
RC22637 (W0211-096) November 12, 2002
Computer Science

IBM Research Report

Anatomy of Autonomic Server Components

Kattamuri Ekanadham, Joefon Jann, Pratap Pattnaik,
Ramanjaneya Sarma Burugula, Donna Dillenberger

IBM Research Division
Thomas J. Watson Research Center

P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Autonomic Servers April 2002 1

Anatomy of Autonomic Server Components

Kattamuri Ekanadham
Joefon Jann

Pratap Pattnaik
Ramanjaneya Sarma Burugula

Donna Dillenberger

IBM Thomas J. Watson Research Center
Yorktown Heights, NewYork

{eknath, joefon, pratap, burugula, engd @ us.ibm.com}

Abstract

Autonomic systems are an essential part of modern server designs, and are key to the reduction of system-level com-
plexity. Some of the challenges faced in such a design are: Increase in complexity, as each service is often a composi-
tion of many other services; Variability in the characteristics of inputs encountered by a service; and Infeasibility of a
centralized control to mobilize resources in response to input variations. To face these challenges, the servers are
being modularly designed, with each component providing a standard interface. Components are no longer expected
to provide a rigid and deterministic functional behavior in all aspects of their interactions with other components.
They are expected to efficiently deal with the varying behaviors of other components, including faults. Components
can no longer rely on a centralized control to adjust their resources. Instead, they must be prepared to perceive
changes and to negotiate the exchange of resources on a voluntary basis. In summary, the subsystems must be self-
governing, self-organizing, self-stabilizing and self-healing in the surrounding world of unpredictable subsystems.
While there are many subsystems in the current servers that are self-organizing to varying degrees, it is necessary to
(a) formulate a common framework for every autonomic component and (b) develop general principles for their sta-
bility. In this paper, we address the first part. We propose an operational definition of an autonomic component of a
server, and identify the key features it must possess to be effective in the emerging environment. We discuss many
examples from servers and cast them in this light. Examples range from simple software subsystems such as memory
allocators, to more complex subsystems such as work-load managers invoking dynamic reconfiguration of resources
in large servers, and also include hardware components like prefetch engines and branch predictors. The second part
is an ongoing effort and we briefly summarize the direction we are pursuing. Often the constraints imposed by a sys-
tem are nonlinear and the trick is to come up with linear approximations where some properties of the systems may be
established under some simplified assumptions.

1 Introduction

The term, autonomic, is applied to computing systems [1] by taking the analogy from biological

systems. A component of a system is like a cell or organism that survives in an environment by (a)

receiving services rendered by others in the environment, (b) constantly evolving to fit in the envi-

ronment in which it must survive, and (c) performing certain services to others in the environ-

ment. In the short term, the organism perseveres to perform its functions despite adverse

circumstances, by readjusting itself within the degrees of freedom it has. In the long term, evolu-

tion of a species takes place, where environmental changes force permanent changes to the func-

tionality and behavior. While there may be many ways to perform a function, an organism uses its

local knowledge to adopt a method that economizes its resources.

Autonomic Servers April 2002 2

Autonomic computing paradigm imparts this same viewpoint to the components of a computing

system. The environment is the collection of components in a system. The services performed by

a component are reflected in the advertised methods of the component that can be invoked by oth-

ers. Likewise, a component receives the services of others by invoking their methods. The seman-

tics of these methods constitute the behavior that the component attempts to preserve in the short

term. In the long term, new resources and new methods may be introduced as technology

progresses. Like organisms, the components are not perfect. They do not always exhibit the adver-

tised behavior exactly. There can be errors, impreciseness or even cold failures. An autonomic

component watches for these variations in the behavior of other components that it interacts with

and adjusts to the variations.

In this paper we introduce a basic structure to a typical autonomic component. Section 3 delin-

eates four basic characteristics of an autonomic component:

(i) a behavior specification that remains invariant

(ii) a set of alternative implementations, each of which preserves the behavior, but may use different resources

and external services and hence has different implications on the quality of service

(iii) a set of environmental parameters that are not under the control of the component, but influence its perfor-

mance, and

(iv) an adaptive nature, which includes a means to evaluate the quality of service from a client’s perspective, a

means to evaluate the efficiency from a server’s perspective, a means to estimate the variations in the envi-

ronmental parameters and choosing the right implementation for each input.

We illustrate two speculative methodologies that periodically correct the speculated information.

While many system implementations may have these aspects buried in some detail, it is necessary

to identify them and delineate them, so that the autonomic nature of the design can be improved in

a systematic manner. We discuss several examples from server design and describe them in the

light of this framework.

One would hope that a systematic design of this nature leads to the application of known control

theory techniques, to show the stability characteristics of the algorithms. This is an ongoing study

and we hope that this infrastructure facilitates this study.

2 Previous Efforts

Reduction of complexity is not a new goal. During the evolution of computing systems, several

concepts emerged that help manage the complexity. Two notable concepts are particularly rele-

vant here: Object oriented programming and Fault-tolerant computing. We briefly describe them

and explain how autonomic systems extend them further.

Object oriented designs introduced the concept of abstraction, where the interface specification of

an object is separated from its implementation. Thus implementation of an object can proceed

independent of the implementation of dependent objects, since it uses only their interface specifi-

cations. While this approach has many advantages (such as hierarchical construction, inheritance,

overloading etc.), an important advantage that is relevant to the present discussion is that the rest

of the system is spared from knowing or dealing with the complexity of the internal details of the

implementation of the object. One can easily change an implementation without affecting the rest

of the system in any manner. Often an implementation is designed to optimize the performance

for a given class of inputs. By building higher level abstractions, one can invoke different imple-

Autonomic Servers April 2002 3

mentations (by overloading the method being invoked) depending upon the class into which a

given input falls. This primitive notion of reacting to the input characteristic is further refined in

autonomic systems. Each implementation requires a different set of resources. Changing from one

implementation to another might involve some costs. An autonomic system balances the gains

and losses involved by taking a goal-oriented approach. The goals are set at a higher level with

global view of the system as a whole.

Fault-tolerant systems are designed with additional support that can detect and correct any fault

out of a pre-determined set of faults. Usually the design of components and encoding of informa-

tion is done with enough redundancy to make recovery possible. This notion of resilience to a set

of known faults is further refined in autonomic systems. Autonomic systems do not expect that

other components operate correctly according to stipulated behavior. The input-output responses

of a component are constantly monitored and when a component’s behavior deviates from the

expectation, the autonomic system readjusts itself either by switching to an alternative component

or altering its own input-output response suitably. Thus, failure of a component might gracefully

degrade the performance of another component that uses it.

3 Autonomic Server Components

The basic structure of any Autonomic Server Component, C, is depicted in Figure 1, in which all

agents that interact with C are lumped into one entity, called the environment, to include (i) clients

that submit input requests to C, (ii) other components whose services can be invoked by C, and

(iii) resource managers that control the resources for C. The basic structure of any autonomic

component can be represented by the tuple: [Σ, Φ, β, Π, η, ψ, ξ, α]. The functional behavior of C

is captured by the first 3 symbols, Σ,Φ,β, where Σ is the input alphabet, Φ is the output alphabet,

and β is a relation specifying valid input-output pairs. Thus if C receives an input uεΣ, it delivers

Figure 1: Schematic View of an Autonomic Server Component [Σ,Φ,β,Π,η,ψ,ξ,α]

environment
state ξ

internal state ψestimated state ξ

Π

u ε Σ
v ε Φ
v’ ε Φ
....

β(u,v), β(u,v'), ...

algorithm α chooses an
implementation from Π

to optimize η

clients other servers

resource manager

autonomic server component C

Autonomic Servers April 2002 4

an output vεΦ, satisfying the relation β(u,v). The output variability permitted by the relation β (as

opposed to a function) is very common to most systems. As illustrated in Figure 1, a client is sat-

isfied to get any one of many possible outputs (v, v’,...) for a given input u, as long as they satisfy

some property specified β. An autonomic component usually has many alternative implementa-

tions, Π, available, to produce an acceptable output for a given input. Each of them may require

different resources and may produce outputs of different quality. For each input, the algorithm α
chooses a suitable implementation πεΠ and executes it producing the output. An essential ingre-

dient of an autonomic component is this choice of implementation. The choice needs to be made

to optimize some objective function, η. The objective may vary from system to system. Typically

it may include response time to the clients, utilization of available resources, employment of suit-

able resources/algorithms for anticipated input patterns etc. The sophistication of the autonomic

component depends upon the intelligence embedded in the algorithm α.

Implementations maintain an internal state, ψ, which may contain the necessary data structures

and book-keeping of the resources employed etc. The choice of an implementation certainly

depends on input u as well as on the internal state ψ. In addition, the state of the external environ-

ment, ξ, plays a critical role for optimal performance. The state ξ is an abstraction that includes

the input patterns arriving for C, the resources given to C (which are being dynamically adjusted

by an external resource manager), and the performance level (including failures and degradation)

of other components whose services are used by C. Thus the state information, ξ, is dynamically

changing and is distributed throughout the system. C cannot have complete and accurate knowl-

edge of ξ at any time. Hence, the best C can do is to keep an estimate, ξ, of ξ at any time and peri-

odically update it as and when it receives correct information from the appropriate sources. Thus

an implementation is a transformation of the form π: (u,ψ,ξ) → (v,ψ’,ξ’). Resource changes

independently change ψ and variations in the environment independently change ξ.

3.1 Approximation with Imperfect Knowledge
The crux of the intelligence in an autonomic component lies in the maintenance of accurate

knowledge on the speculative state ξ and in reacting to perceived changes in the environment by

choosing suitable implementations that optimize the objective η under those circumstances. Usu-

ally each implementation involves some arrangement of data upon which its algorithm operates.

Changing an implementation will involve some restructuring costs. Hence one must balance these

costs with the anticipated benefits from switching. Communication of environmental changes and

the reaction to these changes take non-trivial amount of time. Hence the algorithm must take the

hysteresis into account, to prevent oscillations in the decisions. We now focus on the maintenance

of the speculative state, ξ, of the environment. It can be done in two ways: by self-observation and

by collective observation. We will now discuss each of these methods.

3.2 Self-Observation
Here a component operates completely autonomously and does not receive any information about

its environment. The component deduces information on its environment solely from its own

interactions with the environment. For instance, it can keep a log of the input-output history with

its clients, to track both the quality that it is rendering to its clients as well as the pattern of input

arrivals. Similarly, it can keep the history of its interaction with each external service that it uses

and tracks its quality. Based on these observations, it adapts suitable method of implementation.

Autonomic Servers April 2002 5

When conditions change and the switching costs are tolerable, it switches to better implementa-

tions whenever possible. This strategy results in a very independent component that can survive in

any environment. However, the component cannot react to rapidly changing environment. It takes

a few interactions before it can assess the change in its environment. Thus, it will have poor

impulse response; but adapts very nicely to gradually changing circumstances. We illustrate this

with the example of a memory allocator.

Example 1. Memory Allocator
This simple example illustrates how an autonomic server steers input requests with frequently

observed characteristics to strategies that specialize in efficient handling of those requests. The

allocator does not require any resources or external services. Hence the only environmental infor-

mation, ξ, it speculates is the pattern of inputs.

The behavior, (Σ,Φ,β), of a memory allocator can be summarized as follows: The input set Σ has

two kinds of inputs: alloc(n) and free(a); The output set Φ has three possible responses: null,

error and an address. Alloc(n) is a request for a block of n bytes. The corresponding output is an

address of a block or an error indicating inability to allocate. Free(a) returns a previously allocated

block. The system checks that the block is indeed previously allocated and returns null or error

accordingly.

The quality of service, η, must balance several considerations: A client expects quick response

time and also that its request is never denied. A second criterion is locality of allocated blocks. If

the addresses are spread out widely in the address space, the client is likely to incur more transla-

tion overheads and prefers that all the blocks to be within a compact region of addresses. Finally

the system would like to minimize fragmentation and avoid keeping a large set of non-contiguous

blocks that prevent it from satisfying requests for large blocks.

Figure 2: A Self-Organizing Memory Allocator that adapts to input characteristics

Autonomic Servers April 2002 6

We illustrate a Π that has two implementations: The first is a linked-list allocator, shown at the

bottom of Figure 2. Here the allocator keeps the list of the addresses and sizes of the free blocks

that it has. To serve a new allocation request, it searches the list to find a block that is larger than

(or equal to) the requested size. It divides the block if necessary and deletes the allocated block

from the list and returns its address as the output. When the block is returned, it searches the list

again and tries to merge the block with any free adjacent portions in the free list.

The second strategy is called slab allocation, shown at the top of Figure 2. It reserves a contiguous

chunk of memory, called slab, for each size known to be frequently used. When a slab exists for

the requested size, it peals off a block from that slab and returns it. When a block (allocated from

a slab) is returned to it, it links it back to the slab. When no slab exists for a request, it fails to allo-

cate.

The internal state, ψ, contains the data structures that handle the linked-list and slabs. The esti-

mated environmental state, ξ, contains data structures to track the frequency at which blocks of

each size are requested or released. The algorithm, α, always chooses the slab allocator when a

slab exists for the requested size. Otherwise the linked-list allocator is used. When the frequency

for a size (for which no slab exists) exceeds a threshold, a new slab is created for it, so that subse-

quent requests for that size are served faster. When a slab is unused for a long time, it is returned

to the linked-list. The cost of allocating from a slab is usually smaller than the cost of allocating

from a linked-list, which in turn, is smaller than the cost of creating a new slab. The allocator sets

the thresholds based on these relative costs.

Figure 2 illustrates a strategy where the memory is organized into 3 layers. The top layer consists

of a hot list of slabs for sizes which are most frequently accessed. These can be accessed very

fast. The second tier is a list of slabs that are dormant and involve some searching before the right

slab can be found. The last tier is the address-ordered linked list described above and has the high-

est latency on average. Slabs from the top tier are automatically aged out and pushed into the sec-

ond tier. Similarly slabs are aged out from second tier and returned to the list in the bottom tier.

Thus, the allocator autonomously reorganizes its data structures based on the pattern of sizes in

the inputs. Note that the aging of slabs is not based on real time, but on the frequency of alloc/free

events.

If input requests come with an attribute of the region from which the requests are made, the allo-

cator can further improve locality, by maintaining a separate version of Π for each region and

steering requests accordingly. The slab allocation algorithm can be further enhanced with infor-

mation on the ratio of the total number of blocks in the linked list to the size of the largest block in

it to minimize fragmentation. Another measure is the utilization of the memory pre-allocated as

slabs.

3.3 Collective Observation
In general, a system consists of a collection of components that are interconnected by the services

they offer to each other. As noted before, part of the environmental state, ξ, that is relevant to a

component, C, is affected by the states of other components. For instance, if D is a component

that provides services for C, then C can make more intelligent decisions if it has up-to-date

knowledge of the state of D. If C is periodically updated about the state of D, the performance can

be better than what can be accomplished by self-observation. To elaborate on this, consider a sys-

Autonomic Servers April 2002 7

tem of n interacting components, and let Sii(t) denote the portion of the state of component i at

time t, that is relevant to other components in the system. Every component j ≠ i, keeps an esti-

mate of Sii(t), which is denoted by Sij(t) and is used in the decision making algorithm, α, of com-

ponent j. Thus, each component has an accurate value of its own state and an estimated value for

the states of other components. Our objective is to come up with a communication strategy that

minimizes the norm Σi,j=1,n |Sij(t) - Sii(t)|, for any time t. This problem is similar to the time-syn-

chronization problem and the best solution is for all components to broadcast their states to every-

one after every time step. But since the broadcasts are expensive, it is desirable to come up with a

solution that minimizes the communication unless the error grows beyond certain chosen limits.

For instance, let us assume that each component can estimate how its state is going to change in

the near future. Let ∆t
i be the estimated derivative of the state Sii(t), at time t - that is, the esti-

mated value of Sii(t+dt) is given by Sii(t) + ∆t
i(dt). There can be two approaches to use this infor-

mation:

Subscriber Approach: Let i be a component and its state, Sii(t), is of interest to a number of sub-

scribers, j. Each subscriber’s environmental state is initialized with [∆i
t, t, Sii(t)], so that at any

time, t+dt, the subscriber computes Sii(t) + ∆t
i(dt) and uses it as the estimated value for Sii(t+dt).

Component i, which is the source of the information, monitors its own state and whenever the

value |Sii(t) + ∆t
i(dt) - Sii(t+dt)| exceeds a tolerance limit, it broadcasts the information [∆i

t+dt,

t+dt, Sii(t+dt)] to each subscriber, where ∆i
t+dt is a new estimating function, derived from the cur-

rent knowledge it has. The subscribers, reinitialize their environmental state with this latest infor-

mation. In this scheme, the bandwidth of updates is proportional to the rate at which states

change. Also depending upon the tolerance level, the system can have a rapid impulse response.

Enquirer Approach: This is a simple variation of the above approach, where an update is sent

only upon explicit request from a subscriber. Each subscriber may set its own tolerance limits and

monitor the variation. Having initialized with the information, [∆i
t, t, Sii(t)], a subscriber requests

for an update whenever the value |∆t
i(dt)| exceeds the chosen tolerance limit, relieving some bur-

den on the source component. Since all information flow is by demand from a requestor, impulse

response can be poor if the requestor chooses poor tolerance limit.

Example 2. Routing by Pressure Propagation
This example abstracts a common situation that occurs in web services. It illustrates how compo-

nents communicate their state to each other, so that each component can make decisions to

improve the overall quality of service. The behavior, b, can be summarized as follows: The system

is a collection of components, each of which receives transactions from outside. Each component

is capable of processing any transaction, regardless of where it enters the system. Each component

maintains an input queue of transactions and processes them sequentially. When a new transaction

arrives at a component, it is entered into the input queue of a selected component. This selection is

the autonomic aspect here and the objective is to minimize the response time for each transaction.

The selection algorithm, α, in each component takes into account the distances between the com-

ponents and estimated service times of all the components in the system. Each component i takes

Autonomic Servers April 2002 8

a constant time, µi, to serve a transaction (determined by the level of resources it has). It takes τij
units of time to send a transaction from component i into the input queue of component j. Thus a

transaction that arrived at component i and served at component j has the response time τij + (1+

Qj) µj, where Qj is the length of the input queue at component j, when the transaction is queued

there. In order to give best response to the transaction, component i chooses j which minimizes the

above expression - that is, τij + (1+ Qj) µj ≤ τik + (1+ Qk) µk, for all k. But component i has no

precise knowledge of Qj and hence must resort to speculation, using the collective observation

scheme.

Thus, as described in the collective observation scheme, each component i maintains the specula-

tive state [∆j
t, t, Qj(t)], from which the queue size of component j, at time t+dt, can be estimated

as Qj(t) + ∆t
j(dt). For a request arriving at time t+dt at component i, the estimated response times,

τij + (1+ Qj(t) + ∆t
j(dt)) µj, for all j are computed, sending the request to the target with minimal

response time. When |Qi(t) + ∆t
i(dt) - Qi(t+dt)| exceeds a tolerance limit, the component i will

broadcast an updated value Qi(t+dt) to all the components.

In reality, a number of variations of this problem occur: components perform multiple functions,

and a transaction is actually a series of requests for specific functions, which are determined

dynamically after each function is performed. Also some functions may be generic so that they

can be performed at any component and others may have to be performed at a designated compo-

nent, because of state information resident at that component. Suitable modifications can be made

to the model to deal with these variations. One can also extend this model to incorporate node/link

failures and recoveries and the algorithm can adapt accordingly by changing the state values and

thereby achieving self-reorganization and self-healing.

Example 3. Work Load Manager
This example illustrates how an enterprise system comprising of multiple servers and operating

system instances can balance resources for varying and unpredictable workloads. This is a terse

abstraction of the work load manager, whose details can be found in [3]. Once again, the problem

reduces to maintaining a reasonable estimate of the global state, based on which any policy (such

as the one illustrated here) can be implemented.

The behavior, β, can be summarized as follows: The system is a collection of components, called

service classes. They are ordered by an attribute called, importance. Each input to the system,

called transaction, has a designated service class and arrives at the respective component. Each

component i has a goal, Gi, for its transactions, which is an index involving metrics such as

response time, velocity etc. The actual performance achieved by component i at any time, Pi, can

be computed from the input-output history of the component. The amount by which a component

is missing its goals is characterized by the expression Mi = (Gi < Pi) ? 0 : (Gi - Pi). The global

objective, η, isb to minimize Mi for all components, in the order of their importance. The system

is equipped with a set of resources, which are distributed among the components. Given that the

current resource level at component i is Ri, the function, ∆i(Ri), computes the rate at which the

performance, Pi, can be improved by increasing the amount of resources. The autonomic algo-

Autonomic Servers April 2002 9

rithm, α, redistributes the resources among the components to optimize η, using the following

strategy.

The algorithm selects a receiver component, i, of highest importance having the largest positive

Mi, a resource R that has the highest gradient, ∆i(Ri), for the current resource level at i, and a

donor component, j, of lowest importance having highest level of resource R and possibly doing

well (i.e. Mj=0). Based on ∆i(Ri), certain number of resource R are transferred from component j
to component i. Thus, in order to implement this algorithm, a component needs to know, ∆i(Ri),

Mi, Ri, for all components, i. The gradients ∆i(Ri) are computed from real time plots. The pair,

[Mj, Rj], is the contribution of component j to the environmental state. Each component maintains

an estimate of the environmental state. The subscriber method can be adopted to periodically

improve the estimates.

Example 4. Global Resource Manager
Large SMPs can be divided into multiple partitions, where each partition runs a separate instance

of the operating system. Partitions provide a flexible way of virtualizing different services that run

in protected boundaries and can communicate in non-intrusive ways. At the same time, basic

resources of the system can be shared by many partitions, dynamically rolling unused resources

into needy partitions [4]. This dynamic resource movement is another instance of autonomic

behavior, where each component must speculate on the global system state and react to changing

needs of the components in the system. Websphere implementations on multiple partitions is an

example of such a system.

The components in this system are the partitions. The inputs are the jobs entering at each parti-

tion. Each input in this system can be a dynamic sequence of functions, which are spread across

the partitions. The series is dynamic in the sense that the next function in a job is determined by

the outcome of the preceding function. The net effect is that the load at each partition is a random

process. Given the resource requirements for functions and the rate at which resource levels

improve their performance, one can design various policies to distribute the resources among the

partitions. But the key ingredient is the dynamically changing global information, viz., the load

and resource level at each component. Each component must speculate on the global state, make

resource transfer decisions based on the speculation and update its estimates periodically. Since

the formulation is similar to the previous example, we omit the details here.

Example 5. Affinity-based Thread Scheduling
This example is illustrative of many operating system functions where complete knowledge for

optimal solutions is either very expensive to obtain or simply not possible. Hence one resorts to

suboptimal solutions based on heuristics and constant effort is made to correct them as more

information becomes available. The following is only illustrative of the techniques and it should

not be construed as a recommended heuristic. Modern operating systems have much more sophis-

ticated models for thread scheduling.

The system has a set of processors and a set of threads. A processor goes through the usual states

of running and idle, while a thread goes through the states of running, ready (waiting for proces-

Autonomic Servers April 2002 10

sor) or suspended (waiting for some other synchronization). A processor views the time as a

sequence of quanta. After running a thread for a quantum, a processor returns the thread to either

ready or suspended state and selects another thread to run during the next quantum. It idles when

there are no threads to select. When a thread gets out of a suspended state, it selects an idle pro-

cessor to run. If all processors are busy, it enters the ready state. Processors may fail or be taken

away by external resource managers and may reappear later. The objective is to minimize the time

spent by a thread in the ready queue and minimize the number of cache misses incurred by a

thread. A thread incurs some penalty if it reruns on a processor whose cache may have been pol-

luted by running other threads in the interim. Thus, one needs to balance the two objectives of

keeping processors busy and at the same time try to run a thread on the same processor if possible.

Since the behavior of the threads is not known apriori, one must resort to observation and some

predictive strategies based on history and this is where autonomic design principles come into

play.

A processor discretizes time into quanta and each quantum is scheduled to run a thread. Each pro-

cessor, i, can maintain a sequence of recent history of, [mi
k], which is the number of misses it suf-

fered in quantum k. Likewise, a thread, t, can maintain a sequence of recent history of, [pt
k],

which indicates that it ran during quantum k of processor p. When a thread is to be scheduled, one

can determine the best processor comparing its history [pt
k] with the histories [mi

k], of all pro-

cessors. However, the process histories [mi
k] are private to a processor. When multiple processors

attempt to access them, it causes contention and performance degradation. Each processor can

speculate on the miss sequence of every other processor and make the decisions based on the esti-

mate. Periodically, the estimates can be updated using the collective observation mechanism.

4 Hardware Aids for Autonomic Servers
Autonomic behavior equally applies to hardware components as well. However, since it is expen-

sive to embed a variety of implementations in hardware, their focus takes a shift. Many times,

hardware is designed to capture all possible outcomes of an operation and report them to a soft-

ware facility to facilitate meaningful actions. At other times, when the alternatives are less expen-

sive, multiple hardware components are incorporated along with the logic to select them based on

statistical observations. Both these aspects are illustrated below with examples drawn from server

systems.

4.1 Load-Store Errors in Memory Subsystems
As pointed out earlier, one of the aspects of autonomic servers is to detect faults and gracefully

get around them, even if the faults may be unrecoverable. This means that faults must be contain-

able and must have well-defined fault-isolation boundaries. When a fault cannot be recovered, the

components interacting at the boundary must be able to recognize this and gracefully switch to

alternative strategies. A practical example that enforced such a discipline is the load-recovery

mechanism implemented in the IBM pSeries systems using IBM Power4 (and follow-on) proces-

sors, which is summarized below.

Autonomic Servers April 2002 11

In conventional designs of processor-memory subsystems, failure detection is often based on tim-

eouts. For instance, when a processor submits a load request to a memory subsystem (which, in

these days, can be a complex maze of several levels of hierarchy), the processor expects the data

within a time-out period. If data does not show up within that time, the processor usually “check-

stops” which brings the entire system to a screeching halt, with very little prospect of any mean-

ingful continuation. In Power4-based pSeries systems, data storage at all levels is equipped with

an additional bit indicating whether data is corrupt. A data item along with this bit, whether it is

corrupt or not, is moved along all the hierarchies of the memory subsystem, as per normal proto-

cols. But when it reaches a processor (upon a load into some register), the processor is presented

with a precise fault, indicating which load instruction failed in getting valid data and thereby pro-

viding an opportunity for the software to determine the fault-isolation boundary - which can be all

the processes that might be sharing the address space containing that location. The software has

the ability to terminate a subset of the processes and continue without disrupting the rest of the

system. In the event a corrupt data is never read, no harm is done. Of course one could argue on

the other hand, that it may have been better to detect which entity caused the error. A partial solu-

tion to this problem is achieved by reporting store-faults through an interrupt. Note that by the

time a store fault is detected in the memory subsystem, the process that executed the store opera-

tion is no longer tractable (it may have terminated) and hence only an asynchronous fault can be

presented to the software, which still provides an opportunity to isolate the boundary affected by

that location.

In general, at every level of a design, an autonomic system must examine the following three

choices, in that order: First, if the fault is correctable, then clearly one can proceed after correc-

tion. This is the standard technique of using ECC and Checksums in hardware. Secondly, if the

fault cannot be corrected, (e.g., a multi-bit error or a time-out) the designer must incorporate any

possible alternative strategies that can be employed. As described earlier, an autonomic server

must switch to an alternative when possible. Finally, when no alternative strategy is possible, the

server must indicate this in its response and propagate the fault upwards to other servers that

depend upon this.

4.2 Branch Predictors
Branch predictor is a classic example of autonomic behavior in hardware. A number of strategies

for predicting the outcome of a branch are in vogue - some use the branch history, some use the

paths and so on. A unique quality of a branch predictor is that it is easy to determine how well a

predictor is performing, since the actual outcome is known within a short time. A processor can

employ multiple predictors, which are the alternative implementations, Π, in an autonomic sys-

tem. Each alternative is constantly rated after the outcome is known. The algorithm, α, selects the

predictor that has the highest rating at any time.

4.3 Support for Dynamic Resource Changes
The global resource manager discussed in Example 4 is intended to move resources such as pro-

cessors, memory and devices between partitions. While the autonomic system makes the decision

son resource movements, the actual movement requires extended support in hardware, firmware

and software, which discussed in detail in a companion paper [4].

Autonomic Servers April 2002 12

5 Conclusive Remarks

As systems get increasingly complex, natural forces will automatically eliminate interactions

with components whose complexity has to be understood by an interactor. The only components

that survive are those that hide the complexity, provide a simple and stable interface and possess

the intelligence to perceive the environmental changes and struggle to fit into the environment.

While facets of this principle are present in various degrees in extant designs, explicit recognition

of the need for being autonomic can make a big difference and thrusts us toward designs that are

robust, resilient and innovative. In the present era, where technological changes are so rapid, this

takes even greater importance that adaptation to changes becomes paramount.

The first aspect of autonomic designs that we observe is the clear delineation of the interface -

how a client perceives a server. Changes to the implementation of the service should not compro-

mise this interface in any manner.

The second aspect of an autonomic server is the need for monitoring the varying input character-

istics of the clientele as well as the varying response characteristics of the servers on which this

server is dependent. In the present day environment, demands shift rapidly and cannot be antici-

pated all the time. Similarly components degrade and fail and one must move away from deter-

ministic behavior to fuzzy behaviors, where perturbations do occur and must be observed and

acted upon.

Finally, an autonomic server must be prepared to quickly adapt to the observed changes in inputs

as well as dependent services. The perturbations are not only due to failures of components, but

also performance degradations due to changing demands. Autonomic computing provides a uni-

fied approach to deal with both. A key aspect of autonomic behavior that we identified in all our

examples is the timely knowledge of the global state, so that the system can respond to the

changes. As we illustrated, a collection of autonomic components can collaborate on propagating

local information to all the components, so that the community as a whole can benefit from the

global knowledge.

We have tried to present a framework for designing autonomic components. While the costs and

trade-offs are different from system to system, we envision a general structure emerging. Of par-

ticular use will be the formalization of some of these models, with suitable parameters, and bring

in the concepts from control theory to establish optimality and stability of algorithms. Our ongo-

ing work focusses on this aspect. Here we reviewed a few examples that we closely worked with

in server designs and tried to cast them in this light.

6 References
[1] Paul Horn, “Autonomic Computing”, http://www.research.ibm.com/autonomic

[2] Irving Wladawsky-Berger, “Project Eliza”, http://www-1.ibm.com/servers/eserver/introduc-

ing/eliza

[3] J. Aman et al., “Adaptive Algorithms for managing a distributed data processing workload”,

IBM Systems Journal, Vol 36, No 2, pp 242-283, 1997.

[4] Joefon Jann et al., “Dynamic Reconfiguration: Basic building blocks for Autonomic Comput-

ing for IBM pSeries” in this publication.

