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STOCHASTIC OPTIMIZATION FOR LAKE

EUTROPHICATION MANAGEMENT

Alan King∗, László Somlyódy†, and Roger J-B Wets‡.

September 9, 2002

1 INTRODUCTION

Man-made (or artificial) eutrophication has been considered as one of the most
serious water quality problems of lakes during the last 25-40 years. Increasing
discharges of domestic and industrial waste water and the intensive use of crop
fertilizers — all leading to growing nutrient loads of the recipients — can be
mentioned among the major causes of this undesirable phenomenon. The typ-
ical symptoms of eutrophication are among others sudden algal blooms, water
coloration, floating water plants and debris, excreation of toxic substances caus-
ing taste and odor problems of drinking water and fish kills. These symptoms
can easily result in limitations of water use for domestic, agricultural, industrial
or recreational purposes.

One of the major features of artificial eutrophication is that although the
consequences appear within the lake, the cause — the gradual increase of nutri-
ents (various phosphorous and nitrogen compounds) reaching the lake — and
most of the possible control measures lie in the region. Consequently, eutrophi-
cation management requires analysis of complex interactions between the water
body and its surrounding region. In the lake, different biological, chemical and
hydrophysical processes — all being time and space dependent, furthermore
non-linear — are important, while in the region one must take into account hu-
man activities generating nutrient, residuals and control measures determining
that portion of the emission which reaches the water body.

Eutrophication management requires a sound understanding of all these pro-
cesses and activities, which belong to diverse disciplines. Additionally, various
uncertainties and stochastic features of the problem have to be also taken into
account — the estimation of loads from infrequent observations and the depen-
dence of water quality on hydrologic and meteorologic factors. The fact that
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we are dealing with a stochastic environment is especially important for shallow
lakes, primarily due to the absence of thermal stratification that predicates a
much more definite response to randomness as would be the case for deep lakes.

The paper presents an approach that combines descriptive, simulation and
management optimization models. The roles of each of these models is discussed
in Section 2. The derivation of the aggregated lake and planning type nutrient
load models to be used in the management model is the subject of Section 3.
Alternative management models are formulated in Section 4. Two of them were
implemented: a ‘true’ stochastic model (which uses as the starting point of the
iterative solution procedure the corresponding deterministic model) and a linear
programming approach capturing stochastic features of the problem through a
linearized expectation-variance model. A brief survey of the solution approach
to the stochastic problem is presented in Section 5. In Section 6 the methods
are applied to Lake Balaton and the results compared.

This chapter is based on the original technical report Somlyódy and Wets
(1985) parts of which appeared in Somlyody and Wets (1988).

2 The Approach

The approach to eutrophication and eutrophication management is based on
the idea of decomposition and aggregation; Somlyódy (1982 and 1983b). The
first step is to decompose the problem into smaller, tractable units forming
a hierarchy of issues (and models), such as biological and chemical processes
in the lake, sediment-water interaction, water circulation and mass exchange,
nutrient loads, watershed processes and possible control measures, as well as the
influence of uncontrollable meteorological factors, etc. This step is followed by
aggregation, the aim of which is to preserve and integrate only the issues that
are essential for the higher level of the analysis, ruling out unnecessary details.
The procedures followed for the derivation of the eutrophication management
optimization model (EMOM) presented in this paper may be found in Somlyódy
(1983a) and Somlyódy and van Straten (1985).

The major assumptions for the application of EMOM to Lake Balaton are:

1. The lake is shallow with vertically uniform water quality.

2. The lake can be subdivided into sequentially connected basins.

3. The lake is phosphorus (P) limited, like most water bodies, and thus
nutrients other than P are not involved in the analysis.

4. A single water quality indicator, the maximum annual chlorophyll-a con-
centration (Chl− a)max, is used for defining trophic state and the goals of
management.

5. A linear relationship holds between (Chl− a)max and the annual average
P load.
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6. The management horizon is short-term (a few years). Longer-term re-
newal processes between the lake and its sediment layer and the staging
of investments are out of the scope of the present effort.

7. Only certain types of P sources and associated control alternatives are
taken into account.

3 Formulation of the Stochastic Model

Based on the assumptions made in the approach and the insights gained from
the study on Lake Balaton, the short term response of water quality to load re-
duction — taking into account macroscopic effects of biological and biochemical
processes, interbasin mass exchanges, and the influence of stochastic factors —
can be written as

Y = E {Y0}+ w − (D + dw)4 L (1)

where the elements of the m-vector Y represent the water quality in the m basins
as measured by (Chl− a)max, the m-vector Y0 is the uncontrolled nominal
state, and the symbol E {·} denotes the expectation operator. The m-vector
4L expresses the reduction in P load due to controls

4L = E {L0} − L (2)

where the elements of L are the annual mean volumetric biologically available
P load in each basin i = 1, . . . ,m. Biologically available P refers to the frac-
tion of P that can be taken up by algae and thus contribute to short term
trophic status of the water body. The random vector w represents the impact
of non-controllable meteorological factors in each basin. (Stochastic variables
and parameters are represented in bold-face.)

The elements of the matrix D are the reciprocals of lumped reaction rates.
The main diagonal comprises primarily the effect of biological and biochemical
processes in the basins, and the off-diagonal elements refer to interbasin ex-
change due to hydrological flow and mixing. The meaning of the slopes di is
similar to that of the diagonal elements of D. The term diwi 4 Li expresses a
change in the random component of the water quality indicator in basin i due
to the impact of weather. Of course, the effect of the random fluctuations wi

caused by meteorology decreases if the loads diminish.
Next we model the P loads. The units of L0i and Li are measured in

[mg/m3d]. The absolute annual mean load La is the daily flow [mg/d] aver-
aged over an entire year, thus

Li = La
i /Vi (3)

where Vi is the volume of basin i. To model the term (2) we must first analyze
the contributions to the absolute annual mean load La

i and then divide by the
volume. We consider three P sources as indicated in Figure 1:

1. direct point-source sewage LS ,
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2. indirect point-source sewage flowing into a tributary of the lake LSN ,

3. miscellaneous load from various point and non-point sources.

The sewage loads LS and LSN are known, deterministic, and biologically avail-
able. The uncertain biologically available (reactive) portion of the tributary
load is

LD + δ(LT − LD) (4)

where LD is the dissolved reactive P load and δ(LT − LD) is the proportion of
the undissolved P load (the difference between the total P load and the dissolved
P load) that becomes available through biological or biochemical processes. The
availability ratio δ is about 0.2.

The basic control options for the P loads are:

1. precipitation by sewage treatment plants for both the direct and tributary
point-source sewage loads, with corresponding control variables xS and
xSN , respectively, considered as continuous variables.

2. pre-reservoir systems, established on tributaries before the water enters
the lake, consisting of two segments: one that removes particulate P
through sedimentation, and one that removes dissolved P through ben-
thic eutrophication in reed basins, sorption, etc, with corresponding con-
trol variables xP and xD, respectively. The pre-reservoir control variables
should normally be considered as binary {0, 1} variables but for numerical
tractability are modeled as continuous.

The control variables are modeled as removal coefficients with

0 ≤ r− ≤ x ≤ r+ ≤ 1. (5)

Consider a simple situation for a single basin, as in Figure 1, with one
tributary with a single point-source sewage inflow and one point-source direct
sewage inflow. The original uncontrolled load L is:

La
0 = LD + δ(LT − LD) + LS + LSN + LNC (6)

where LNC is the portion of the load that is beyond the controls considered.
The controlled load of the basin is

La = (1−xD) [LD − (1− rt)xSNLSN ]+δ(1−xP )(LT −LD)+(1−xS)LS +LNC

(7)
where rt is the retention coefficient defining that portion of P from the tributary
sewage discharge that is retained in the tributary and does not reach the lake.
There is an obvious interaction between the impact of sewage treatment plants
on a given tributary xSN and the impact of the pre-reservoir segment xD on the
same tributary, which is discussed below. With equations (6) and (7) we obtain
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Figure 1: Simple illustration of Lake Eutrophication and Nutrient Load Mod-
eling
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an expression for the amount of dissolved P that is removed from the lake and
its tributaries due to controls:

4La := E {La
0} − La = xD [E {LD} − (1− rt)xSNLSN ]

+(xD − 1) [LD − E {LD}]
+δ [(xP − 1)(LT − LD) + E {LT − LD}]
+(1− rt)xSNLSN + xSLS

(8)

The terms in (8) have been rearranged for interpretive purposes.

• The first and fourth terms express the reduction in the expectation of the
tributary’s dissolved P load.

• The second term represents the effects of the reed basin on the fluctuations
of the tributary’s dissolved P load.

• The third term gives the modification in the particulate P load of the
tributary.

• Finally, the fifth term expresses the control of the direct sewage load on
the lake.

If we set all the control variables to zero in equation (8) we obtain the fluctua-
tions in the original uncontrolled load, the expectation of which is zero.

It is apparent from equation (8) that the tributary load can be controlled by
P precipitation at sewage treatment plans and/or by sedimentation and benthic
removal in pre-reservoirs. The former influence only the expectation, whereas
the latter influence linearly both the expectation and the variance.

Equation (8) is nonlinear in the control variables because of the product
term xD · xSN , which may cause difficulties in the optimization scheme. There
are many ways to treat this issue. In the present case, the surface dependent
character of benthic P removal in the second segment of the pre-reservoir system
offers a possibility. Generally, for a reed reservoir one cannot estimate more than
the P removal per unit of surface area, independent of the inflow concentration.
This suggests that the effect of xD can be approximated in terms of the original
uncontrolled load, and the term involving xD · xSN can be dropped from (8).
The price of this elimination of nonlinearity is twofold.

1. An upper limit should be specified for the impact of xD stating that no
more nutrient can be removed than that which reaches the lake via the
tributary. In expectation, this constraint reads

xDE {LD} ≤ E {LD}+ (1− rt)xSNLSN (9)

This relation should be applied to all realizations of LD, but this would
introduce a stochastic constraint that will be difficult to manage in the
optimization.

2. A new variable xU ≥ xD should replace xD in the second term of (8)
to account for the fact that the impact of the reservoir system on the
fluctuations LD − E {LD} is not restricted by the condition (9).
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The general situation, when the i-th basin is fed by N1 direct sewage dis-
charges and N2 tributaries each with Mm indirect sewage discharges, becomes

4La
i =

∑N2
m=1

xm
DE {Lm

D}
+(xm

U − 1) [Lm
D − E {Lm

D}]
+δ [(xm

P − 1)(Lm
T − Lm

D) + E {Lm
T − Lm

D}]
+

∑Mm

l=1 (1− rml
t )xml

SNLml
SN


+

∑N1
n=1 xn

SLn
S

(10)

and the equivalent version of (9) becomes

xm
DE {Lm

D} ≤ E {Lm
D}+

Mm∑
l=1

(1− rml
t )xml

SNLml
SN (11)

for each m = 1, . . . , N2.
Observations and careful analysis of the load (point versus non-point source

contributions) and watershed are required for the derivation of the uncertain
load components LD and LT . Unfortunately, insufficient observations, short
historical data, and our lack of understanding make the problem quite difficult;
see Haith (1982) and Beck (1982). In general they have positive lower bounds
and can be characterized by strongly skewed distributions. Very often they can
be expressed as simple functions of annual mean streamflow rates Q, which
generally have much longer historical records than those for P loads. We return
to this issue of the derivation of the load distributions in Section 6.

The final element of the model concerns the budget constraint. The cost
of implementing the control options will be a combination of fixed costs for
construction, and cost functions capturing the exponential growth in capital
outlay and operating expense for increased P removal rates. For tractability in
the optimization, the costs are modeled by piecewise linear functions increasing
in the size of the control variable. To select among management alternatives of
different investment costs (IC) and operational, maintenance and repair costs
(OC), the total annual cost (TAC) term is used

TAC =
∑

j

(OCj + αjICj) (12)

where αj is the capital recovery factor for project j. In the planning model the
TAC is limited by annual budgetary constraints

TAC ≤ β (13)

where β is the annual allocation of budget to the lake treatment plan, or ex-
pressing this in terms of the control variables∑

j

cj(xj) ≤ β. (14)

A standard technique represents (14) as a linear constraint involving variables
corresponding to each linear piece of cj(·).
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4 Formulation of the Eutrophication Manage-
ment Optimization Model

There are a number of variants available in the building of the management
optimization model that allow us to capture the stochastic features of the water
quality management problem. For convenience of presentation, we substitute,
regroup terms, and reindex the control variables in the model equations (1)
through (10) to obtain an affine relation for the water quality indicators (yi)m

i = 1

of the type
y = Tx− h (15)

where hi incorporates all the noncontrollable factors that affect the water qual-
ity yi in basin i, and the random coefficients associated to the x−variables in
(10) determine the entries of the random matrix T through the transformation
(D + dw) 4 L. The decision variables have been reindexed as an n−vector
(x1, . . . , xn), each xj corresponding to a specific control project affecting the
load in some basin i. T is thus a m×n−matrix and h is an m−vector. We also
write

y(x, ω) = T (ω)x− h(ω) (16)

for the preceding equation. The notation y(x, ω) stresses the dependence of
the water quality indicators yi(x, ω)m

i = 1 on the decision variables x and on the
existing (stochastic) environmental conditions ω that determine the entries of
T and h.

The distribution function Gy(x, ·) of the random vector y(x, ·) also depends
on the choice of the control measures. We could view our objective as finding
x′ that satisfies the constraints and such that for every other feasible x

Gy(x′, ·) ≥ Gy(x, ·), (17)

i.e., such that for all z ∈ Rm

prob {y(x′, ·) < z} ≥ prob {y(x, ·) < z} .

If such an x′ existed, it would, of course, be the ‘absolute’ optimal solution,
since it guarantees the best water quality whatever be the actual realization of
the random environment. There always exists such a solution if there are no
budgetary limitations: simply build all possible projects to their physical upper
bounds! It is precisely because there are budgetary limitations that we are led
to choose a restricted number of treatment plants and/or pre-reservoirs. Unless
the problem is very unusual there will be no choice of investment program that
will dominate all other feasible programs in terms of the preference ordering
suggested by (17).

We are thus forced to examine somewhat more carefully the objectives we
want to achieve. We could, somewhat unreasonably, see the goal as bringing the
water quality indicator to a near zero level in all basins. This would ignore the
individual characteristics of each basin as well as the user-oriented criteria —
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such as, for example, recreational versus agricultural. A more sensible approach
is to choose the control measures to achieve certain desirable trophic states basin
by basin. Let

γi, i = 1, . . . ,m

be water quality goals expressed in terms of the indicator, (Chl− a)max, each
γi corresponding to the particular use of basin i. The sensitivity of the solution
to these fixed levels γi would have to be a part of the overall analysis of the
system. We are thus interested in the quantities

[yi(x, w)− γi]+ for i = 1, . . . ,m,

that measure the deviations between realized water quality and the fixed goals
γi, where [z]+ denotes the nonnegative part of z

[z]+ =
{

0 if z < 0
z if z ≥ 0.

The vector
[yi(x, ·)− γi]+, i = 1, . . . ,m,

is random with distribution function G(x, ·) defined on Rm. The problem is
to choose among all feasible control measures a program x′ that generates the
‘best’ distribution G(x′, ·) by which one could again mean

G(x′, z) ≥ G(x, z)

for all z ∈ Rm.
Such an x′ exists only in very unusual circumstances. We must find a way

to compare the distribution functions that takes into account their particular
characteristics but leads to a measure that can be expressed in terms of a scalar
functional.

4.1 Reliability Criteria

A first possibility would be to introduce a pure reliability criterion, i.e., to fix in
consultation with the decision maker certain reliability coefficients to guide in
the choice of an investment program. More specifically, we would fix 0 < α ≤ 1,
so that among all feasible x we should restrict ourselves to those satisfying

prob {y(x, ·) < γ} ≥ α. (18)

Or preferably, if we take into account the fact that each basin should be dealt
with separately, we would fix the reliability coefficients (αi)m

i=1 and impose the
constraints

prob {yi(x, ·) < γi} ≥ αi, i = 1, . . . ,m. (19)

where the scalars α or (αi)m
i=1 would be chosen sufficiently large so that we

would observe the unacceptable concentration level only on rare occasions. In
terms of the distribution function G these constraints become

G(x, 0) ≥ α, (20)
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for (18), and
Gi(x, 0) ≥ αi for i = 1, . . . ,m, (21)

for (19) where the Gi(x, ·) are the marginal distributions of the random vari-
ables [yi(x, ·)− γi]+. These are probabilistic (or chance) constraints. One refers
to (18) as a joint probabilistic constraint. These model simple accept/reject
criteria: namely, if G(x, ·) is either larger than or equal to α, or for each
i = 1, . . . ,m, Gi(x, ·) is larger than or equal to αi, then the investment pro-
gram x is acceptable. This means that we ‘compare’ the possible distributions
{G(x, ·), x feasible } at the single point α.

Assuming we opt for the more natural separable version of the probabilistic
constraints (19), we would rely on the following model for the policy analysis

find x ∈ Rn such that
r−j ≤ xj ≤ r+

j , j = 1, . . . , n,∑n
j=1 αijxj ≤ bi,

prob
{∑n

j=1 tij(ω) xj − hi(ω) < γi

}
≥ αi, i = 1, . . . ,m,

and z =
∑n

j=1 cj(xj) is minimized

(22)

where as before the vector r− and r+ are upper and lower bounds on x, the
inequalities

∑n
j=1 αijxj ≤ bi describe the technological constraints and for

every j
cj : R → R+

is the cost function associated to project j, see (14). The overall objective would
thus be to find the smallest possible budget that would guarantee meeting the
present goals γi at least a portion αi of the time.

We do not pursue this approach because it does not allow us to distinguish
between situations where we almost meet the goals γi and those that generate
‘catastrophic’ situations, i.e., when some of the values of the (yi(x, ω))m

i=1 would
exceed by far (γi)m

i=1. For a eutrophication model this is a serious shortcoming.
Let us also point out that probabilistic contraints involving affine functions

with random coefficients are difficult to manage. We have only very limited
knowledge about such constraints, and then only if the random coefficients
((tij(·))n

j=1, hi(·)) are jointly normally distributed (cf. Section 1 of Wets (1983b)
for a survey and relevant references). Since in environmental problems the co-
efficients are generally not normally distributed random variables we could not
even use the few results that are available, except possibly by replacing the
probabilistic constraints by approximations using Chebyshev’s inequality, as
suggested by Sinha, cf. Proposition 1.26 in Wets (1983b).

4.2 Recourse Formulation

A second possibility is to recognize that one should distinguish between situ-
ations that barely violate the desired water quality or levels (γi)m

i=1 and those
that deviate substantially from these norms. This suggests a formulation of our
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objective in terms of a penalization that would take into account the observed
values of [yi(x, ω)− γi]+ for i = 1, . . . ,m. We expect such a function

Ψ : Rm → R

to have the following properties

(i) Ψ is nonnegative.

(ii) Ψ(z) = 0 if zi ≤ 0 for i = 1, . . . ,m ,

(iii) Ψ is separable, i.e., Ψ(z) =
∑m

i=1 Ψi(zi).

This last property comes from the fact that the objectives for each basin
are or may be different and there are essentially no ‘joint rewards’ to be ac-
crued from having given concentration levels in neighboring basins, the inter-
connections between the basins being already modeled through the Equation
(1). A more sophisticated model would still work with separate penalty func-
tions (Ψi(zi))

m
i=1 but instead of simply summing these penalties would treat

them as multiple objectives. A solution to such a problem would eventually
assign specific weights to each basis, making it equivalent to an optimization
problem with single objective function. We assume that these weighting factors
have been made available to or have been discovered by the model builder and
have been incorporated in the functions Ψi themselves; note however that the
methodology developed here would apply equally well to a multiple objective
version of the model. In addition, to (i)-(iii) we would expect the following
properties for i = 1, . . . ,m,

(iv) Ψi is differentiable, with derivative Ψ′
i,

(v) Ψ′
i is monotone increasing, i.e., Ψi is convex,

(vi) Ψ′
i(zi) > 0 whenever zi > 0,

- relatively small if zi is ‘close’ to 0,

- leveling off when zi is much ‘larger’ than 0,

A couple of possibilities, both with Ψi(zi) = 0 if zi ≤ 0, are

Ψi(zi) = βiz
2
i if zi ≥ 0,

with βi > 0,
Ψi(zi) = βi(ezi − zi − 1) if zi ≥ 0,

also with βi > 0.
A wide variety of functions have the desired properties, since what is at stake

here is the creation of a (negative) utility function that measures the socio-
economic consequences of the deterioration of the environment. The following
class of functions provided a flexible tool for the analysis of these factors. Let
Θ : R → R+ be defined by
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Figure 2: Criteria functions.

Θ(τ) :=

 0 if τ ≤ 0
1/2τ2 if 0 ≤ τ ≤ 1
τ − 1/2 if τ ≥ 1.

(23)

This is a piecewise linear-quadratic function. The functions (Ψi)m
i=1 are defined

through
Ψi(zi) = qieiΘ(e−1

i zi) for = 1, . . . ,m, (24)

where qi and ei are positive quantities that allow us to scale each function Ψi

in terms of slopes and the range of its quadratic component. By varying the
parameters ei and qi we are able to model a wide range of preference relation-
ships and study the stability of the solution under perturbation of these scaling
parameters.

The objective is thus to find a program that in the average minimizes the
penalties, or negative utilities, associated with exceeding the desired concen-
tration levels. This leads us to the following formulation of the water quality
management problem

find x ∈ Rn such that
r−j ≤ xj ≤ r+

j , j = 1, . . . , n,∑n
j=1 αijxj ≤ bi, i = 1, . . . ,m,∑n
j=1 cj(xj) ≤ β,∑n
j=1 tij(ω)xj − yi(ω) = hi(ω), i = 1, . . . ,m,

and z = E
{∑m

i=1 qieiΘ (e−1
i [yi(ω)− γi])

}
is minimized

(25)

where β is the available budget. This type of stochastic optimization prob-
lem goes under the name of stochastic program with recourse: a decision x
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(the investment program) must be chosen before we can observe the outcome
of the random events (the environment modeled here by the random quanti-
ties tij(ω), hi(ω)) at which time a recourse decision is selected so as to make
up whatever discrepancies there may be; the variables yi are just measuring
the difference between

∑
j tijxj and hi. One refers to (25) as a program with

simple recourse in that the recourse decision is uniquely determined by the first-
stage decision x and the values taken on by the random variables.

It is very important to note that no attempt has been made at combining
budgetary considerations and the penalty functions that measure the deviations
from the desired concentration levels in a single objective function, although
there are financial considerations that may affect the choice of the coefficients
qi and ei of the penalty terms. In our approach we handle these two criteria
separately. We rely on a (discrete) parametric analysis of the solution of (25) as
a function of β, the available budget. An essentially equivalent approach would
have been to formulate (25) as a multi-objective program with one objective
corresponding to the penalizations terms and the other to the cost function.

In terms of the distribution functions {G(x, ·), x feasible} the entire ‘tail’ of
the distributions enters into the comparison not just the value of G(x, ·) at 0, as
was the case in model (22) with probabilistic contraints. The objective function
is

z =
m∑

i=1

qiei

∫ ∞

0

Θ(e−1
i s)dGi(x, s).

4.3 Expected Value Model

A third possibility is to essentially ignore the stochastic aspects of the eutroph-
ication model and replace the random variables that appear in the formulation
of the water quality management problem by fixed quantities. This would lead
us to the following deterministic optimization problem:

find x ∈ Rn such that
r−j ≤ xj ≤ r+

j , j = 1, . . . , n,∑n
j=1 αijxj ≤ bi, i = 1, . . . ,m,∑n
j=1 cj(xj) ≤ β,∑n
j=1 t̂ijxj − yi = ĥi, i = 1, . . . ,m,

and z =
∑m

i=1 qieiΘ
(
e−1
i [yi − γi]

)
is minimized

(26)

The choice of the parameters t̂ij and ĥi is left to the model builder. One
possibility is to choose

t̂ij = t̄ij = E [tij(ω)] ,

ĥi = h̄i = E [hi(ω)] ,

i.e., replace the random quantities by their expectations. Without accepting the
solution of (26), we could always use it as part of an initialization scheme for
solving the stochastic optimization problem (25), and this is actually how the
algorithm proceeds, see Section 5.
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4.4 Optimal Reliability Levels

A fourth model in which reliability considerations again occupy a central role,
but in which the shapes of the distribution functions {Gi(x, ·)}m

i=1 play a much
more important role than just their values at one point, allows for variable
concentration levels. Again let (αi)m

i=1 be scalars that correspond to desired
reliability level. The objective is to find an investment program x such that

prob {yi(x, ·) < vi} ≥ αi for i = 1, . . . ,m (27)

but now the (vi)m
i=1 are also decision variables that we would like to choose as

low as possible. There are a variety of ways measuring ‘as low as possible’, for
example by minimizing

m∑
i=1

qi[vi − γi]+ (28)

where the qi are nonnegative scalars that assign different importance to meeting
the desired water quality goals (γi)m

i=1 in the various basins, or by minimizing

maxi vi (29)

i.e., by bringing the overall concentration level as far down as possible (at least
a certain portion of the time determined by the α′is), or by minimizing as in
model (25) the function

m∑
i=1

qieiΘ
(
e−1
i (vi − γi)

)
(30)

which penalizes the deviations from γi in a nonlinear manner, cf. Figure 2, or
still to handle the minimization of the (vi)m

i=1 as a multiple objective optimiza-
tion problem, each coordinate of v corresponding to an objective that we seek
to minimize.

We formulate our optimization problem in terms of the objective (28) but any
of the other variants could or should be considered. The optimization problem
again involves probabilistic constraints but its structure now resembles much
more the stochastic program with recourse (25) than it does the first model
(22) involving probabilistic constraints. We obtain

find x ∈ Rn such that
r−j ≤ xj ≤ r+

j , j = 1, . . . , n,∑n
j=1 αijxj ≤ bi, i = 1, . . . ,m,∑n
j=1 cj(xj ≤ β

prob
{∑n

j=1 tij(ω) xj − hi(ω)− vi < 0
}
≥ αi, i = 1, . . . ,m,

and z =
∑m

i=1 qi[vi − γi]+ is minimized.

(31)

At this point it may be worthwhile to observe that (28) is just a limit case of
(30). Recall that the range over which qi eiΘ(e−1

i (· − γi)) is quadratic is [0, ei],
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cf. Figure 2. If we shrink this interval to 1 point, we are left with the piecewise
linear function qi [· − γi]+.

As for our earlier models, we should study the solution as a parametric func-
tion of β the available budget. However, solving (31) presents all the technical
challenges mentioned in connection with the first model (22) involving proba-
bilistic constraints. The presence of the (vi)m

i=1 has in no way simplified the
problem, and in fact we do not know of any direct method for solving (31).
One possibility is to find an approximation of (31) that could be handled by
available linear or nonlinear programming techniques. We return to this in the
next section.

4.5 Expectation-Variance Formulation

A fifth possibility is to deploy a model as in Somlyódy (1983a) that is based
on expectation-variance considerations for the water quality indicators. The
justification of the model relies on the validity of certain approximations, and
one should be prepared to accept the solution with some circumspection. In
the Lake Balaton Case Study the results for this expectation-variance model
were confirmed by those obtained for the more accurate stochastic programming
model (25)as shown in Section 6.

As a starting point for the construction of this model, consider the recourse
objective function:

m∑
i=1

qiE
{
(yi(x, ·)− γi)2+

}
(32)

The objective being quadratic in the area of interest, and the distribution func-
tions Gi(x, ·) of the yi(x, ·) not being too far from normal, one should be able
to recapture the essence of its effect on the decision process by considering just
expectations and variances. This observation and the ‘soft’ character of the
management problem (which means that there is a large degree of flexibility in
the choice of the objective) suggest that we could substitute

m∑
i=1

qi (E {yi(x, ·)− ȳ0i}+ Θσ {yi(x, ·)− ȳ0i}) (33)

for (32) where Θ is a positive scalar (usually between 1 and 2.5), ȳ0i = E {y0i} is
the expected nominal state of basin i, and σ {·} denotes the standard deviation
operator,

σ {yi(x, ·)− ȳ0i} = E
{

(yi(x, ·)− E {yi(x, ·)})2
}1/2

. (34)

Since for each i = 1, . . . ,m, the yi are affine (linear plus a constant term) with
respect to x, the expression for

E {yi(x, ·)− ȳ0i} =
n∑

j=1

µijxj + µi0
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as a function of x is easy to obtain from equations (1) and (10). The µij are
the expectations of the coefficients of the x, and the µi0 the expectation of the
constant term. Unfortunately the same does not hold for the standard deviation
σ {yi(x, ·)− ȳ0i}. Equations (1) and (10) suggest that

σ {yi(x, ·)− ȳ0i} ∼

∑
j

σ2
ijx

2
j

1/2

(35)

where σij is the part of the standard deviation that can be influenced by the
decision variable xj ; for example, the standard deviation of the tributary load
L(ω)D. Cross terms are for all practical purposes irrelevant in this situation
since the total load in basin i is essentially the result of a sum of the loads
generated by various sources that are independently controlled. This justifies
using

m∑
i=1

qi


 n∑

j=1

µijxj

 + Θ

 n∑
j=1

σ2
ijx

2
j

1/2
 (36)

instead of (33) as an objective for the optimization problem. This function is
convex and differentiable on Rn

+ except at x = 0, and conceivably one could use
a nonlinear programming package to solve the optimization problem:

find x ∈ Rn such that
r−j ≤ xj ≤ r+

j , j = 1, . . . , n,∑n
j=1 αijxj ≤ bi, i = 1, . . . ,m,∑n
j=1 cj(xj) ≤ β

and z =
∑m

i=1 qi

[∑n
j=1 µijxj + Θ

(∑n
j=1 σ2

ijx
2
j

)1/2
]

is minimized.

(37)

We can go one step further in simplifying the problem to be solved, namely, by
replacing the term  n∑

j=1

σ2
ijx

2
j

1/2

in the objective, by the linear (inner) approximation

n∑
j=1

σijxj .

On each axis of Rn
+, no error is introduced by relying on this linear approx-

imation, otherwise we are over-estimating the effect a certain combination of
the xj ’s will have on the variance of the concentration levels. Thus, at a given
budget level we shall have a tendency to start projects that affect more strongly
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the variance if we use the linear approximation, and this is actually what we ob-
served in practice (see Section 6). Assuming the cost functions cj are piecewise
linear, we have to solve the linear program

find x ∈ Rn such that
r−j ≤ xj ≤ r+

j , j = 1, . . . , n,∑n
j=1 αijxj ≤ bi, i = 1, . . . ,m,∑n
j=1 cj(xj) ≤ β

and z =
∑m

i=1 qi

∑n
j=1(µij + Θσij)xj is minimized.

(38)

We refer to this problem as the linearized expectation-variance model; see also
Somlyódy (1983a) and Somlyódy and van Straten (1985).

For the sake of illustration, let us consider the i− th basin of Figure 1 and
suppose that there is no mass exchange with neighboring basins. To obtain a
linear form in the xj , we proceed as indicated in equation (9). To derive the
remaining term in the objective of (38) we only need to consider the controllable
portion of the variance of yi(x)− ȳ0i. We rewrite (1) as

yi(x)− ȳ0i = wi − (dii + diwi)∆Li.

and
∆yi = (dii + diwi)∆Li.

Assume that wi and ∆Li are independent, then

σ2 {∆yi} = d2
iiσ

2 {∆Li}+ d2
i σ

2 {wi}
[

σ2 {∆Li}+ E2 {∆Li }
]
. (39)

From equations (3) and (6-8) we have

σ2 {∆Li} =
1

V 2
i

[
δ2(xp − 1)2σ2 {LT − LD}+ (xD − 1)2σ2 {LD}

]
. (40)

where we have made the plausible assumption that the measurement uncertain-
ties in the tributary dissolved load LD and undissolved particulate load LT −LD

are independent. This would lead to an expression for σ {∆yi} that would be
nonlinear in the x variables. To avoid the nonlinearities we specify σa {∆yi}
and σa {∆Li} as the linear combination of the additive terms in (39) and (40)

σa {∆yi} := diiσa {∆Li}+ diσ {wi} [σa {∆Li}+ E {∆Li }] (41)

and
σa {∆Li} :=

1
Vi

[δ(xP − 1)σ {LT − LD}+ (xD − 1)σ {LD}] . (42)

In equations (39) and (40) all the coefficients of x are positive and the behavior
of the ‘new’ σa is similar to the standard deviations as defined through (39) and
(40). Substituting the terms involving x in (42) into (41) yields

σai = V −1
i

xP [(dii + diσ {wi}) δ (σ {LT } − σ {LD})
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+diσ {wi} δ (E {LT } − E {LD})]

+xD [(dii + diσ {wi}σ {LD}) + diσ {wi} (E {LD} − (1− rt)xSNLSN )]

+xSNdiσ {wi}LSN + xsdiσ {wi}LS


Collecting terms we obtain the coefficients σij that appear in the objective of
the linear program (38). (A more detailed, but similar, derivation also yields
the expression for the standard derivation when there is mass exchange between
neighboring basins.)

The arguments that we have used to justify the expectation-variance model
are mostly of a heuristic nature, in that they rely on a good understanding of the
problem at hand and ‘engineering’ intuition. In the formulation of the models of
this section, the objective has usually been formulated in terms of finding control
measures such that the observed concentration levels (water quality indicators)
are not too far from pre-set goals (given trophic states). If by ‘not too far’ we
mean that

E {yi(x)}+ σ {yi(x)} − γi (43)

should be as small as possible, we could also reformulate the problem, in terms of
the nominal concentration levels. Instead of minimizing (43), we could maximize

E {∆yi(x)} − σ {∆yi(x)} (44)

and this should give about the same results. This is the motivation behind the
formulation of (38), see Figure 3.

There is, however, another approach that does not rely so extensively on
heuristic considerations, which leads us to the model (37), i.e., the nonlinear
version of the expectation-variance model. The fourth model, described in Sec-
tion 4.4, which integrates both reliability considerations and penalties for fixing
the reliability levels, led us to the nonlinear program

find x ∈ Rn such that
r−j ≤ xj ≤ r+

j , j = 1, . . . , n,∑n
j=1 αijxj ≤ bi, i = 1, . . . ,m,∑n
j=1 cj(xj) ≤ β

prob
{∑n

j=1 tij(ω) xj − hi(ω)− yi < 0
}
≥ αi, i = 1, . . . ,m,

and z =
∑m

i=1 qi[yi − γi]+ is minimized.

Because these probabilistic constraints are very difficult to handle, we may con-
sider finding an approximate solution by replacing the probabilistic constraints
by

(1− α1)−2

 n∑
j=1

n∑
k=1

σijkxjxk

1/2

+
n∑

j=1

µijxj ≤ yi (45)

where
t0i(·) = −hi(·),
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Figure 3: Objective of expectation-variance model.

and for j = 1, . . . , n and k = 1, . . . , n

µij := E {tij(ω)} ,

σijk := cov (tij(·), tik(·)) .

If the random variables {tij(·)j
j=1} are jointly normal, then the restrictions gen-

erated by the deterministic constraints (45) are exactly the same as those im-
posed by the probabilistic constraints, but in general, they are more restrictive,
cf. Propositions 1.25 and 1.26 in Wets (1983b) without going into the details,
we can see that (45) is obtained by applying Chebyshev’s inequality and this,
in general, determines an upper bound for the probabilistic eventω|

n∑
j=1

tij(ω)xj ≥ 0

 .

So, given x, if we can justify a near normal behavior for the random variable
n∑

j=1

tij(ω)xj − hi(ω) =: yi(x, ω),

we can use the constraints (45) instead of the probabilistic constraints to obtain
an approximate solution of (31). In this setting, ‘near normality’ of the yi(x) is
a much more natural, and weaker, assumption than normality of the tij(ω). If
we proceed in this fashion, we obtain the nonlinear program

find x ∈ Rn such that
r−j ≤ xj ≤ r+

j , j = 0, . . . , n,∑r
j=1 αijxj ≤ bi, i = 1, . . . ,m,∑n
j=1 cj(xj) ≤ β,

and z =
∑m

i=1 qi

[∑n
j=1 µijxj + (1− αi)−2(

∑n
j=1

∑n
k=1 σijkxjxk)1/2 − γi

]
+

is minimized.
(46)
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We have eliminated the variables (yi, i = 1, . . . ,m) from the formulation of the
problem by using the fact that the optimal y∗i can always be chosen so that (45)
is satisfied with equality. Moreover, if the desired concentration levels γi are
low enough, then we know that the optimal solution will always have y∗i > γi

and thus we can rewrite (46) as

find x ∈ Rn such that
r−j ≤ xj ≤ r+

j , j = 0, . . . , n,∑r
j=1 αijxj ≤ bi, i = 1, . . . ,m,∑n
j=1 cj(xj) ≤ β

and z =
∑m

i=1 qi

[∑n
j=1 µijxj + (1− αi)−2(

∑n
j=1

∑n
k=1 σijkxjxk)1/2 − γi

]
is minimized.

(47)
The objective of this optimization problem is sublinear, i.e., convex and pos-
itively homogeneous. Assuming that the cost functions cj are linear, or more
realistically have been linearized (14), we are thus confronted with a nearly
linear program that we could solve by specially designed subroutines (nondiffer-
entiability at 0), or by a linearization scheme that would allow us to use linear
programming packages. The nonlinear program (47) is exactly of the same type
as (37) if we make the following adjustments:

(i) in the objective of (47) replace the covariance term
∑n

j=1

∑n
k=1 σijkxkxj

by the sum of the variances
∑n

j=1 σijkx2
j ;

and

(ii) if for all i = 1, . . . ,m, the αi are the same set, Θ = (1 − αi)−1, otherwise
we replace Θ by Θi = (1− αi)−2 in (37).

To justify (i), we appeal to (35).
In the derivation that led us from (31) to (47), we stressed the fact that the

solution of (47) and thus equivalently of (37), would be feasible for the original
program (31), and that, in fact, it would more than meet the probabilistic con-
straints specified in (31). The further linearization of the objective bringing us
from (37) to (38) overstresses (only slightly, one hopes) the role that the variance
will play in meeting the prescribed reliability levels. In terms of model (31), we
can thus view the solution of (38) as a ‘conservative’ solution that overestimates
the importance to be given to the stochastic aspects of the problem. In that
sense, the solution of (38), especially in comparison to that of the deterministic
problem (26), always indicates how we should adjust the decisions so as to take
into account the stochastic features of the problem.

In our analysis (see Section 6), we have used the linear programming version
(38) of this expectation-variance model; the wide availability of reliable lin-
ear programming packages makes it easy to implement, and thus an attractive
approach, provided one keeps in mind the reservations expressed earlier.
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5 Solving the Stochastic Model

We briefly outline here the method used to solve the full stochastic version of
the eutrophication management model (25). We recognize it as a stochastic
program with quadratic simple recourse, with stochastic technology matrix T
and stochastic right-hand side h. When only h is stochastic and the objective
function is piecewise linear, efficient procedures are available; Wets (1983a). But
in order to deal with this problem new techniques were required.

A procedure called the Lagrange finite generation method was developed
Rockafellar and Wets (1985) that exploits the properties of the dual associated
to problem (25). Each iteration ν of the algorithm solves the dual over a convex
hull spanned by a given basis of dual solutions. This is a finite-dimensional
quadratic program that produces a feasible primal solution xν . A new dual
solution is calculated from xν , added to the collection of dual solutions, and the
cycle repeats. (The procedure is started by solving the deterministic problem
(26) with expected values for the stochastic parameters.) The Lagrange finite
generation algorithm produces a sequence {xν} that converges at a known rate
to an optimal solution of the original stochastic program. An experimental ver-
sion of this algorithm was implemented at IIASA by A. King; King, Rockafellar,
Somlyódy, and Wets (1988).

The distribution used to calculate the dual solutions is derived by sampling
from the stochastic model (10). For a number of reasons (including numerical
stability considerations) it is recommended to start with a relatively small sam-
ple, increasing its size only for verification purposes. We found that a relatively
small sample (about 50) will gave surprisingly accurate results, as was confirmed
by studying the performance of the obtained solutions using independent sim-
ulations. (The early literature on the statistical convergence of solutions for
sampled stochastic programs was inspired by this sampling approach to solv-
ing the Lake Balaton problem; see King (1986).) Asymptotic error bounds for
the solutions of piecewise linear-quadratic problems were derived in King and
Rockafellar (1993). See Shapiro (2000) for a survey.

6 APPLICATION TO LAKE BALATON

Lake Balaton (Figure 4), one of the largest shallow lakes of the world, which is
also the center of the most important recreational areas in Hungary, has recently
exhibited the unfavorable signs of artificial eutrophication. An impression of
the major features of the lake-region system, the main processes and activities,
the underlying research, data availability and control alternatives can be gained
from Figure 4 and Table 1; for details see Somlyódy, Herodek, and Fischer (1983)
and Somlyódy and van Straten (1985). Four basins of different water quality can
be distinguished in the lake determined by the increasing volumetric nutrient
load from east to west. The absolute loads are roughly equal for the four basins,
but the biologically available load, BAP, is about ten times higher in Basin I
than in Basin IV (see Table 1, line 6). This is due to the asymetric geometry of
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the system: the smallest western basin drains half of the total watershed, while
only 5% of the catchment area belongs to the larger basin (Table 1, lines 2 and
3).

Based on observations for the period 1971-1982 the average deterioration of
water quality of the entire lake is about 20% (in terms of Chl-a). According to
the OECD classification, the western part of the lake is in a hypertrophic, while
the eastern portion of it is in an eutrophic stage (Table 1, line 7).
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Figure 4: Lake Balaton: Major nutrient sources and control options.
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1. Basin I II III IV Lake
2. Watershed area [km2] 2750 1647 534 249 5180
3. Lake surface area

[km2]
38 144 186 228 536

4. Volume [106m3] 82 413 600 802 1907
5. Depth [m] 2.3 2.9 3.2 3.7 3.2
6. BAP load [mg/m3d] 1.70 0.30 0.15 0.14 0.25
7a. (Chl− a)max[mg/m3] 75 38 28 20 (late 70’s)
7b. 150 90 60 35 (1982)

8. Use of the watershed. Agriculture and intensive tourism (main season:
July and August)

9. Climatic influences. No stratification; large fluctuation in temperature
(up to 25− 28oC); 2-month ice cover; strong wind action

10. Eutrophic Status. Hyper-eutrophic state: P limitation till the end of
the seventies; large year-to-year fluctuation in Chl-a depending on mete-
orology and hydrology; 20% per year increase in Chl-a during 1971-1982;
marked longitudinal gradient

11. Sediment. Internal load nowadays is roughly equal to the external BAP
load

12. Data. Long hydrological and weather records; regular water quality and
load survey since 1971 and 1975, respectively

13. Research. Increasing activity in Hungary in various institutes during the
past 30 years; joint study of IIASA, the Hungarian Academy of Sciences
and the Hungarian National Water Authority, 1978-1982, see Somlyódy
et al. (1983).

14. Models developed. Various alternative models, see Somlyódy et al.
(1983)

15. Methodologies. ODE and PDE models, regression analysis, Kalman fil-
tering, time series analysis, Monde Carlo simulations, uncertainty analy-
ses, optimization techniques

16. Measures of short-term control. P precipitation on existing treatment
plants; pre-reservoirs

17. Policy making. Government decision in 1983: P control is under realiza-
tion (as of 1985).

Table 1: Major features of Lake Balaton and its watershed.
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The lakes’ total P load LT is on average 315t/yr (the BAP load is 170t/yr)
but depending on the hydrologic regime it can reach 550t/yr. 53% of total load
is carried by tributaries 30% of which is of sewage origin (see e.g., the largest
city of the region, Zalaegerszeg in Figure 4). 17% of total load is associated
to direct sewage discharges. Atmospheric pollution is responsible for 8% of the
lake’s P load and the rest is from direct runoff (urban and agricultural). Tribu-
tary load increases from east to west, while the change in the direct sewage load
goes in the opoosite direction. The sewage contribution (direct and indirect
loads) to LT is 30%, but it contributes about 52% of the biologically available
load LD + δ(LT − LD). The load of agricultural origin can be estimated as 47
and 33%, respectively. This suggests the importance of sewage load from the
viewpoint of the short-term eutrophication control. Figure 4 indicates also the
loads of sewage discharges and tributaries which were involved in the manage-
ment optimization model. These cover about 85% of the nutrient load1 which
we consider controllable on the short term.

Control alternatives are sewage treatment (upgraded biological treatment
and P precipitation) and the establishment of pre-reservoirs as indicated in Fig-
ure 4. The Kis-Balaton reservoir system is planned for a surface area of about
75km2. Besides Hungarian research activities, the problem of Lake Balaton
was studied in the framework of a four-year cooperative research project on
Lake Balaton involving the International Institute for Applied Systems Analy-
sis, IIASA (Laxenburg, Austria), the Hungarian Academy of Sciences, and the
Hungarian National Water Authority; Somlyódy (1982 and 1983b); Somlyódy
and van Straten (1985). The development of the management model to be dis-
cussed here formed a part of the Case Study. The results achieved were then
utilized in 19822 in the policy making procedure associated with the Lake Bal-
aton water quality problem which was completed by a governmental decision in
1983 (Láng, 1985).

6.1 Specification of elements of EMOM for Lake Balaton

(a) Nutrient Load model
The nutrient load model for Lake Balaton can be derived on the basis of Figure 4
from relation (10). The tributary loads LT and LD are computed from regression
models; Somlyódy and van Straten (1985).

L = (L0 + α1 Q + Lρ)(ξ− + ξ̂) (48)

where Q is the stream flow rate, Lρ is the residual, and the variable ξ̂ accounts
for the influence of infrequent sampling (ξ− is the lower bound). The most
detailed data set, consisting of 25 years of continuous records for Q and 5 years of
daily observations for the loads, was available for the Zala River3 (see Figure 4)

1The rest represented by several small creeks and sewage outlets were neglected for the
sake of simplicity.

2At that time only the expectation-variance model was available.
3Its annual load estimated from daily data can be considered accurate.
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draining half of the watershed and representing practically the total load of
Basin I. For the Zala River Lρ was found to have a normal distribution, while
Q was approached by a lognormal distribution. The loads of other tributaries
were established on the basis of much more scarce observations. For modeling
the uncertainty component of ξ̂, first a Monte Carlo analysis was performed
on the Zala River data by assuming various sampling strategies. Subsequently,
the conclusions were extended to the other rivers and the parameters of the
(assumed) gamma distributions of ξ̂ were estimated.

(b) Control variables and cost functions
All the optimization models implemented use real-valued control variables. In-
teger {0, 1} variables for the two reservoir systems (see Figure 4)were also used
by simply fixing the variable values of 0 and 1 as part of the input. The elabora-
tion of cost functions was based on analyzing a variety of technological process
combinations (leading to different removal efficiencies) for treatment plants in-
cluded in the analysis (Figure 4). As an example, the cost function for the
largest treatment plant, Zalaegerszeg (see Figure 4) the capacity of which is
Ql = 15000m3/d, is given in Figure 84. Three groups of expenses are illustrated
in the figure:

(i) Investment cost required for upgrading biological treatment;

(ii) Investment cost of P precipitation which increases rapidly with increas-
ing requirements. The use of piecewise linear cost functions required the
introduction of three dummy variables for each treatment plants.

(iii) Running cost.

6.2 Results of the Expectation-Variance Model

In order to gain an impression of the character of the problem and the behavior of
the solution, first we specify a ‘basic situation’ (which is close to the real case)
having the following features and with the following assumptions (Somlyódy,
1983b):

(i) control variables are continuous;

(ii) no effluent standard prescription is given;

(iii) no P retention takes place in rivers (rt = 0 in equation (10));

(iv) the capital recovery factor is equal for all the projects, αj = α = 0.1 and

(v) equal weighting is adopted (see qi and Θ in Section 4.5).

4Roughly US $1 is equivalent to 50 Forints (Ft).
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Figure 5: Costs of sewage treatment (Zalaegerszeg).
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Figure 6: Water quality indicator (Chl− a)max as a function of the total annual
cost.

With these assumptions optimization was performed under different bud-
getary conditions (TAC ≤ β = 0.5to25 × 107 Ft/yr). Statistical parameters
(expectation, standard deviation and extremes) of the water quality indicators
gained from Monte Carlo procedure5 are illustrated in Figure 6 for the Keszthely
basin as a function of the total annual cost, TAC6.

In Figure 7, we record the changes in the two major control variables (xSN1

and xD1) associated to the treatment plant of Zalaegerszeg and the reed lake
segment of the Kis-Balaton system (see Figure 4). There is a significant trade-
off between these two variables. For decision-making purposes, it is important
to observe that there are four ranges of possible values of β (the budget), in
which the solution has different characteristics.

(i) In the range of β = 0.5to5 × 107 Ft/yr, it appears that sewage treatment
can be intensified and tertiary treatment introduced. Expectation of the
concentration levels will decrease considerably, but not the fluctuations.
Under very small costs (∼ 0.3× 107 Ft investment costs, IC) it turns out
that only the sewage of Zalaegerszeg (Figure 4) should be treated. Under
increasing budget, potential treatment plants are built, going from west
to east.

(ii) If β is between 5 × 107 and 10 × 107 Ft/yr, the effectiveness of sewage
treatment cannot be increased further but reservoir systems are still too

51000 simulations were performed in each case.
6Running cost is about ten times larger than TAC.
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Figure 7: Change of major decision variables.
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expensive.

(iii) At about β = 15 × 107 Ft/yr the solution is a combination of tertiary
treatment and reservoirs. Fluctuations in water quality are reduced by
the latter control alternatives.

(iv) Finally, around β = 20 × 107 Ft/yr, tertiary treatment is dropped in
regions where reservoirs can be built. After constructing all the reservoirs,
no further water quality improvement can be achieved.

Concerning the model sensitivity on major parameters, the following conclu-
sions can be drawn (for details see Somlyódy (1983a), and Somlyódy and van
Straten (1985)):

(i) Fixed water quality standard not reflecting the properties of the system
(spatial non-uniformities) can result in a strategy far from the optimal
one, since the distribution of a portion of the budget is a priori determined
by the pre-set standard.

(ii) Under increasing P retention in rivers the improvement in water quality is
less remarkable in the budget range 0− 10× 107 Ft/yr than in the basic
case. The worst – nevertheless, nearly unrealistic – situation is if all the
phosphorus were removed along the river and still treatment has to be
performed: the budget should be partially allotted for investments having
no influence on the lake’s load.

(iii) If only deterministic effects are considered (Θ = 0), reservoir projects enter
the solution under much larger budget values.

(iv) If the capital recovery factor is smaller for reservoir projects than for
sewage treatment plants (12) reservoir projects start to be feasible at
smaller budgets. Errors in the efficiency or in costs of reservoirs cause
similar shifts in the solution.

(v) When selecting properly the model parameters, the combination of the
absolute load reductions for the four basins is maximized by the model
(as it is suggested most frequently in the literature, see the Introduction).
Since, however, the absolute loads alone do not reflect the spatial changes
in water quality, the policy drastically differs from the optimal one.

Subsequently we give the ‘realistic’ solution for the Lake Balaton manage-
ment problem by using

- actual retention coefficients (ranging between 0.3− 0.5)

- upper limits 0.9 for the P removal rate of reservoirs; and

- fixed variables {0, 0.9} for the Kis-Balaton reservoir system.
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Figure 8: Solutions of EMOM for Lake Balaton, Basin I.

Figure7 8, which refers again to the Keszthely bay, shows remarkable dif-
ferences as compared to Figure 6. First of all, the drastic effect of reservoirs
upon expectation but even stronger upon fluctuation of water quality is stressed.
Reservoirs enter the solution between 15 × 107 and 17.5 × 107 Ft/yr total an-
nual cost resulting in a reduction in the mean (Chl− a)max concentration from
about 55 to 35 mg/m3 and in the extreme values from more than 100 to about
60 mg/m3.

While Figure 6 offers several solutions for a decision maker depending on the
budget available, on the basis of Figure 8, only two feasible alternatives come
to mind:

(i) If total annual cost of about 2.5 × 107 Ft/yr is available, all the sewage
projects can and should be realized (going from west to east). Through
this alternative the expectation of Y1 = (Chl− a)max is reduced to about
55 mg/m3 (tertiary treatment affects the water quality at a slightly smaller
extent than in the basic case due to P retention of tributaries) but still ex-
tremes larger than 110 mg/m3 can occur (hypertrophic domain according

7In the Figure ± standard deviation and the upper 95% confidence level are also illustrated
(the distributions are bound towards small Y1 concentrations and the lower 95% confidence
level values are close to the minimum).
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to the classification of OECD, 1982). Further increase in the budget (up
to 10×107 Ft/yr) has no impact on water quality (under the alternatives
included in the analysis).

(ii) If budget around 20× 107 Ft/yr is given not only the Kis-Balaton, but all
the reservoirs can be established and tertiary treatment can be realized
for direct sewage sources. The mean (Chl− a)max concentration is about
35 mg/m3 while the maximum about 60 mg/m3 (eutrophic stage).

In Figure 8 the results of a detailed simulation model for two optimal solu-
tions (TAC = 2.5 × 107 Ft and 20 × 107 Ft) are also given. The agreement
between the calculated concentration indicators suggests that the aggregated
lake eutrophication model is quite appropriate for our present purpose.

Figure 9 compares the typically skewed probability density functions of two
considerably different solutions (β = 2.5× 107 Ft and 20× 107 Ft respectively)
for four basins, derived from Monte Carlo simulations. (The non-controlled state
is also given in this figure.) Also from this figure we can conclude that tertiary
treatment is more effective than reservoirs (when both alternatives are avail-
able) for controlling the mean concentration, but fluctuation can be controlled
by reservoirs only. In the first case (β = 2.5×107 Ft/yr) Basin I remains hyper-
trophic, Basins II and III eutrophic, whilst Basin IV mesotrophic. In the second
situation (β = 20×107 Ft/yr) the spatial differences and stochastic changes are
much smaller: Basins I, II and III are eutrophic and Basin IV mesotrophic (the
long-term improvement of water quality is certainly larger than the short-term
one discussed here).

From all that we learned through this management model, it follows that in
order to realize the optimal short-term strategy of eutrophication management

- tertiary treatment of direct sewage discharges should be introduced (from west
to east);

- depending on the budget available tertiary treatment of indirect sewage dis-
charges of pre-reservoirs (again from west to east) should be realized.

For further details of the management strategy worked out for Lake Balaton
and other management models not discussed in this paper, the reader is referred
to Somlyódy, (1983b) and Somlyódy and van Straten (1985).

6.3 Results of the Stochastic Recourse Model

As seen from Table 1 (line 7), the nominal state of water quality is given by
the indicator vector Y01 = (75, 38, 28, 20), (i = (1, · · · , 4)). Goals were specified
by γi = (48, 28, 24, 18) expressing the desire that Basin I should be shifted to
the eutrophic, and other segments to the mesotrophic state (see Figure 8), but
without forcing a completely homogeneous water quality in the entire lake on
the short term, which would be unrealistic.
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Figure 9: Probability density functions for two different situations (from 1000
Monte Carlo simulations).
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The definition of these goals, however, means that the improvement intended
to be achieved is quite uniform for the four basins in a relative sense: as com-
pared to the maximal possible reduction in the water quality indicator on the
short term (see Figure 6), we plan 50− 60% improvement for Basins I, II, and
III. Basin IV (with 20%) is the only exception as its water quality is presently
quite good, but this segment plays a secondary role from the viewpoint of the
management problem.

The parameters ei and qi of the objective function, see (25) and Figure 2,
were selected uniformly for the four basins: ei = 5 and qi = 10, i = 1, · · · , 4. This
corresponds, in the region zi ≤ 5, to a ‘variance formulation’ of the objective
function (being similar to (6.1) as q/2e = 1 With these parameter values, the
quadratic portion of the utility function is predominant in Basins II, II, and
IV, while for Basin I the upper linear portion of the utility functional is also of
importance.

Results of the stochastic optimization model with recourse are also illus-
trated in Figures 9-11, in comparison with that of the expectation-variance
model. As seen from Figures 9-11, the two models produce practically the same
results in terms of the water quality indicator (including also its distribution).
With respect to details there are minor deviations. According to Figure 7, the
expectation-variance model gives more emphasis to fluctuations in water quality
and consequently to reservoir projects, than the stochastic recourse model (with
the parameters specified above). This is in accordance with the remarks made
in Section 4.5 that the role of the variance is overstressed in the expectation-
variance model.

From this quick comparison of the performance of the two models, we may
conclude that the more precise stochastic model validates the use of the expectation-
variance model in the case of Lake Balaton.

For a more systematic comparison of the two models, the difference in the
objective functions should be kept in mind. The stochastic model has more
parameters than the expectation-variance model, in particular, the exclusion of
the water quality goals γi from the expectation-variance model plays an impor-
tant role. Figure 7 illustrates clearly that the prescription of the goal close to
the lowest realizable value for Basin I (see Figure 6) leads to a stronger em-
phasis on reservoirs as compared to the expectation-variance model. The faster
increase in xD1 as a function of the budget β is associated with a decrease in
xSN1 — as expected — in addition to smaller allocations to the other basins.
Depending on the value of γI the solutions lie in the shaded regions indicated
in Figure 7. The solution to the expectation-variance model is located in the
“center” of these regions.

As mentioned before, the expectation-variance model gives more weight to
variance than the stochastic recourse model. For computational justification
we compared curves (A) and (B) in Figure 7. The rationale is that lacking
water quality goals, the expectation-variance model follows to some extent the
principle of “equal relative” water quality improvements in all basins (other
factors — eg. the distribution of costs for basins — also play a role) and in
this sense its solution can best be compared to solution (B) of the stochastic
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method.
We complete this section with the following conclusions:

1. The stochastic optimization model with recourse justified the applicability
of the much simpler expectation-variance model for Lake Balaton.

2. Replacing the stochastic objective function with a deterministic version
leads to a strikingly different and incorrect management strategy.

3. The most influential parameters in the stochastic model are the prescribed
water quality goals for the different basins. The inclusion of the goal in
the objective function is the primary advantage in comparison with the
expectation-variance model.
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trophication management: The Lake Balaton project. In Y. Ermoliev and
R. J.-B. Wets (Eds.), Numerical Techniques for Stochastic Optimization,
pp. 435–444. Springer-Verlag.

Rockafellar, R. T. and R. Wets (1985). A Lagrangian finite generation tech-
nique for solving linear-quadratic problems in stochastic programming. In
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