IBM Research Report

Matroid Reinforcement

Francisco Barahona, Herve Kerivin
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

MATROID REINFORCEMENT

FRANCISCO BARAHONA AND HERVE KERIVIN

Abstract

For a matroid M, Edmonds proved that its ground set contains k disjoint bases if and only if $|A| \geq k(r(E)-r(\bar{A}))$ for every subset A of the ground set E. Here r is the rank function of M. We study the system of inequalities $x(A) \geq k(r(E)-r(\bar{A}))$, $0 \leq x \leq u$. We show that if u is integer valued then this defines a polyhedron with integer extreme points. We also show that this is a TDI system. We give a simple combinatorial algorithm for solving the associated optimization problem. Related results have been obtained by Frank \& Tardos with the use of generalized polymatroids.

1. Introduction

Consider a graph $G=(V, E)$, for a family of disjoint vertex-sets $\left\{S_{1}, \ldots, S_{p}\right\}$ let $\delta\left(S_{1}, \ldots, S_{p}\right)$ be the set of edges with endpoints in different sets of this family. It has been proved in [Tutte, 1961] and [Nash-Williams, 1961] that G contains k edge-disjoint spanning trees if and only if

$$
\left|\delta\left(S_{1}, \ldots, S_{p}\right)\right| \geq k(p-1)
$$

for every partition $\left\{S_{1}, \ldots, S_{p}\right\}$ of V.
Let $M=(E, r)$ be a matroid where E is its ground set and r is its rank function. The theorem above was generalized in [Edmonds, 1965] to prove that M contains k disjoint bases if and only if

$$
|A| \geq k(r(E)-r(\bar{A})),
$$

for every subset $A \subseteq E$. Here $\bar{A}=E \backslash A$.
The following matroid reinforcement problem was introduced in [Cunningham, 1985b] for graphic matroids. For every element e let $x(e)$ be the number of parallel copies to be made of e, notice that $x(e)=0$ means that e is not taken at all. Let $u(e)$ be an upper bound for $x(e)$. Let $d(e)$ be the cost of making a copy of e. The linear program below finds a minimum cost set of elements containing k disjoint bases.

$$
\begin{align*}
& \operatorname{minimize} d x \tag{1}\\
& \text { subject to } \\
& x(S) \geq k(r(E)-r(\bar{S})) \text {, for all } S \subseteq E \text {, } \tag{2}\\
& 0 \leq x(e) \leq u(e) . \tag{3}
\end{align*}
$$

In this note we study the linear program above. We show that if u is integer valued then (2)-(3) defines a polyhedron with integer vertices. We also show that if d is integer then the linear program above has a dual optimal solution that is integer. This means that (2)-(3) is totally dual integral (TDI). We give a simple combinatorial algorithm to solve this linear program. The case of graphic matroids was solved in [Cunningham, 1985b], later a faster algorithm was given in [Barahona, 2002].

[^0]In [Frank and Tardos, 1988] similar results were shown for the slightly different version below:
$\operatorname{minimize} d x$
subject to
$x(S) \geq k(r(E)-r(\bar{S}))-|A|$, for all $S \subseteq E$,
$x(e) \geq 0$.

Here every element e is taken, and $x(e)$ represents the number of extra copies of it. They used the theory of Generalized Polymatroids.

Now we introduce some notation. If x is a function that associates with every element $e \in E$ a value $x(e)$, we use $x(S)$ to denote $\sum_{e \in S} x(e)$, for $S \subseteq E$.

A property of the rank function r that will be used in the next section is the submodular inequality, namely for any two subsets A and B of E,

$$
r(A \cup B)+r(A \cap B) \leq r(A)+r(B)
$$

This note is organized as follows. In Section 2 we study a problem that will be used as a subroutine. In Section 3 we give an algorithm for solving (1)-(3).

2. A key subroutine

The problem below will be used in the next section:

$$
\begin{equation*}
\operatorname{minimize} u(A)-k(r(E)-r(\bar{A})) \tag{4}
\end{equation*}
$$

The minimization in (4) is over all sets $A \subseteq E$. We can divide by k and since $r(E)$ is a constant we obtain
minimize $w(A)+r(\bar{A})$.
Following [Cunningham, 1985b] we treat (5) by associating a variable $y(e)$ to each element e and solving

$$
\begin{align*}
& \operatorname{maximize} y(E) \tag{6}\\
& \text { subject to } \\
& y(S) \leq r(S) \text {, for all } S \subseteq E, \tag{7}\\
& y \leq w \tag{8}
\end{align*}
$$

First notice that for any $A \subseteq E, y(E)=y(A)+y(\bar{A}) \leq w(A)+r(\bar{A})$. Next we need to find a set A such that the equality holds.

Suppose we apply the greedy algorithm to solve (6)-(8). Starting from a feasible vector \bar{y}, we raise each component $\bar{y}(e)$ until either $\bar{y}(e)=w(e)$, or e is in a set S such $\bar{y}(S)=r(S)$. Such a set is called tight. Consider two tight sets A and B, their union is also tight, because

$$
\begin{aligned}
& r(A)+r(B)=\bar{y}(A)+\bar{y}(B)=\bar{y}(A \cup B)+\bar{y}(A \cap B) \leq \\
& r(A \cup B)+r(A \cap B) \leq r(A)+r(B) .
\end{aligned}
$$

Let \bar{A} be the union of all tight sets, this is also tight. Then $\bar{y}(E)=\bar{y}(A)+\bar{y}(\bar{A})=$ $w(A)+r(\bar{A})$. So A solves (5).

Here the key operation is to find for a given element e a set S minimizing $r(S)-\bar{y}(S)$, with $e \in S$. This gives the amount by which $\bar{y}(e)$ can be increased. For the case of graphic matroids this reduces to a minimum cut problem, see [Cunningham, 1985a], [Picard and Queyranne, 1982], [Padberg and Wolsey, 1983]. For the general case a strongly polynomial algorithm was given in [Cunningham, 1984], where it is assumed the existence of an oracle that tests independence in M.

The next lemma shows a property of the solution of (5), needed in the next section.
Lemma 1. Let A be the solution obtained for (5). Let $e \in A$, suppose we increase $w(e)$ and let A^{\prime} be the new solution obtained. Then either $A^{\prime}=A$ or $A^{\prime} \subset A$.

Proof. We can continue applying the greedy algorithm starting with the vector \bar{y} obtained before increasing $w(e)$. Let y^{\prime} be the new vector obtained. Then either $y^{\prime}(e)=w(e)$ or e is in a tight set. In the first case $A^{\prime}=A$, and in the second case $A^{\prime} \subset A$.

3. Reinforcement

Consider the pair of dual linear programs

$$
\begin{align*}
& \operatorname{minimize} d x \tag{9}\\
& \text { subject to } \\
& x(S) \geq k(r(E)-r(\bar{S})), \text { for all } S \subseteq E, \tag{10}\\
& 0 \leq x(e) \leq u(e) . \tag{11}\\
& \max \sum \gamma(S) k(r(E)-r(\bar{S}))-\sum u(e) \beta(e) \tag{12}\\
& \sum_{\{S: e \in S\}} \gamma(S) \leq d(e)+\beta(e), \quad \text { for all } e, \tag{13}\\
& \gamma \geq 0, \quad \beta \geq 0 . \tag{14}
\end{align*}
$$

We are going to present a dual algorithm, where constraints (13) and (14) are always satisfied, and the value of (12) always increases. A primal vector is being constructed so that complementary slackness and primal feasibility are reached at the end.

We start with $\bar{\gamma}=0, \bar{\beta}=0, \bar{x}=0$. We are going to choose a set $S \subseteq E$ and increase $\bar{\gamma}(S)$ by ϵ. We have to ensure that inequalities (13) are satisfied. So let H be the set of elements such that (13) are satisfied as equation. We have to increase by ϵ all values $\bar{\beta}(e)$, for $e \in S \cap H$. Then the objective function changes by

$$
\epsilon(k(r(E)-r(\bar{S}))-u(S \cap H)) .
$$

Thus we choose S by solving

$$
\begin{equation*}
\operatorname{minimize} u(A \cap H)-k(r(E)-r(\bar{A})) \text {. } \tag{15}
\end{equation*}
$$

The minimization in (15) is over $A \subseteq E$. This is done as in Section 2. We should set $w(e)=0$ for all $e \notin H$. Notice that $A=\emptyset$ gives the value zero, so the minimum in (15)
is always nonpositive. If the minimum in (15) is negative we use the largest value of ϵ so that a new inequality (13) becomes tight. This is

$$
\begin{equation*}
\bar{\epsilon}=\min \left\{\bar{d}(e)=d(e)-\sum_{\{T: e \in T\}} \bar{\gamma}(T) \mid e \in S \backslash H\right\} . \tag{16}
\end{equation*}
$$

If this minimum is taken over the empty set we say that $\bar{\epsilon}=\infty$. In this case the dual problem is unbounded and the primal problem is infeasible.

Now assume that an edge f gives the minimum in (16). We change $(\bar{\gamma}, \bar{\beta})$, add f to H and solve (15) again. Let S^{\prime} be the new solution of (15). If $S^{\prime}=S$ then $\bar{\beta}(f)$ should increase, and to satisfy complementary slackness we set

$$
\begin{equation*}
\bar{x}(f)=u(f) \tag{17}
\end{equation*}
$$

If $S^{\prime} \subset S, f \notin S^{\prime}$, then $\bar{\beta}(f)$ remains equal to zero. In this case $\bar{x}(f)$ can take a value less than $u(f)$. We set

$$
\begin{equation*}
\bar{x}(f)=k \bar{y}(f), \tag{18}
\end{equation*}
$$

where $\bar{y}(f)$ is the value obtained when applying the greedy algorithm in (6)- (8). We shall see below that at the end \bar{x} will be feasible and complementary slackness will be satisfied. We increase $\bar{\gamma}\left(S^{\prime}\right)$ and $\bar{\beta}(e)$ for $e \in S^{\prime} \cap H$.

We continue until either one of the following two cases arise.

- Case 1: $\bar{\epsilon}=\infty$, this implies that the dual problem is unbounded.
- Case 2: $S^{\prime}=\emptyset$, at this point an optimal solution has been obtained, as shown in the Lemma below.

Lemma 2. Suppose that the solution obtained for (4) is $A=\emptyset$. Let \bar{y} be the solution obtained for (6)-(8). If we set $\bar{x}=k \bar{y}$, then \bar{x} is feasible for (9)-(11) and complementary slackness is satisfied.

Proof. Notice that the minimum in (4) is zero. If we set $u=\bar{x}$ and solve (4) again the solution remains the same. So all inequalities (10) are satisfied.

The algorithm produces a nested sequence of sets $E=S_{1} \supset S_{2} \supset \ldots S_{k}=\emptyset$ with $\bar{x}\left(\bar{S}_{i}\right)=k r\left(\bar{S}_{i}\right)$. We have that $\bar{\gamma}_{S}$ can be positive only for sets in this sequence.

We have $\bar{x}(E)=k r(E)$ and $\bar{x}\left(\bar{S}_{i}\right)+\bar{x}\left(S_{i}\right)=\bar{x}(E)=k r(E)$. Thus $\bar{x}\left(S_{i}\right)=k(r(E)-$ $r\left(\bar{S}_{i}\right)$.

We have already seen that whenever $\bar{\beta}(e)>0$ then $\bar{x}(e)=u(e)$, thus \bar{x} and $(\bar{\gamma}, \bar{\beta})$ satisfy complementary slackness.

The formal description of the algorithm is below.

Algorithm A

- Step 0. Start with $\bar{\gamma}=0, \bar{\beta}=0, \bar{x}=0, S=E, H=\emptyset$.
- Step 1. Compute $\bar{\epsilon}$ as in (16). If $\bar{\epsilon}=\infty$ stop, the problem is infeasible. Otherwise update $\bar{\gamma}_{S} \leftarrow \bar{\gamma}_{S}+\bar{\epsilon}$, $\bar{\beta}_{e} \leftarrow \bar{\beta}_{e}+\bar{\epsilon}$ for all $e \in H \cap S$.
- Step 2. Let f be an element giving the minimum in (16), add f to H. Solve problem (15) to obtain S^{\prime}.
- Step 3. If $S^{\prime}=S$ update \bar{x} as in (17). Otherwise update \bar{x} as in (18). If $S^{\prime}=\emptyset$ stop. Otherwise set $S \leftarrow S^{\prime}$ and go to Step 1 .

Since at each iteration one element is added to H, this algorithm takes at most $|E|$ iterations. As seen in Section 2, at each iteration the key operation is to find for a given element e, a set $S \subseteq E$ that minimizes $r(S)-y(S)$, with $e \in S$.

When $k=1$ and $u=\infty$, Algorithm A reduces to the greedy algorithm for matroids.

References

[Barahona, 2002] Barahona, F. (2002). Network reinforcement. Report, IBM Research.
[Cunningham, 1984] Cunningham, W. H. (1984). Testing membership in matroid polyhedra. J. Combin. Theory Ser. B, 36(2):161-188.
[Cunningham, 1985a] Cunningham, W. H. (1985a). Minimum cuts, modular functions, and matroid polyhedra. Networks, 15:205-215.
[Cunningham, 1985b] Cunningham, W. H. (1985b). Optimal attack and reinforcement of a network. J. of ACM, 32:549-561.
[Edmonds, 1965] Edmonds, J. (1965). Lehman's switching game and a theorem of Tutte and NashWilliams. J. Res. Nat. Bur. Standards Sect. B, 69B:73-77.
[Frank and Tardos, 1988] Frank, A. and Tardos, É. (1988). Generalized polymatroids and submodular flows. Math. Programming, 42(3, (Ser. B)):489-563. Submodular optimization.
[Nash-Williams, 1961] Nash-Williams, C. S. J. A. (1961). Edge-disjoint spanning trees of finite graphs. J. London Math. Soc., 36:445-450.
[Padberg and Wolsey, 1983] Padberg, M. W. and Wolsey, L. A. (1983). Trees and cuts. In Combinatorial mathematics (Marseille-Luminy, 1981), volume 75 of North-Holland Math. Stud., pages 511-517. NorthHolland, Amsterdam.
[Picard and Queyranne, 1982] Picard, J. C. and Queyranne, M. (1982). Selected applications of minimum cuts in networks. INFOR-Canada J. Oper. Res. Inform. Process., 20:394-422.
[Tutte, 1961] Tutte, W. T. (1961). On the problem of decomposing a graph into n connected factors. J. London Math. Soc., 36:221-230.
(F. Barahona) IBM T. J. Watson research Center, Yorktown Heights, NY 10589, USA

E-mail address, F. Barahona: barahon@us.ibm.com
(H. Kerivin) IMA, University of Minnesota

E-mail address, H. Kerivin: kerivin@ima.umn.edu

[^0]: Date: November 6, 2002.

