
RC22739 (W0303-032) March 7, 2003
Computer Science

IBM Research Report

MindFrames: A Visual Environment for
Semantically-Oriented Program Construction

Herb Derby, Robert M. Fuhrer, Donald P. Pazel
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report
for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests.
After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218,
Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

MindFrames: A Visual Environment for Semantically-
Oriented Program Construction

Herb Derby
IBM Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532

914-784-7502

herbd@us.ibm.com

Robert M. Fuhrer
IBM Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532

914-784-7773

rfuhrer@watson.ibm.com

Donald P. Pazel
IBM Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532

914-784-6916

pazel@us.ibm.com

ABSTRACT
The MindFrames project is a research effort addressing the
semantic gap between our conceptualizations within application
problem domains and implementations about them. At a
superficial level, our approach concerns diagramming and the use
of domain-specific visualizations to bridge this gap. At a
foundational level, it involves deeper principles involving
program construction methodology, state reflective capabilities, a
rich semantic model for program visualization, and a carefully
crafted condensation of abstraction and concretization. We
present the vision of our work, and a discussion of the
MindFrames prototype. We demonstrate an environment in
which constructive, state reflective visualization is the means for
programming, and add to that a discussion of advanced topics
such as design patterns and partial evaluation. We also discuss
design issues regarding our semantic programming model, visual
infrastructure, and graphics foundations.

Keywords
Algorithms, Documentation, Performance, Design, Reliability,
Experimentation, Human Factors, Languages, Verification.

1. INTRODUCTION
Much of the history of programming language evolution can be
viewed as an attempt to bring clarity, speed, and facility to
programming applications through abstraction. At a rudimentary
level, programming languages have from the beginning shielded
programmers from hardware considerations such as register usage.
Language structure evolved for organizing processing at a higher
level through decomposition into individual procedures.
Eventually entity-relationship and object-oriented approaches
developed simple data and process encapsulation techniques. All
of these developments can be seen as an attempt to bridge concept
to programming.
Commensurate with this evolution, programming tools followed
its own developmental path. Much of the effort in this area has

focused on making source text entry easier and clearer, achieved
primarily through smart text assists on syntactic structures and
program dictionaries. Recently, tools such as IBM’s Eclipse and
Idea’s IntelliJ offer increasing degrees of program semantic
manipulability through refactoring operations, relieving the
programmer of tedium during activities such as renaming
programming elements or code movement. These tools, along
with debuggers and execution profilers, are standard equipment in
every programmer’s toolbox.
Despite these laudable efforts, programming is still an onerous
and therefore costly endeavor, specifically, we argue, because the
programmer is left with a large conceptual gap between the
problem domain and the artifacts of programming. It is our
experience that the most useful problem-solving models remain
on white-boards or paper scraps as diagrams, or as conceptual
mental images – most of which gets discarded in the course of
development. Tooling offers little or no help in building a
comprehensive view relating the ideas embodied in the
application to the concrete programming entities. As a result, the
need to continually translate between problem conceptualization
and programming wastes much time and energy.
This paper presents an applicative approach to programming
based on several key ideas. First, the kind of intuitive diagrams
one draws when working out a solution on paper can in fact
become the program. Second, programmers need help
understanding the evolution of the data’s state throughout a
parallel or sequential program’s execution. In MindFrames, this
help takes the form of “state reflection,” a means for reflecting
information about a data entity’s state in its visualization. Third,
domain-specific visualizations are critical to narrowing the
conceptual gap. Finally, programming environments need to
provide operations for constructing and manipulating code that
are semantically aware (cf. textual editing operations like “delete
character”).
This paper is organized as follows. The next section is a detailed
look at the current state of programming and the problems therein.
This is followed with a discussion of a conceptual solution to
these issues in the spirit of the MindFrames project. This is
followed by a close look at the MindFrames programming
environment. The architecture of the various components is
described at length. Finally, we share our thoughts on future work
and direction.

 2

2. Transforming Ideas into Code
Inasmuch as the prior section points out inadequacies in the
current state of programming tools, it indicates a better approach
to programming, based in part on common engineering practices
not strictly limited to programming. These include white-board
diagramming, state drawing, design sketching, along with state
evolution diagramming in reaction to process.. In this section, we
examine a few such approaches and motivate how their use
provides a foundation for improving programming tools. We
show that these approaches relate intuitively to the methods we
use to think about the core problem-solving domains. So, not only
do diagrams help us clarify ideas, but also provide a means to
facilitate working with ideas, e.g. to change or morph ideas into
different or better ideas. The result is an environment wherein the
focus is building on the concepts being manipulated, thus
facilitating a path from ideas to code, and de-emphasizing the
mere management of programming details.

2.1 Diagrams and the Programming Process
The path to learning and understanding a discipline is often rich
in visual illustration. Be it in textbooks, the classroom, or
industrial practice, graphical depiction is often the best means to
convey an idea, related ideas, and their relationships, and further
their dynamics.

The similarity in illustration use over many domains is quite
striking, but is particularly striking for the mathematical,
scientific, and computing disciplines. In mathematics, depicting
sums as areas on a Cartesian plot, and abstractions such as sets as
Venn diagrams, are standard tools for facilitating conceptual
understanding. In physics, drawings illustrate physical elements
and states and dynamics in real-world phenomena. In
programming, data elements and their relationships are illustrated
in many variations of block diagrams. Further, illustrations
enhance our understanding when each phase of reasoning about
conceptual artifacts is reflected in a graphical transition in the
drawing. For example, in mathematics, reasoning steps result in
diagrammatic changes relating mathematical objects; the changes
due to the onset of physical dynamics is clarified by changes in
depictions of affected physical objects; and depictions of data
element state transitions clarify the impact of executing processes.

To date, conceptual illustrations as described above have chiefly
been utilized effectively for educational or design purposes. In the
latter case, the diagrams are tossed aside, in favor of less intuitive
artifacts used during the implementation phase. How to turn them
into a basis for a pragmatic programming paradigm is less
apparent. An appreciation of the fundamental programming
activities, however, provides motivation for pursuing this
paradigm and clues as to what that paradigm entails. Consider the
following typical programming activities:

• Creating or identifying programming objects or data of
interest, e.g. variables and data structures, and establishing
relationships, e.g. pointer structures, lists.

• Inferring the current state of data of interest, e.g. x is set,
unset, possibly set, or pointer p points to a FOO object.

• Reasoning about the correct execution order through
repeated application of the above.

• Trying abstract code with concrete values in-situ to gain
confidence that the computation proceeds as anticipated.

• Abstracting specific code fragments to more general use.

The above indicates that imperative programming has as a vital
component an exercise in state management through an
incremental state-transition process. Through pencil and paper, or
“in our heads”, we conceptualize what is happening at each point
in a program, usually through visual representations of data and
state, and often through example. The current state of practice in
programming tools does not externalize these state management
processes, nor the movement from abstraction to concretization.
Consequently, at best we store the results of such efforts on
secondary media (e.g., paper or whiteboard) so that they exist
only “outside the system,” or discard them, only to reconstruct
them when needed again.

A close look at the above reveals several key facets of the
programming process:

• Construction – Programming is a process of data state
construction and evolution. We carefully choose program
operations that transform the data to new desired states.

• State Reflection – Knowledge about a program’s data state
at any execution point is critical to reasoning effectively
about what should be done constructively or correctively
with the code.

• Domain Specific Representation – Application
programming is deeply rooted in our conceptualization of
the application model, its objects and relationships.

• Causal Localization – Operation execution order
dependence or independence is a significant factor in state
inference and management.

• Virtualization – Propositions over abstract state (such as “x
is non-NULL”), though important, often don’t provide
enough leverage to understand program behavior. We need
to explore concrete examples within a localized context.

These facets are examined more closely in the following sections
from the perspective of using diagrams as a means for facilitating
their utilization.

2.2 Construction
A program can be viewed as a constructive process based on the
notion of building or managing data state, and evolving state
through program operations. The act of programming, however,
can be viewed as a constructive activity with a more proactive
dynamic in which data state manipulations map onto program
operations that achieve that change. This takes the usage of
diagrams from being informally descriptive to being the program
artifacts themselves.

Key to constructive program development is isolating the data and
relationships of interest, and manipulating them to further develop
process. From a diagrammatic viewpoint, that means that data and
relationships are visualized, and their manipulation results in
process, i.e., a program. Viewed from this perspective, a program
may be broken into sequences or hierarchies of state goals, each
with their own state evolution.

 3

Figure 1 illustrates constructive activity. The example shows
several data structures and relationships, along with two visual
value assignments (arcs). The two resulting programming
statements appear on the lower right. Pointer p refers to object
instance A, whose member table refers to array B of data
elements. Element C is the third element in B, and has members x
and y. Pointer r refers to object D with member z. There is also a
free-standing expression a+b.

In this example, the expression a+b is assigned to
p.table[3].x, and the value r.z is assigned to
p.table[3].y. In a visual system, these assignments could be
created through drag/drop of value sources onto value
destinations. In this case, the expression a+b is dropped onto x,
and z dropped onto y. With each gesture, the appropriate program
statement is generated. The arcs 1) and 2) may remain on the
diagram indicating the flow of data.

Notice the conceptual clarity in the rendered data representation,
including the levels of pointer indirection. Also note that the use
of drag/drop as an assignment gesture is simple, powerful, and
appropriate, especially given that drag/drop operations do not
disturb the source object, instead moving a copy of the image
while interacting with target objects.

2.3 State Reflection
Clearly, the usefulness of diagrams in a constructive programming
paradigm increases with the level of useful detail provided about
the data and their relationships. The definition of appropriate
detail is typically context-dependent. For example, relevant detail
might include the state of variable initialization (i.e., set, unset,
possibly set). Alternatively, detail could include known “points-
to” relationships (reference p points to object instance A). In state
diagrams, detail could refer to the present state or a set of possible
present states. This information can be reflected visually using
any of a variety of methods, e.g. colorations, arcs, highlights, fill
patterns, and so on.

Providing such informative detail about program state is referred
to here as state reflection. This information is dynamic and
changes with constructive activity; thus, it is important that visual
cues are updated properly after each constructive action.

Figure 2 depicts a constructive state in which pointer p refers to
an object A with pointer member x. Pointer q references object B;
and r, C. Consider the data state after execution of the “if”
statement: A’s data member x may point to B or C. This state is
“reflected” in the two dashed “possible pointer relationship” arcs.
Having this information readily available is critical to making
decisions in subsequent programming activities.

2.4 Domain-Specific Representation
Programming is never done in a vacuum, but rather in the context
of some conceptual model. Application programming involves the
analysis and manipulation of that model to such an extent that we
are forced to translate back and forth between program and model.
That is, we continually reconstruct the state of the model from the
code and visa-versa. Thus, the closer the model is to the
application structure, the easier the programming.

In other words, the more accurately the application corresponds to
the illustration, the greater confidence we have in its use as a
programming medium. The diagrams presented earlier
demonstrate an effective use of pointer and array representations
which, while useful, utilize traditional programming artifacts. It is
possible to gain even more leverage by broadening the scope of
visualizations. Figure 3 shows a traditional state diagram, along
with the corresponding code fragment. Other useful examples
include visuals related to physics, such as spring-mass diagrams,
or mathematics, such as Cartesian plots.

We envision many representations specific to application domains
that are interactive and state reflective, as well as multiple
visualizations for the same domain objects, each with specific
capabilities. As importable/exportable conceptual artifacts, such
diagrams over time define a “MindShare” or knowledgebase of
composable re-usable ideas. The vision is that using this
knowledgebase would replace the current preoccupation with

p

table

x

y

r
z

a+b

(1) p.table[3].x = a+b;
(2) p.table[3].y = r.z;

A B C

D

(2)

(1)

Figure 1- Programming as a constructive process

p

q

r

x

if (a<b)
p.x = q;

else
p.x = r;

A

B

C

Figure 2 - State reflection of pointer relationships

 4

programmatic details with a more focused attention to composing
and managing the higher level concepts behind programs.

2.5 Causal Localization
Visualizing the order of program operation execution is another
critical factor in our paradigm, because it is the source of many
problems in conventional imperative programming. This happens
because the partially gratuitous sequence imposed on a program
coded in a linear medium (such as text) obscures its true data-flow
and control dependencies. As a result, problems regarding order
of value assignments derive from inaccurate analyses of
sequentially ordered operations. In fact, it is just as important to
know when operations are order-independent as when they are
order-dependent. This is especially true in today’s increasingly
concurrent software. Understanding the flow of data related to a
given value assignment is called causal localization.

Ferreting out order dependence is laborious and time consuming,
but state reflection can help. Figure 4 depicts a constructive

drawing accentuating causal localization. The assignments (solid
arcs) to a and b are unrelated, and therefore can be executed in
parallel, or in either order. Their values are combined (dashed
arcs) into the value assigned to x. The assignment to x causally
succeeds the other two assignments. This is very clear from the
diagram, and would remain clear even in significantly more
complex diagrams, which cannot be said for the generated code.
Having this sort of clarity early in the programming process
would avoid errant uses of values.

2.6 Virtualization
Desk-checking or debugging program fragments with actual
values are among the most overlooked methods for acquiring
program understanding. This process, often affiliated with defect
localization, is used in all phases of program development,
especially the development phases, to ensure or check that the
coding matches intention. However, desk checking is tedious,
error-prone, and time-consuming. Debugging traditionally
requires execution of a fully built or scaffold system, or at best
(when used with unit testing), forces one to decide a priori the
granularity at which one must test before building the software.

A more effective development environment would allow
exercising code with values, without requiring execution from the
program’s beginning, and without requiring a fully specified
program. Allowing “partial evaluations” wherein programs are re-
written or simplified with known values for some, but not
necessarily all, data elements extends this “virtualization”
approach in a most useful way.

Figure 5 illustrates an example wherein a complex value
generation scheme is combined with linked list generation.
Without concrete values, the behavior of the code is difficult to
surmise. In this case, with f set to 15, the value of “slot” stabilizes
to 0. The order of elements along with the depiction of next
references gives confidence in the correctness of the program.

2.7 Putting the Vision Together
We propose that a programming environment based on these
facets provides a positive step in the evolution of the art of

Foo p = new
Foo()
For(int i=0;
i<7; i++) {

p.slot = f
mod 10;

f = (f div
4)*10;

q = new
Foo();

p.next = q;
p = q;

}

3 2 2 2 0 0 0

Assume f=15;

Figure 5 - Virtualized execution

B

DC

A

S
a2

a1

a2

a1

while ((input = getInput()) != EOF) {
switch(presentState) {

case S:
if (input == a1)

presentState = A;
else if (input == a2)

presentState = C;
…

Figure 3 - State diagram as domain-specific visual

6+t s+t

a b

a+b

x

a = 6+t;
b = s+t;
x = a+b;

Figure 4 - Causal localization; data-flow

 5

programming. In the following sections, we explore our
prototype, MindFrames for Programming, which demonstrates
how many of these ideas can be combined effectively.

3. Overview of MindFrames Programming
Environment
We built a prototype programming environment to demonstrate
many of the ideas exposed in the prior sections. As our focus is on
tools that facilitate concretizing ideas and abstracting from
implementations, our belief is that many of these ideas transfer
naturally to many other disciplines led us to name our
programming domain-specific tool “MindFrames for
Programming”, or MFP. Our infrastructure is designed to support
a fluidly dynamic interface to the programming structures to be
manipulated. Likewise, the user interface attempts to provide
flexible, intuitive and powerful personalized information
management. Although MFP itself represents a somewhat neutral
imperative language, it is compliant with either Java or C++. In
the next sections, both the user interface and infrastructure are
explored in more detail.

3.1 MFP – The Environment & Class
Construction
The MFP screen shot in Figure 6 shows the construction of a
class. The general work area is a free-form graphical area,
somewhat similar to what one would find in Smalltalk or Squeak.
A number of palettes are available to assist program construction
(ref. basic type, expression, and class/package palettes), along
with a trashcan for discarding items. The interactive paradigm is
primarily drag-and-drop (DnD) along with text focusing visuals

allowing text input and change.
The type palette is typically used as a source to construct values,
fields or methods, or change types of existing data or methods,
through a DnD operation of a type onto an appropriate context.
The expression palette provides a set of standard programming
constructs such as expressions, if statements, etc., which are
similarly instantiated in programs through DnD operations. The

file palette provides a list of classes and packages, including those
in available class libraries.
In this example, a class definition view for MyClass is shown.
This view displays declarations for all data and method members
in the given class. Populating the definition is generally
accomplished by dropping types onto the view. In this example,
the class has three members: the method MyMethod, the string
myString, and an unnamed integer field. Unlike most systems,
ours does not arbitrarily restrict the usage of incompletely defined
elements. In this case, the unnamed int data member may be
used freely. Mostly likely, however, it should be named at some
point; the state reflective dashed highlight indicates so.
Although MFP supports customized visuals of programming
elements, a default set of visuals is provided. These are seen in the
type and expression palettes, as well as in the class definition
view. The default graphics provide some consistency, for
example, in the color-coding of types, and the appearance of type
information on the right of various programming elements. In this
case, the method has two parameters p1 and p2, and returns a
Boolean. The parameter signature can be changed easily, for
example, by dragging items to re-order them, or by dragging them
to the trashcan. A set of buttons provides an interactive means of
changing an item’s access level, e.g. public, protected, and
private.

Below the class definition view is a source view, showing the
source code corresponding to the class, as either Java or C++.
This view is updated with each graphical action. The source view
is intended as a “crutch” (the visual is the program), to increase
the comfort of new users by giving a familiar frame of reference.

3.2 MFP – Method Construction
The MFP screenshot in Figure 7 highlights features for visually
programming methods. Here the main window is the coding pane
for a method implementing the LZW compression algorithm. The
top border displays the name, signature (void), and return type
(Boolean) for the method, and a visual for the “this” variable
for easy access.
In MFP, a program is constructed as a hierarchy of coding frames.
Each frame is a visual work area in which a set of program
operations appear. Visual nesting corresponds directly to context
scoping. That is, a loop’s body and nested contexts within
conditionals are represented by frames visually nested within the
frame of their outer context. In the figure, the vertical column and
horizontal row of frames, somewhat reminiscent of [7], present a
portion of the frame hierarchy. The vertical column depicts a
program context stack, while the horizontal column displays the
sequence of frames at the lowest context level. A border highlight
on a miniature depicts it is the “current” frame shown in the
middle. The miniatures are “live” in that one can manipulate these
frames in the same manner as the “current” frame, and scale
automatically when resized by moving the column or row borders.
Figure 7 presents several uses of array. The array visual is highly
interactive, providing convenient means for building array-based
expressions, e.g. first, last, length, and for producing
iterations. The iteration depicted in the top live miniatures
represents a forward traversal of the array. The dark square
represents the iteration body that is further hierarchically
expanded in the miniature below it. The other two uses of array
within the nested frame, indicates array slots indexed by

Files PaletteTypes Palette

Expression Palette

Class
Definition
View

Source View

Trash Can

Figure 6 - MFP class definition

 6

“hashcode” within each. These are the targets of a number of

data assignments indicated by the red arrowed lines.
The iteration visual uses a very compact visual cue (a small
asterisk) to indicate the most common type of traversal (forward
end-to-end by one). This conveys in a tiny space what in source
code would consume an entire line of text. More important,
perhaps, is the cognitive burden of the verbose textual
representation: a programmer must mentally scan source text
consisting of 10 tokens or so to conclude that a loop indeed
represents an iteration. Moreover, it is possible to create an
iteration with a single action, whereas in a textual form many
errors are possible due to the complexity of the representation.
Unfortunately, due the limitations of printed text, it is difficult to
discuss the dynamics of this figure. It should be noted that
through simple graphical gestures, it is easy to traverse the frame
hierarchy, to make data assignments, to produce or remove
variables, and much more. Further, through the use of a
sophisticated underlying program model, it is very easy to make
changes that accurately permeate the entire program, include
operations such as renaming variables or type changes.

3.3 MFP - Additional Features
3.3.1 Partial Evaluation
The snapshots in Figure 8 illustrate a user interface for partial
evaluation functionality, seamlessly incorporated into the code
editing environment. The first snapshot shows the result after
selecting “Instantiate” from the context (right-mouse) menu of an
if-then-else visual. The pane below the if-then-else is an inspector,
which collects all of the free variables in the if-then-else
construct, and offers an editable value field for each. In this case,
there is only 1 free variable, p1, defined in an outer scope.
The value shown in the edit field, 0, is an initial value taken from
the “default value” for double-precision floats (the declared type
of p1). After typing 3 and hitting return, the “Replace” function is
activated, causing the if-then-else to be evaluated (constant-folded
and simplified) and replaced by the resulting expression, which is
simply 6.0. Hitting the “Cancel” button restores the target
expression to its original state, that of the if-then-else construct.

Any valid expression can be entered as the value of a free variable
(not merely literal expressions), and will be evaluated in the

context of the given construct. For example, one can substitute the
expression f(p2-5) for p1, obtaining an if-then-else expression
for the result, rather than a literal value. Such evaluation is
available for all constructs, including loops, array operations, and
so on. Moreover, certain algebraic simplifications are performed,
such as x-x=0. It is our belief that this set of capabilities is very
useful in exploring the boundary between the abstract and
concrete. More details are provided in the section “Support for
Partial Evaluation and Abstract Interpretation.”

3.3.2 Design Pattern Interface
The snapshots in Figure 9 depict a simple experimental user
interface for design patterns, which has been implemented roughly
as a composition of the user interface elements for Class, Type,

and Expression. A single pattern, DirtyPattern, is shown,
containing a single class role, DirtyThing, which in turn has 1
data member, m_isDirty, and 2 methods, isDirty() and

Live Miniatures

Nested
Frame

Arrays

Iteration

Call

IfSignatureCoding Pane

Current Frame

Figure 7 - MFP method construction

Figure 9 - User Interface components for design patterns

Figure 8 - User interface components for partial evaluation

 7

save().1 Below the pattern is an instance of that pattern,
containing a role instance for DirtyThing, presently unbound.

Interacting with these components is straightforward. To create a
role in an existing pattern, simply drop a type, method signature,
or an expression on the pattern view. To add, delete, or change the
members in a ClassRole, the interactions are the same as for an
ordinary Class view. To bind a class to the role instance, a class is
dropped onto the role instance

4. MFP Infrastructure
In this section, the infrastructure that enables the MindFrames
environment’s differentiating features is described.

4.1 The Semantic Programming Model
Underlying all of the programming visuals in the MindFrames
environment is a set of objects that model the program under
construction. To first order, the model is that of a generic object-
oriented language, with objects describing program entities such
as packages, classes, methods, expressions, object references, and
so on. However, it does not limit itself to strictly object-oriented
structure, and so is able to represent compilation units, free-
standing functions, lambda functions as first-class values,
closures, and other higher-order concepts. The model also
provides support for design patterns (manifested as a form of
generalized template with constraints), evaluation, and partial
evaluation.
The model has the following core features:

• Support for interacting with the editing environment

• Extensibility

• Semantically-aware manipulation operations

• Program analysis to support the above
For editing support, notifications are broadcast on changes to
relevant objects, e.g., from a bound (possibly) symbolic reference
to its defining entity upon a type change. These notifications
permit the model to update the derived type of an expression as
changes are made to variables, fields, or member function
signatures. Also, each model object maintains an “edit state”
property which reflects the presence of various kinds of errors,
e.g. type errors, dangling references, write access to a read-only
entity, and so on. This state is automatically updated as changes
are made to a model object’s structure (e.g. by setting the left-
hand side of a binary expression) or to things upon which it
depends. The edit state is made accessible to clients to be used in
composing higher-level constructs from lower-level ones, and for
visualization in the user interface.
The model is designed to be extensible, and beyond the existence
of a very simple base class (SemanticObject), no set of
programming entities are distinguished from any others. As a
result, any application or domain can define and create additional
program entities (types, code, or meta-level structures) that stand
on equal footing with the constructs provided in the MindFrames
base. Using this facility, higher-level concepts such as state
machines, physical simulation building blocks, and the like, can
all be defined for use by the program under construction. As a

1 See the section entitled “Design Pattern Support” for a detailed

description of the MindFrames model for design patterns.

simple example, we have implemented a simple set of bit-field
manipulation operations (such as concatenation and extraction) in
this manner, layered on top of the more basic primitives.
Semantically-aware operations are the norm in the MindFrames
environment, which clearly places demands on the basic
operations provided by model entities. The operations fall into
two categories: semantic-preserving and non-semantic preserving.
The operations are given this semantic awareness in two ways: (1)
by the basic structure of the model (e.g. the use of direct, non-
symbolic references to various entities whenever possible), and
(2) by engineering the operation to “consciously” respect or affect
the semantics in specific ways. The net effect of this
infrastructural capability is that, unlike the case with textual
source code editors, refactoring is “always on”.
In support of the refactoring operations, relevant program analysis
is performed incrementally, lazily and directly on the model,
rather than whole-sale and over basic blocks or other intermediate
representations, roughly as done in [8]. At the moment, the
analysis consists of a set of flow-sensitive data flow analyses, such
as use-def chains and basic “points-to” analysis, all using a
common infrastructure based on the use of work-lists to
implement the fixed-point computations. The infrastructure
factors out the common structure of the various analyses, such as
the interface for defining the flow equations for each construct,
the interface for defining the results of the computation (expressed
as a set of objects), the traversal of the model, and the top-level
fixed-point algorithm. To fit within this framework, each model
construct is responsible for implementing certain basic analysis
operations, such as initialization of the result set, definition of the
generate, kill, and propagate flow equation for that kind of
construct, and the constructs on which the results depend.
Finally, in support of state reflection, certain “facts” are
computed, as a by-product of program analysis, that identify
important conditions about the data state at the various points of
execution. A fact is represented as a predicate/truth-value pair.
Predicates include facts such as “this variable is uninitialized at
this point”, or “variable A and variable B point to this object.”
Three-valued logic is used to represent a fact’s truth value, so that
“unknown” is a valid value for any given fact. This feature is
especially important, since many useful forms of predicates are
undecidable in general. The model associates a possibly-empty set
of facts with each execution instant, where an execution instant is
defined as an instance of a state-altering operation. Since a given
fact may be true across several execution instants, facts can be
shared across instants.
The information encoded in a fact can be presented by visuals in
various ways; for example, an “uninitialized” fact concerning a
particular variable may manifest as a highlighted border in a
particular style around the visual for that variable. Likewise, a
“points-to” fact is typically represented by a directed arc from a
reference variable to the quantity to which it refers.
Facts are computed for one of two possible reasons. First, the
analysis can choose to always compute certain kinds of facts, such
as the initialization state of variables and fields. Second, a client
can explicitly query the model for the value of a particular
predicate at a particular instant, which is either retrieved if already
known (and cached), or computed on demand otherwise. Much
work remains to be done to extend and refine the set of

 8

expressible facts, and to determine the most effective computation
strategy for generating them.

4.2 Design Pattern Support
A design pattern is defined in the MindFrames model to be a set
of roles, each of which has a kind, an arity, and a set of zero or
more constraints. To use a design pattern in MindFrames, the
pattern is instantiated create a pattern instance. For each role in
the pattern, there is a corresponding binding in the pattern
instance which associates the role with one or more entities in the
program. The role’s kind, arity and constraints constrain the
entities which may be bound into the role.
The role kind restricts the sort of entities that can be bound into
an instance of the given pattern. A role kind is one of type, code,
or value. Each kind requires more specific additional information
relevant to that kind of role. For example, a type role is one that
can be bound only to types, and requires a base type that
constrains the set of types that can be bound into that type role. If
the type role happens to be a class role, it may define data
members and methods. A code kind can be bound only to
functions or methods, and has a signature that defines its
parameter and return types. Finally, a value kind can be bound
only to an expression (i.e., any computation that results in a value,
whether it is statically evaluatable or not). Value roles also have a
base type that constrains the type of value to which they can be
bound.
Each role in the original pattern must be bound to one or more
entities in the program; a type role must be bound to a specific
type (which may in the case of a class role be an abstract class). A
class role’s data and method members are inserted into any class
bound to the corresponding role instance when the pattern gets
instantiated. If the class role has no members, then presumably the
base class for this class role defines members used in other parts
of the pattern, say, in some other class role that does define
method members.
Because of the direct and live linkage between referencing objects
and the objects to which they refer, changing a class role’s
characteristics has an immediate effect on any classes bound to
that role. For example, removing a data member from the class
role will result in the deletion of this member from all classes
bound to that role.
In this framework, it is easy to define patterns corresponding to all
of the classical design patterns from [3]: singleton, factory, proxy,
visitor, and so on, as well as other, perhaps more domain-specific
patterns that have yet to be catalogued.
Note that, unlike other environments, MindFrames maintains
patterns and pattern instances as first-class entities that do not
suffer from the classic problem of “disappearing into the code”.
That is, in those IDE’s that provide even wizard-based support for
using design patterns, the norm is that, once the pattern has been
applied to the source code, the only way to tell that the pattern is
still there is to inspect the source code of all classes, and attempt
to determine whether some pattern is in use. In MindFrames, all
patterns and pattern instances are explicitly represented, so that
their use is obvious. Moreover, pattern instances have appropriate
portions (e.g. members originating in a class role) locked , so that
the pattern’s implementation cannot be unintentionally corrupted
by stray edits.

4.3 Support for Partial Evaluation and Abstract
Interpretation
The model supports partial evaluation, i.e., the specialization of a
given code construct under a set of one or more bindings of free
variables, and a currently very limited form of abstract
interpretation. Partial evaluation is accomplished by the use of
one of the following pair of API functions defined on the
Expression class :

• instantiate()

• instantiateWith(Bindings)
The purpose of instantiate() is to non-destructively return a
distinct Expression of identical structure, replacing all free
variable references with literal values. The net effect of this
operation is to “concretize” the given Expression, and, in concert
with evaluation, can aid in understanding the behavior of a piece
of code.
instantiateWith() is similar to instantiate(), but accepts an explicit
set of bindings for the free variables in the given Expression. Each
binding is also in the form of an Expression, which is substituted
for each appearance of the corresponding free variable.
Abstract interpretation takes the form of the following calls, also
defined on the Expression class:

• evaluate()

• simplify()
evaluate() performs constant folding as much as is possible and
returns the resulting Expression. This is also a non-destructive
operation that always returns a distinct Expression structure. In
general, the result will not be a literal, but rather some form of
Expression.
simplify() is a simple-minded implementation of an abstract
interpretation which takes advantage of several of the most basic
laws of algebra and Boolean operators, e.g. x+0=x, x*1=x, x-x=0,
x OR 0 = x, x AND false = false, x XOR x = false, and so on. At
present, no attempt is made to rearrange the expression using the
commutative or distributive nature of the various algebraic
operators in order to achieve the above simplifications, but in
principle such things can be readily done.
The purpose behind all of these operations is to provide the
programmer with a toolkit for exploring the boundary between the
abstract specifications that constitute the program, and the specific
instances of concrete invocation that are often more easily
understandable.

4.4 Visual Framework
The MindFrames visual environment imposes demanding
requirements on its software design. The main challenges are:

Visual Independence: The environment should freely
accommodate new visuals with unique behavior. At the same
time, there needs to be sufficient framework or grounding in rules
and protocols to avoid chaotic interaction or behavior. This is true
of the environment itself as well as across visuals. Further, the
environment and the visuals should not hold direct references to
each other by explicit type.

Visual Relationships: The environment should allow for the
visual representation of relationships among visuals, independent
of their visual type. For example, binary relationships, such as

 9

data assignments, have sources and targets anchored on other
visuals. However, the source and target visuals can be of arbitrary
type, or nested inside arbitrary visuals. As a concrete example,
consider representing assignment to an array slot (a[i] = x);
the target visual (a[i]) is deeply nested within the array visual.

Restoration: The environment requires a mechanism for
reconstructing the visuals comprising a view in a visual
independent manner. For performance reasons, it must take
advantage of the fact that not all visuals are visible at all times.

Reactive Update: Since a visual may represent one or more
model objects, it must react to relevant model changes. On the
other hand, a model object can be changed by more than one
visual. Also, visuals may need to coordinate updates of non-
functional (model-independent) visual attributes. For example,
several live miniatures may show the same frame at the same time.
These live miniatures thus need to coordinate updates for model-
independent properties, such as hiding, positioning and colors.

4.5 The MindFrames Visual System
A primary goal in designing the MindFrames prototype was to
ensure visual type independence. We allowed visual definitions
and their implementations to be dynamically loaded. However, we
wanted to avoid visual type dependencies both in the system and
across visuals themselves. This posed challenging questions
regarding visual identity, restoration, defining and maintaining
visual relationships, and visual interaction.
In part, the solution is to use a standard MVC paradigm with the
program model as the reference model for the system. Visuals
typically reference one or more model objects, and base their
visual characteristics and behavior on the model’s state. The basic
interactive cycle is well defined and is depicted in the Figure 10:

• Visuals change model objects by direct user interaction

• Model object changes may result in changes to other
model objects

• Changed model objects notify referencing visuals to
update visual state

The MVC approach provides an added benefit, namely, that the
model is the “language” for communication at the visual level. We
found, for example, that using model objects as the drag-and-drop

(DnD) payload served as a consistent and simple means for
interaction among visuals. Additionally, the system defines a
default visual type to represent each model object type, so that an
appropriate visual can be constructed for any given model object.
Thus, visuals embody, react to, and interact with the lingua franca
of model objects, providing visual type independence.
There remained issues concerning visual restoration, as well as the
thorny issues of how visual relationships, e.g. pointers, could exist
in the presence of visual type independence. Our system defines a
base class called VisualRestoreObject (or VRO), which is sub-
classed for each visual class, and which holds all information
needed to restore an instance of the visual class. It also identifies
the visual class, allowing the VRO to instantiate the visual,
allowing for overriding the default visual representation. The
VRO is in essence a proxy for the visual. VROs may also

reference other VROs, as means to facilitate population of a
complex visual with other visuals. See Figure 11.
The model objects used in the context of a given visual
presentation each point to a visual instance. For this, we add a
property to the model object’s “property bag” (a dictionary of
key/value pairs). Properties can have values of arbitrary type, and
can be persistent or transient, allowing a wide variety of uses.
The VRO concept was valuable in designing relationship visuals.
In this case, the relationship maintains a list of the related VROs.
This mechanism was vital to visual type independence.
Finally, the VRO mechanism was valuable in maintaining visual
consistency when several instances of the same visual or view
appear. This occurs, e.g., when a live miniature frame and the
current frame are the same. The VRO maintains a list of
concurrent visual instances derived from it. In reaction to various
types of updates, the VRO publishes an update notification to the
other visuals. In this way, for example, when a visual position
changes or resizes, all sibling visuals update appropriately.

4.6 Graphics Foundations
It is known that highly effective user interfaces assist the user in
maintaining “flow state”, in which the flow of creative thought is
unbroken, because tools behave as a seamless extension of the
user’s intentions. This higher-level thread of activity is easily
broken by latency, gratuitous modality and other interface flaws.

Program Structure in Model Objects

Visual in MindFrames Environment

Update

Update

Reference/Interact

Figure 10 - Visual update

Visual Class

Visual Instance

Visual Restore Object

Other VRO’s

Property

Reference

Model Object

Figure 11 - VRO structure

 10

Thus, to fully leverage the programmer’s focus on the semantic
level, the graphics framework must provide fluid, amodal
interactions, and support the many unique kinds of visuals our
system uses.
Examples of the kinds of interactions permeating the MindFrames
environment that are a challenge to the graphics toolkit include
full-detail dynamic-update move, resize and drag-and-drop
operations. In all of these, full detail is superior to wire-frame
representation, which obfuscates an operation’s effect. Likewise,
the common use of complex, large, nested program elements
requires the graphics framework to make dragged components
translucent, so that the drop context can be seen.
The impacts of these design goals are several. Clearly, in such an
environment, the graphics framework’s performance in several
areas is a critical component of system responsiveness.
Unfortunately, investigation into many graphics systems found
none to meet our needs; hence, we built the MindFrames graphics
toolkit directly on top of the Java2D library. Our toolkit relies
heavily on Java2D’s 2D transforms and alpha blending, creating
performance bottlenecks where Java2D renders slowly. To solve
this problem we designed a unique caching system to minimize
the amount of work done to refresh the screen.
Although we have not compiled performance data, as a subjective
indication of the MindFrames’ toolkit performance, the graphics
system was very responsive and smooth with several hundred
components on a 600MHz Windows 2000 machine.

5. RELATED WORK
Program visualization is traditionally related to dynamic program
animations [1]. While this type of visualization could add value to
our environment, the key problem we address is program semantic
visualization.
Visual representations of data types are found in [5], applied to a
data-flow paradigm. In contrast, our visualizations of data are
operational, rather than merely declarative, and thus participate in
semantic interactions during construction of program behavior.
A seamless environment supporting execution, visualization, and
multiple views can be found in [4]. Our work developed along
many of the same lines, but with a stronger focus on the
construction of detailed behavior, and the semantics of program
operations, which affect editing manipulations. Further,
MindFrames offers an extended notion of program execution and
exploration through partial evaluation and abstract interpretation.
MindFrames is a significant extension of many ideas found in [9].

6. CONCLUSIONS AND FUTURE WORK
Designing and implementing a multi-domain-specific
programming environment embodying the many ideas mentioned
earlier is a daunting task. The challenges derive from the need for
extensibility without crippling semantic interoperability. In
particular, the visual system supports type-independent
composition, while permitting very different visuals to interact in
a well-defined manner. The program model provides complete
information about a program’s structure and semantics in a largely
language-independent manner. It provides for manipulation at
both high and low levels, along with a notification system rich
enough to express a wide variety of changes and editing states.
The model also provides support for moving across the boundary
between abstraction and concreteness.

Thus far, we have produced a functional prototype demonstrating
many of our goals. Further development would extend the
model’s semantic manipulation and refactoring abilities, along
with corresponding presentation and manipulation support in the
visual domain. Causal dependencies should be better exposed,
taking advantage of data-flow and control-flow analyses. Finally,
the visual framework should be enhanced to more easily define
new visuals and the semantic connections between them and the
model.
Another open question concerns ease of development of new
visuals. It is highly desirable for visual representations to be as
composable as the model objects that they represent. For example,
if the model of an expression permits operands of any expression
type, it should be similarly easy to use expression visuals of any
type in creating the composite expression visual. Because the
widget class hierarchy generally does not mirror that of the model;
however, such interoperability does not come for free.
We believe that with refinement, MindFrames will contribute
significant progress to state-of-the-art software development.

7. ACKNOWLEDGMENTS
This work has been supported in part by the Defense Advanced
Research Projects Agency (DARPA) under contract No.
NBCHC020056. The views expressed herein are not necessarily
those of DARPA or IBM.

8. REFERENCES
[1] Bazik, J., Tamassia, R., Reiss, S.P., van Dam, A.,

“Software Visualization in Teaching at Brown
University”, Software Visualization, MIT Press, 1998,
pp, 383-398.

[2] Eclipse Platform Technical Overview,
http://www.eclipse.org

[3] Gamma, E., Helm, R., Johnson, R., Vlissides, J. Design
Patterns, Addison-Wesley, 1995.

[4] Grundy, J. and Hosking, J., “Connecting the Pieces”,
Visual Object-Oriented Programming, Manning
Publications, 1995, pp. 229-252.

[5] Ibrahim, B., “Diagrammatic Representation of Data
Types and Data Manipulations in a Combined Data-
and Control-Flow Language”, 1998 IEEE Symposium
on Visual Languages, Halifax, Canada, pp. 262-269.

[6] IntelliJ IDEA Overview, http://www.intellij.com/docs
[7] Kurlander, D., “Graphical Editing by Example”, PhD

Thesis, Columbia University, NY. 1993.
[8] Morgenthaler, J., “Static Analysis for a Software

Transformation Tool”, PhD Thesis, University of
California at San Diego, 1997.

[9] Pazel, D.P., “The Effigy Project – Moving
Programming Concepts to a Visual Paradigm, The
Visual End User Workshop at VL2000, Seattle, 2000.

 11

	INTRODUCTION
	Transforming Ideas into Code
	Diagrams and the Programming Process
	Construction
	State Reflection
	Domain-Specific Representation
	Causal Localization
	Virtualization
	Putting the Vision Together

	Overview of MindFrames Programming Environment
	MFP – The Environment & Class Construction
	MFP – Method Construction
	MFP - Additional Features
	Partial Evaluation
	Design Pattern Interface

	MFP Infrastructure
	The Semantic Programming Model
	Design Pattern Support
	Support for Partial Evaluation and Abstract Interpretation
	Visual Framework
	The MindFrames Visual System
	Graphics Foundations

	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

