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MATROID REINFORCEMENT

FRANCISCO BARAHONA AND HERVE KERIVIN

Abstract. For a matroid M , Edmonds proved that its ground set contains k disjoint
bases if and only if |A| ≥ k(r(E)−r(Ā)) for every subset A of the ground set E. Here r
is the rank function of M . We study the system of inequalities x(A) ≥ k(r(E)− r(Ā)),
0 ≤ x ≤ u. We show that if u is integer valued then this defines a polyhedron with
integer extreme points. We also show that this is a TDI system. We give a simple com-
binatorial algorithm for solving the associated optimization problem. Related results
have been obtained by Frank & Tardos with the use of generalized polymatroids.

1. Introduction

Consider a graph G = (V, E), for a family of disjoint vertex-sets {S1, . . . , Sp} let
δ(S1, . . . , Sp) be the set of edges with endpoints in different sets of this family. It has
been proved in [Tutte, 1961] and [Nash-Williams, 1961] that G contains k edge-disjoint
spanning trees if and only if

|δ(S1, . . . , Sp)| ≥ k(p− 1),

for every partition {S1, . . . , Sp} of V .

Let M = (E, r) be a matroid where E is its ground set and r is its rank function. The
theorem above was generalized in [Edmonds, 1965] to prove that M contains k disjoint
bases if and only if

|A| ≥ k
(
r(E)− r(Ā)

)
,

for every subset A ⊆ E. Here Ā = E \A.

The following matroid reinforcement problem was introduced in [Cunningham, 1985b]
for graphic matroids. For every element e let x(e) be the number of parallel copies to be
made of e, notice that x(e) = 0 means that e is not taken at all. Let u(e) be an upper
bound for x(e). Let d(e) be the cost of making a copy of e. The linear program below
finds a minimum cost set of elements containing k disjoint bases.

minimize dx(1)
subject to

x(S) ≥ k
(
r(E)− r(S̄)

)
, for all S ⊆ E,(2)

0 ≤ x(e) ≤ u(e).(3)

In this note we study the linear program above. We show that if u is integer valued then
(2)-(3) defines a polyhedron with integer vertices. We also show that if d is integer then
the linear program above has a dual optimal solution that is integer. This means that
(2)-(3) is totally dual integral (TDI). We give a simple combinatorial algorithm to solve
this linear program. The case of graphic matroids was solved in [Cunningham, 1985b],
later a faster algorithm was given in [Barahona, 2002].
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In [Frank and Tardos, 1988] similar results were shown for the slightly different version
below:

minimize dx

subject to

x(S) ≥ k
(
r(E)− r(S̄)

)
− |A|, for all S ⊆ E,

x(e) ≥ 0.

Here every element e is taken, and x(e) represents the number of extra copies of it. They
used the theory of Generalized Polymatroids.

Now we introduce some notation. If x is a function that associates with every element
e ∈ E a value x(e), we use x(S) to denote

∑
e∈S x(e), for S ⊆ E.

A property of the rank function r that will be used in the next section is the submodular
inequality, namely for any two subsets A and B of E,

r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).

This note is organized as follows. In Section 2 we study a problem that will be used
as a subroutine. In Section 3 we give an algorithm for solving (1)-(3).

2. A key subroutine

The problem below will be used in the next section:

(4) minimize u(A)− k
(
r(E)− r(Ā)

)

The minimization in (4) is over all sets A ⊆ E. We can divide by k and since r(E) is a
constant we obtain

(5) minimize w(A) + r(Ā).

Following [Cunningham, 1985b] we treat (5) by associating a variable y(e) to each
element e and solving

maximize y(E)(6)
subject to
y(S) ≤ r(S), for all S ⊆ E,(7)
y ≤ w.(8)

First notice that for any A ⊆ E, y(E) = y(A) + y(Ā) ≤ w(A) + r(Ā). Next we need
to find a set A such that the equality holds.

Suppose we apply the greedy algorithm to solve (6)-(8). Starting from a feasible
vector ȳ, we raise each component ȳ(e) until either ȳ(e) = w(e), or e is in a set S such
ȳ(S) = r(S). Such a set is called tight. Consider two tight sets A and B, their union is
also tight, because

r(A) + r(B) = ȳ(A) + ȳ(B) = ȳ(A ∪B) + ȳ(A ∩B) ≤
r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).

Let Ā be the union of all tight sets, this is also tight. Then ȳ(E) = ȳ(A) + ȳ(Ā) =
w(A) + r(Ā). So A solves (5).
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Here the key operation is to find for a given element e a set S minimizing r(S)− ȳ(S),
with e ∈ S. This gives the amount by which ȳ(e) can be increased. For the case
of graphic matroids this reduces to a minimum cut problem, see [Cunningham, 1985a],
[Picard and Queyranne, 1982], [Padberg and Wolsey, 1983]. For the general case a strongly
polynomial algorithm was given in [Cunningham, 1984], where it is assumed the existence
of an oracle that tests independence in M .

The next lemma shows a property of the solution of (5), needed in the next section.

Lemma 1. Let A be the solution obtained for (5). Let e ∈ A, suppose we increase w(e)
and let A′ be the new solution obtained. Then either A′ = A or A′ ⊂ A.

Proof. We can continue applying the greedy algorithm starting with the vector ȳ obtained
before increasing w(e). Let y′ be the new vector obtained. Then either y′(e) = w(e) or
e is in a tight set. In the first case A′ = A, and in the second case A′ ⊂ A. ¤

3. Reinforcement

Consider the pair of dual linear programs

minimize dx(9)
subject to

x(S) ≥ k
(
r(E)− r(S̄)

)
, for all S ⊆ E,(10)

0 ≤ x(e) ≤ u(e).(11)

max
∑

γ(S) k
(
r(E)− r(S̄)

)
−

∑
u(e)β(e)(12)

∑

{S : e∈S}
γ(S) ≤ d(e) + β(e), for all e,(13)

γ ≥ 0, β ≥ 0.(14)

We are going to present a dual algorithm, where constraints (13) and (14) are always
satisfied, and the value of (12) always increases. A primal vector is being constructed so
that complementary slackness and primal feasibility are reached at the end.

We start with γ̄ = 0, β̄ = 0, x̄ = 0. We are going to choose a set S ⊆ E and increase
γ̄(S) by ε. We have to ensure that inequalities (13) are satisfied. So let H be the set
of elements such that (13) are satisfied as equation. We have to increase by ε all values
β̄(e), for e ∈ S ∩H. Then the objective function changes by

ε
(
k
(
r(E)− r(S̄)

)− u(S ∩H)
)
.

Thus we choose S by solving

(15) minimize u(A ∩H)− k
(
r(E)− r(Ā)

)
.

The minimization in (15) is over A ⊆ E. This is done as in Section 2. We should set
w(e) = 0 for all e /∈ H. Notice that A = ∅ gives the value zero, so the minimum in (15)
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is always nonpositive. If the minimum in (15) is negative we use the largest value of ε
so that a new inequality (13) becomes tight. This is

(16) ε̄ = min
{

d̄(e) = d(e)−
∑

{T : e∈T}
γ̄(T ) | e ∈ S \H

}
.

If this minimum is taken over the empty set we say that ε̄ = ∞. In this case the dual
problem is unbounded and the primal problem is infeasible.

Now assume that an edge f gives the minimum in (16). We change (γ̄, β̄), add f to
H and solve (15) again. Let S′ be the new solution of (15). If S′ = S then β̄(f) should
increase, and to satisfy complementary slackness we set

(17) x̄(f) = u(f).

If S′ ⊂ S, f /∈ S′, then β̄(f) remains equal to zero. In this case x̄(f) can take a value
less than u(f). We set

(18) x̄(f) = kȳ(f),

where ȳ(f) is the value obtained when applying the greedy algorithm in (6)- (8). We
shall see below that at the end x̄ will be feasible and complementary slackness will be
satisfied. We increase γ̄(S′) and β̄(e) for e ∈ S′ ∩H.

We continue until either one of the following two cases arise.

• Case 1: ε̄ = ∞, this implies that the dual problem is unbounded.
• Case 2: S′ = ∅, at this point an optimal solution has been obtained, as shown in

the Lemma below.

Lemma 2. Suppose that the solution obtained for (4) is A = ∅. Let ȳ be the solution
obtained for (6)-(8). If we set x̄ = kȳ, then x̄ is feasible for (9)-(11) and complementary
slackness is satisfied.

Proof. Notice that the minimum in (4) is zero. If we set u = x̄ and solve (4) again the
solution remains the same. So all inequalities (10) are satisfied.

The algorithm produces a nested sequence of sets E = S1 ⊃ S2 ⊃ . . . Sk = ∅ with
x̄(S̄i) = kr(S̄i). We have that γ̄S can be positive only for sets in this sequence.

We have x̄(E) = kr(E) and x̄(S̄i) + x̄(Si) = x̄(E) = kr(E). Thus x̄(Si) = k(r(E) −
r(S̄i).

We have already seen that whenever β̄(e) > 0 then x̄(e) = u(e), thus x̄ and (γ̄, β̄)
satisfy complementary slackness. ¤

The formal description of the algorithm is below.

Algorithm A

• Step 0. Start with γ̄ = 0, β̄ = 0, x̄ = 0, S = E, H = ∅.
• Step 1. Compute ε̄ as in (16). If ε̄ = ∞ stop, the problem is infeasible.

Otherwise update γ̄S ← γ̄S + ε̄,
β̄e ← β̄e + ε̄ for all e ∈ H ∩ S.

• Step 2. Let f be an element giving the minimum in (16), add f to H. Solve
problem (15) to obtain S′.
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• Step 3. If S′ = S update x̄ as in (17). Otherwise update x̄ as in (18). If S′ = ∅
stop. Otherwise set S ← S′ and go to Step 1.

Since at each iteration one element is added to H, this algorithm takes at most |E|
iterations. As seen in Section 2, at each iteration the key operation is to find for a given
element e, a set S ⊆ E that minimizes r(S)− y(S), with e ∈ S.

When k = 1 and u = ∞, Algorithm A reduces to the greedy algorithm for matroids.
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