 883,783

32 100 114,974 3,628,926 3,535,043 3,533,103
1 1000 1,011,294 1,011,172 1,012,453 1,012,253
8 1000 1,011,182 8,088,108 8,099,932 8,098,954

32 1000 1,011,823 32,695,932 33,088,823 33,086,292

Table 4. CPU-bound example

 Unsynchronized Synchronized
Threads Elapsed time Work time Elapsed time Work time

1 7,828 7,750 7,813 7,718
2 9,532 18,799 15,328 15,127
4 21,797 82,544 30,563 30,376
8 46,828 350,546 61,172 60,604

16 98,563 1,431,629 122,610 121,564
32 200,125 5,709,709 246,391 244,935

4.1 INVOCATION GRAPH
 Our starting point is the Java Bytecode Analysis (JaBA)
system [18], [19]. It takes as input the object code of a
collection of Java classes, and produces an interprocedural
invocation graph [12] and data flow analysis. These form the
basis upon which the monitor dataflow graph is constructed:

• The intraprocedural analysis of each method referenced in

the call graph is path insensitive and flow sensitive. A path
insensitive control flow graph analyzes all paths through all
basic blocks in each method. The control flow graph is flow
sensitive, because it considers the order of execution of the
instructions within each basic block, accounting for local
variable kills and casting of object references. However,
instance and class (static) fields are flow insensitive because
field kills are not respected, though casting of object
references is respected.

• Each node in the invocation graph contains the following
state:

o the target method;
o for instance methods, an allocation site (or type) for

each of the method’s potential receivers;
o all parameters to the method, represented as a vector

of sets of possible allocation sites (or possible types);
o a set of possible return value allocation sites (or types)

from this method at this node;

o the set of basic blocks which comprise the target
method;

o the set of monitor objects used by monitorenter and
monitorexit instructions;

• Each node in the invocation graph is uniquely identified by
its calling context, namely, the target method, the set of
possible receiver types, and the parameters’ types. Thus the
graph is context sensitive.

• The edges in the invocation graph are directed, where each
edge points from a call site within a method to a target
method.

• The invocation graph is rooted and may contain cycles.
• Our implementation of the invocation graph allows bi-

directional traversal, even though the edges in the graph are
unidirectional. Therefore, from any node n within the
invocation graph, we can find the set of its predecessor nodes,
which we denote by �(n); similarly, the set of successor nodes
is indicated by �(n). We use the same successor / predecessor
notation for the basic blocks in the control flow graph.

• Each node, edge, and basic block is labeled with a monitor
set, described in the next subsection.

 In addition to the invocation graph, a data flow analysis is
performed with a precision to the level of allocation sites, as in
the Cartesian Product Algorithm [1]. It is important to observe
that the number of objects in a Java program as modeled by the
monitor dataflow graph is always finite. There are a finite
number of calls to new in the object code, and the elements of
arrays and other collections are modeled as single elements.

 1. StringBuffer.readObject Line 1090 calls
 2. ObjectInputStream.defaultReadObject Line 525 calls
 3. ObjectInputStream.inputClassFields Line 2268 calls
 4. ObjectInputStream.readObject Line 372 calls
 5. ObjectInputStream.inputClassDescriptor Line 942 calls
 6. ObjectStreamClass.setClass Line 572 calls
 7. ObjectStreamClass.lookupInternal Line 118 calls
 8. ObjectStreamClass.init Line 407 calls
 9. AccessController.doPrivileged calls
10. ObjectStreamClass$2.run Line 426 calls
11. ObjectStreamClass.access$200 Line 52 calls
12. ObjectStreamClass.computeSerialVersionUID Line 861 calls
13. MessageDigest.getInstance Line 129 calls
14. Security.getImpl Line 809 calls
15. Security.reloadProviders Line 183 calls
16. AccessController.doPrivileged calls
17. Security$2.run Line 187 calls
18. Provider.loadProvider Line 152 calls
19. ClassLoader.loadClass Line 257 calls
20. Launcher$AppClassLoader.loadClass Line 381 calls
21. ClassLoader.loadClass Line 325 calls
22. URLClassLoader.findClass Line 203 calls
23. AccessController.doPrivileged calls
24. URLClassLoader$ClassFinder.run Line 542 calls
25. URLClassPath.getResource Line 139 calls
26. URLClassPath$FileLoader.getResource Line 688 calls
27. URLClassPath.check Line 346 calls
28. SecurityManager.checkConnect Line 1048 calls
29. SocketPermission.<init> Line 214 calls
30. SocketPermission.init Line 373 calls
31. InetAddress.getByName

Figure 2. Large example.

 We now give a more precise definition of the head nodes. A
head node is any successor of the invocation graph root node.
The user can prune the set of head nodes and/or add additional
head nodes.

4.2 MONITOR SET DEFINITION
 In this section we formalize the notion of Java
synchronization monitors. We describe sets of monitors
associated with nodes, edges, or basic blocks of the monitor
dataflow graph. The monitor set for a node indicates all
monitors that may be used as locks when the node’s target
method is invoked. Since the method may contain synchronized
blocks, different edges leading out of the node may have
different monitors that arise from those synchronized blocks.
The monitors are propagated along edges and nodes in a manner
that will be made clear by our formalism.

 Let G = (N, E) be the monitor dataflow graph, derived from
the invocation graph described in the previous section,
representing a collection of Java classes with a specified set of
entry points. The nodes N are given by a set of triples n = (M,
R, P), where M is the target method and R and P are the sets of
possible receiver types and parameter types, respectively. Each
method consists of a set B of basic blocks b. Because in Java a
method has only one entry point, there is a unique basic block b0
for which �(b0) = �. The edges are described by a set of triples e
= (n, b, n�), where n = (M, R, P) and n� = (M�, R�, P�) are nodes
and b is a basic block in M ending with an edge to M�. This
definition allows the possibility of more than one edge between
a single pair of nodes. We can of course define paths v1 � v2 �
… � vm, where the vi are all either nodes or basic blocks and vi
= �(vi–1), i = 2, …, m, i.e., vi is a successor of vi–1. Paths may
include cycles.
 A Java expression of the form

synchronized(o) { … }

is represented in object code by a matching pair of
monitorenter and monitorexit instructions. We require
that the basic blocks of any method be well formed, in that they
correspond to legal Java code. This assumption ensures that
synchronized blocks will be properly balanced: for each
monitorenter instruction, there exists a matching set of
monitorexit instructions. There may be more of the latter
than the former, because Java compilers insert extra
monitorexits in catch and finally blocks.
 A monitor object is a pair (o, c), where o is an object in the
Java program and c (the counter) is a positive integer bounded
by a fixed constant �. A monitor set is a collection of monitor
objects in which all the objects o are distinct. We have observed
that in the monitor dataflow graph model of a Java program, the
total number of Java objects is finite. Hence the number of
different possible monitor sets for that program is finite.
 In the Java virtual machine specification [20] there is no
value provided for the maximum counter size �; presumably it
is so large that other significant resource limits would be
reached first. We simply assume that � is larger than any
nesting of monitorenter-monitorexit pairs in the program
we are analyzing.
 There is a natural partial order �, based on counter values, on
the set of all monitor sets: m1 � m2, if for each (o, c) � m1, (o, d)
� m2 for some counter d, c � d � �. One can then define < as m1

< m2 if m1 � m2 and m1 � m2. For a fixed Java program the set of
all possible monitor sets for that program satisfies an important
condition: any ascending chain of the form

 m1 < m2 < … < mk < … is finite. (4.2.1)

 We next want to define monitor sets for basic blocks, edges,
and nodes. For a given method M with basic block set B and b
� B, we first motivate the definition of the monitor set �(b).
Suppose exactly one basic block, say bn � b (where n represents
monitorenter) contains a monitorenter instruction
associated with object o, and another basic block, say bx (where
x represents monitorexit) contains the matching
monitorexit instruction. Suppose also that there are no
possible paths of basic blocks with cycles. If there is a path

bn � … � b � … � bx

of basic blocks from bn to bx which includes b, we would say
that (o,1) is in �(b), i.e. all the instructions in b execute under
the guard of the monitor object o. Of course, we have to allow
for cycles and synchronization blocks nested c levels deep. The
natural generalization and formal definition, which handles both
cycles and nesting is as follows. For a fixed object o, let c be
the largest positive integer such that there exist:

• A set of integers n1, …, nc representing blocks
containing monitorenter instructions;

• A set of integers x1, …, xc representing blocks
containing monitorexit instructions;

• A collection of basic blocks such that
inb in B

contains a monitorenter instruction for which o is
the associated object, i = 1, …, c;

• A collection of basic blocks such that
ixb in B

contains one of the monitorexit instructions
corresponding to

inb ’s monitorenter instruction, i

= 1, …, c.
• A path of the form:

1nb �…�
2nb �…�

cnb �…� b �…�
cxb �…�

2xb �
1xb

Then we say that (o, c) is in �(b) if c � �, and (o, �) is in �(b) if
c > �, where �, is the maximum possible counter value for any
monitor object. In the absence of cycles c will be less than �,
by the assumption we made about �. However, when cycles are
present, then monitor objects of the form (o, �) may exist.
 Next, for edges e and nodes n, the definitions of the monitor
sets �(e) and �(n) are recursive and interdependent. We give a
three-part definition for �(e). An edge e = (n, b, n�) joins a node
n to a node n� via a call from a basic block b. Hence any
monitors in effect at the node n or the block b will be in force
for e. Thus a monitor object (o, c) is in �(e) if either of the
following conditions holds:

i. (o, c) � �(b);
ii. (o, c) � �(n).

However, when (o, p) � �(n) and (o, q) � �(b), then both the
edge and block contribute to synchronizing the successors of e.
For example, (o, p) could arise via p consecutive calls of a
synchronized method, and (o, q) could come from q nested

synchronized blocks. Backing out of the synchronization would
require p + q levels. Therefore,

iii. if (o, p) � �(n) and (o, q) � �(b), then (o, p + q) is in
�(e) when p + q � �, and otherwise (o, �) is in �(e).

 Finally, a node n = (M, R, P) will be guarded by monitors on
any edge which leads to n. Furthermore, n will have monitors if
its target method M is declared to be synchronized. With
these observations we can see that a monitor object (o, c) is in
�(n) for node n = (M, R, P) if one of the following three
conditions holds:

i. M is static and synchronized, o is the class
object of the class which declares M. Either c = 1 or (o, c
– 1) � �(e) for an edge ending at n;

ii. M is synchronized, but not static, o is any
element of R, and either c = 1 or (o, c – 1) � �(e) for an
edge ending at n;

iii. M is not synchronized, and (o, c) � �(e) for an edge
ending at n.

 Observe that the monitor sets for basic blocks capture only
local behavior within a single method, i.e. their computation
only requires an intraprocedural analysis. The monitor sets for
nodes and edges necessitate interprocedural analysis using the
results of the basic block computation. All the �(b) are
computed first, and then used to compute �(e) and �(n) together.

4.3 MONITOR DATAFLOW
ALGORITHM
 Next we present the monitor dataflow algorithm for

computing the monitor sets according to the preceding
definitions. It breaks into two pieces, one which handles basic
blocks and one which deals with nodes and edges. They appear
in Figures 3 and 4.

 The monitor dataflow algorithm can be viewed as
calculations on a semilattice [17] with � as the join operation.
We introduce two other operations, + and –, involving monitor
sets. The state transformation functions are defined using + and
– in Figure 3, and + in Figure 4. We first define all three
operations for a monitor set m and an object o.

 We define plus (+), corresponding to monitorenter, as
follows:

• if (o, c) � m for some c, we replace (o, c) in m by (o,
min(c + 1, �));

• otherwise, we add (o,1) to m.

The resulting set is m + o.

 For the minus (–) operation, corresponding to
monitorexit,

• if (o,1) � m, we remove it from m;

• if (o, c) � m for c > 1, we replace (o, c) in m by (o, c –
1).

The resulting set is m – o. Note the importance of our
assumption that � is larger than the maximum nesting in
programs to be analyzed. Choosing an � that is too small will
result in premature removal of o from the monitor set m.

 For the union (�) of a set m with an object o,

 1. �(b) � � for all basic blocks b
 2. queue � b0 (the entry basic block)
 3. while queue � �:
 4. b � pop(queue)
 5. mb � �(b)
 6. if b has monitorenter with object O then mb � mb + O

 7. if b has monitorexit with object O then mb � mb – O
 8. for all s � �(b):
 9. ms � �(s)
 10. �(s) � ms � mb

11. if �(s) � ms then push(s)

Figure 3. Computing ����(b).

 1. �(x) � � for all call sites and edges.
 2. Compute in(x), �, and � for all call sites and edges.
 3. push n with in(n) � � or with in(e) � � and e=(n,b,n’) for some b and n’.
 4. while queue � �:
 5. pop(n)
 6. �(n) � �(n) + in(n)
 7. for all edges e=(n,b,n’) leaving n:
 8. �(e) � in(e) + �(n)
 9. t � �(n’) � �(e)
10. if t � �(n’) then:
11. �(n’) � t
12. push(n’)

Figure 4. Computing ����(n), ����(e), and source functions ���� and ����.

• if o does not appear in any monitor object of m, add
(o, c) to m;

• if (o, d) � m with d < c, replace (o, d) by (o, c) in m.

• if (o, d) � m with d � c, m remains unchanged.

The resulting set is m � (o, c).

 We extend +, –, and � to operations on two sets m1 and m2
by computing m1 (+, –, or �) o for each o � m2.

 The union operation expresses the fact that a graph node
successor inherits the monitor sets of its predecessors: if node i
has monitor set mi, i = 1, 2, and node 2 is a successor of node 1,
then at some point in the computation m2 will be replaced by m1
� m2. In terms of the partial ordering � introduced earlier, the
union operation satisfies

 m1 � m1 � m2 for all m1 and m2. (4.2.2)

Given a method with a set B of basic blocks, the piece of the
monitor dataflow algorithm for computing �(b) for each b � B
appears in Figure 3. Steps 1 and 2 initialize all the sets and
prime the queue with the entry basic block. Steps 3–11 perform
a fixed point iteration to refine the definitions of each �(b). A
basic block is popped (step 4), and its current monitor set is
saved (step 5). The saved value is updated if the block ends
with either a monitorenter or monitorexit, using the + or –
operation, respectively (steps 6, 7). Then for each successor of
the popped block (step 8), we compute the union of its monitor
set with the saved value (steps 9–10), thus propagating
predecessors’ monitor sets to successors. If the successor’s
monitor set changed, the successor is added to the queue (step
11). Without this test, the algorithm would loop endlessly in the
presence of cycles.

 The portion of the monitor dataflow algorithm for computing
�(e) and �(n) for nodes and edges appears in Figure 4. It also
computes two functions that are needed for reporting source
information, i.e. where synchronization originates. For each
object o contained in a monitor object (o, c), the node source
function �(o) is the set of nodes whose target methods are
synchronized on the object o. The edge source function �(o) is
the set of edges each of which is contained within the basic
block sequence initiating the synchronization under object o via
a matched monitorenter-monitorexit pair.

 The main idea of the algorithm is to propagate monitor sets
from predecessors to successors in the monitor dataflow graph,
by passing the monitor sets and associated nodes into a queue
and performing a fixed point iteration (steps 4–12). Step 1
defines all �(e) and �(n) to be null sets, and then initial values
in(e) and in(n) are computed (step 2). The value in(e) is simply
�(b), where e = (n, b, n�). The value in(n) is the result of carrying
out parts i and ii of the definition of �(n) in Section 4.2. At this
time the source maps are also computed, and they are simply
inversions of in(e) and in(n): e [respectively n] � �(o)
[respectively �(o)] if (o, c) � in(e) [respectively in(n)] for
some c. Step 3 initializes the queue with all the relevant nodes
for which computation should begin. They are any nodes n
whose initial value in(n) is non-empty or which begin an edge,
that is, e = (n, …), whose initial value in(e) is non-empty. The
main loop (steps 4–12) begins by popping a node (step 5) and
updating its monitor set value to include the initial values (step
6). Then the monitor information is propagated from all edges e

= (n, b, n�) leaving n (steps 7–12). The edge monitor set is
updated to include the monitors which cover the entire node
(step 8), and the monitors of the edge apply to the successor
node n� (steps 9–11). If the computation changed the
successor’s monitor set, it is placed back on the queue (steps
10–12). Note that in updating we use the + operator in steps 6
and 8, because we want to reflect the cumulative change in the
counters (see condition iii in the definition of �(e) in Section
4.2). In relating a successor’s monitor set to that of its
predecessor, we use the � operator, as mentioned earlier in the
definition of union.

 We conclude this section by proving that the algorithms in
Figures 3 and 4 always terminate. In both algorithms a basic
block or graph node x is pushed onto the queue only if �(x)
changes as the result of a union operation

�(x) � �(x) � m

for some monitor set m, that is,

�(x) < �(x) � m.

However, by (4.2.1) and (4.2.2), this condition can hold for a
fixed x only a finite number of times. Thus the queue empties
after a finite number of steps, and the algorithms always
terminate. Our proof is similar to that of Kildall [17].

 We remark that the interprocedural control and data flow
precision in our analysis is crucial. We identify attributes such
as parameter types and receiver types associated with method
invocations. With less precision, our results would be more
conservative. As an example, in Figure 1 load() is
synchronized. However, our analysis concludes that there is a
unique receiver props for each thread. Hence this particular
synchronization is not of concern, since each thread has its own
separate monitor.

 In the worst case, the algorithm is exponential. However, on
realistic applications, the runtime is quite reasonable. For
example, an analysis of ECPerf [25], with an analysis scope of
20,000 classes, it ran for less than five minutes.

 Although we have stated our algorithms in the context of
analyzing Java code, they can be applied to any language that
supports monitors. Examples that come to mind are Concurrent
Euclid [16], Concurrent Pascal [5], Mesa/Cedar [26], and
Modula-2 [10].

5. ASSESSMENT AND FUTURE WORK
 It is appropriate to compare our approach to the use of
dynamic techniques, including runtime profilers. There are at
least three weaknesses of only using runtime profiling:

o the tools to profile a large set of library routines are
not always available to all developers;

o programmers usually do not have access to a
comprehensive set of test cases to profile;

o profiling usually can not adequately cover all load
conditions that may arise, especially in complicated
web application environments. This includes the
simulation of a large number of failure scenarios that
are hard to replicate.

The advantage of our approach is that all paths through the code
are covered, and unwanted synchronization can be discovered

during development, before the code goes into production where
it is much more expensive to diagnose and repair. Because our
approach is conservative and can generate false positives, the
developer must analyze the results. The key is to minimize the
false positive rate. However, the results from our algorithm can
be used to direct the use of a runtime profiler. We suspect that
the combination can further reduce the false positive rate. We
believe that profiling and static methods are complementary and
can best be used together (e.g., Choi et al.[7]).

 Another important question is how we handle native methods
(methods written in a language other than Java). This is more a
question about the underlying JaBA static analysis framework
rather than about the algorithms presented in this paper. In fact,
the JaBA implementation includes hand coded implementations
of the most widely used native methods. However, we do not
have a complete model of all native methods in the Java runtime
libraries. Native methods must be added as needed to achieve
complete control and data flow analyses.

 The next issue is the modeling of Java reflection. As with
native methods, the issue is about how the interprocedural
control and data flow analyses handle it. We have successfully
constructed a prototype of JaBA that handles
Class.forName() and Class.newInstance(). In
some cases the names of the classes are known, because the
names are string constants. In cases where the name of the class
is computed or read from an external source (e.g., a file), cast
operations on the result of newInstance() are used to get a
first order approximation of the classes being instantiated. Class
hierarchy analysis can also be used to determine the possible
classes to instantiate. In some cases, programmers will need to
provide assistance in identifying which classes should be
instantiated by the newInstance() calls. We believe that
other Java reflection methods can also be handled, including
calls to methods (including constructors) and access to fields.

 The next challenge is with modeling Java’s dynamic loading
and binding of classes during runtime. JaBA models
ClassLoader trees, which is important in defining name
spaces for complex applications. In server environments, and
particularly those that conform to the J2EE1, the analysis can be
closed world, since all of the code to be deployed in the server is
known. Dynamically loaded code from unknown sources (e.g.,
mobile code from a web site) is not part of the J2EE
programming model. So, the algorithms we describe in this
paper are sufficient for a large and important set of applications.
The algorithms would need to be extended to handle open world
analysis where the classes being called are outside the analysis
scope. In particular, the reporting of unwanted synchronization
would need to identify places where the interprocedural analysis
might call code outside the analysis scope, and therefore not
identify synchronized tail nodes and/or sources of
synchronization.

 Our algorithm detects unwanted synchronization. The next
step is to identify whether the synchronization is actually
necessary. The addition of race detection (see e.g. [7], [8]) is
one possible approach to determine whether the synchronization
is really required. In the presence of potential race conditions,

1 J2EE is a trademark of Sun Microsystems, Inc.

there is a need to identify program transformations that can
eliminate the unwanted synchronization. One possible approach
is to use program slicing [11], [27] to identify statements in the
program that require synchronization versus those parts of the
program for which synchronization is unwanted.

 An important issue is the integration of this algorithm into a
tool with acceptable usability characteristics. In particular,
mechanisms are needed to minimize the potentially large
number of paths that may be reported. Specifically,
synchronization often is necessary. We need to develop
reporting filters that can be applied to omit paths with such
synchronization sources.

 In our prototype, we made a number of simplifying
assumptions. At the moment, our implementation of the
algorithm does not process catch and finally blocks.
Handling of catch blocks should be straightforward when the
invocation graph contains edges for thrown and caught
exceptions.

6. CONCLUSIONS
 In this paper we have presented an approach to improving
program performance by automatically calculating paths in an
invocation graph from head nodes to tail nodes that have been
identified as having unwanted synchronization. The paths go
through the program points that originate the synchronization
and thus create the opportunity to assess the feasibility of
removing the synchronization, perhaps via a program
restructuring. For large applications our approach performs an
analysis that can not be done manually. The algorithms can be
integrated within software development environments so that the
programmer can identify unwanted synchronization trouble
spots while the code is being developed. Since our prototype
works on object code, it can handle middleware and
applications, even when the source code is unavailable. While
our algorithm and prototype described in this paper were written
for Java, the basic concept and algorithms applies to other
languages and runtimes that have a comparable structure for
monitor enters / exits.

7. ACKNOWLEDGMENTS
 We wish to thank Peter Sweeney for building program
performance traces to validate out intuitions about expensive tail
nodes; Jong-Doek Choi, Harini Srinivasan, and Peter Sweeney
for constructive criticism of the paper; and David Grove, Julian
Dolby, and Jong-Doek Choi for insights about the monitor
dataflow algorithm. We would also like to thank our colleagues
in the IBM Haifa Research Laboratory, particularly Sara Porat,
and Marina Biberstein, for their contributions of the class file
parser, control flow graph, and a Java virtual machine simulator
framework used by JaBA.

8. REFERENCES
[1] O. Agesen. The cartesian product algorithm, in Proceedings

of the Ninth European Conference on Object-Oriented
Programming (Aarhus, Denmark, August 1995), 2-26.

[2] J. Aldrich, C. Chambers, E. G. Sirer, and S. Eggars, Static
Analyses for Eliminating Unnecessary Synchronization
from Java Programs, in Proceedings of Static Analysis
Symposium (Venice, Italy, September 1999), Lecture

Notes in Computer Science, A. Cortesi and G. File (Eds.),
vol. 1694, Springer-Verlag, 1999, 19-38.

[3] B. Blanchet. Escape analysis for object oriented languages.
Application to Java, in Proceedings of ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications (Denver, Colorado,
November 1999), 20-34.

[4] J. Bogda and U. Hölzle. Removing unnecessary
synchronization in Java, in Proceedings of ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications (Denver, Colorado,
November 1999), 35-46.

[5] P. Brinch Hansen. The programming language concurrent
Pascal. IEEE Transactions on Software Engineering 1 (2),
June 1975, 199-207.

[6] J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S.
Midkiff. Escape analysis for Java, in Proceedings of ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (Denver, Colorado,
November 1999), 1-19.

[7] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
M. Sridharan. Efficient and precise datarace detection for
multithreaded object-oriented programs, in Proceedings of
the ACM SIGPLAN Conference on programming language
design and implementation (Berlin, Germany, June 2002),
258-269.

[8] J.-D. Choi and S. L. Min. Race frontier: reproducing data
races in parallel-program debugging, in Proceedings of the
3rd ACM Symposium on Principles and Practice of Parallel
Programming (Williamsburg, Virginia, April 1991), 145-
154.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms, The MIT Press, Cambridge,
Massachusetts, 1992.

[10] B. Cornelius. Programming with TopSpeed Modula-2.
Addison-Wesley, Reading, Massachusetts, 1991.

[11] A. De Lucia. Program slicing: methods and applications, in
Proceedings of the First International Workshop on Source
Code Analysis and Manipulation, IEEE Computer Society
Press, Los Alamitos, California (Florence, Italy, November
2001), 142-149.

[12] M. Emami, R. Ghiya, and L. Hendren, Context-sensitive
interprocedural points-to analysis in the presence of
function pointers, in Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (Orlando, Florida, June 1994), 242-256.

[13] R. Fitzgerald, T. B. Knoblock, E. Ruf, B. Steengaard, and
D. Tarditi. Marmot: an optimizing compiler for Java,
Software Practice and Experience, 30 (3), March 2000,
199-232.�

[14] H. W. Gunther. White paper, Development Best Practices
for Performance and Scalability, IBM WebSphere
Application Server, Standard and Advanced Editions,
September, 2000, http://www-

900.ibm.com/websphere/download/pdf/ws_bestprac-
tices.pdf.

[15] A. Heydon and M. Najork, Performance Limitations of the
Java Core Libraries, JAVA ’99 (San Francisco, California,
June 1999), 35-41.

[16] R. C. Holt. Concurrent Euclid, the Unix System, and
Tunis, Addison-Wesley, Reading, Massachusetts, 1983.

[17] G. A. Kildall. A Unified Approach to Global Program
Optimization, in Proceedings of Principles of Programming
Languages (Boston, Massachusetts, October 1973), 194-
206.

[18] L. Koved, M. Pistoia, and A. Kershenbaum. Access rights
analysis for Java, in Proceedings of ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications (Seattle, Washington,
November 2002), 359-372.

[19] L. Koved, JABA—JAva Bytecode Analysis
http://www.research.ibm.com/javasec/JaBA.html.

[20] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification, Addison-Wesley, Reading, Massachusetts,
1997.

[21] J. Plevak and A. Chien. Precise concrete type
inference for object-oriented languages, in Proceedings
of ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications
(Portland Oregon, October 1994), 324-340.

[22] E. Ruf. Effective synchronization removal for Java, in
Proceedings of ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation
(Vancouver, British Columbia, Canada, June 2000), 208-
218.

[23] A. S�lcianu and M. Rinard. Pointer and escape analysis for
multithreaded programs, in Proceedings of the 8th ACM
Symposium on Principles and Practice of Parallel
Programming (Snowbird, Utah, June 2001), 12-23.

[24] O. Shivers. Control-flow analysis in Scheme, in
Proceedings of ACM SIGPLAN Conference on
Programming Languages Design and Implementation
(Atlanta, Georgia, June 1988), 164-174.

[25] Sun Corporation. Java 2 platform, Enterprise edition
(J2EE) Ecperf, http://java.sun.com/j2ee/ecperf/.

[26] W. Teitelman. A tour through Cedar. IEEE Transactions
on Software Engineering, SE-11 (3), March 1985, 285-302.

[27] F. Tip. A survey of program slicing techniques, Journal of
Programming Languages, 3 (3), September 1995, 121-189.

[28] J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs, in Proceedings of ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications (Denver, Colorado,
November 1999), 187-206.

