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ABSTRACT 
The MindFrames project is a research effort addressing the 
semantic gap between our conceptualizations within application 
problem domains and implementations about them.  At a 
superficial level, our approach concerns diagramming and the use 
of domain-specific visualizations to bridge this gap.  At a 
foundational level, it involves deeper principles involving 
program construction methodology, state reflective capabilities, a 
rich semantic model for program visualization, and a carefully 
crafted condensation of abstraction and concretization.  We 
present the vision of our work, and a discussion of the 
MindFrames prototype.  We demonstrate an environment in 
which constructive, state reflective visualization is the means for 
programming, and add to that a discussion of advanced topics 
such as design patterns and partial evaluation.  We also discuss 
design issues regarding our semantic programming model, visual 
infrastructure, and graphics foundations. 
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1. INTRODUCTION 
Much of the history of programming language evolution can be 
viewed as an attempt to bring clarity, speed, and facility to 
programming applications through abstraction. At a rudimentary 
level, programming languages have from the beginning shielded 
programmers from hardware considerations such as register usage. 
Language structure evolved for organizing processing at a higher 
level through decomposition into individual procedures.  
Eventually entity-relationship and object-oriented approaches 
developed simple data and process encapsulation techniques. All 
of these developments can be seen as an attempt to bridge concept 
to programming. 
Commensurate with this evolution, programming tools followed 
its own developmental path. Much of the effort in this area has 

focused on making source text entry easier and clearer, achieved 
primarily through smart text assists on syntactic structures and 
program dictionaries. Recently, tools such as IBM’s Eclipse and 
Idea’s IntelliJ offer increasing degrees of program semantic 
manipulability through refactoring operations, relieving the 
programmer of tedium during activities such as renaming 
programming elements or code movement. These tools, along 
with debuggers and execution profilers, are standard equipment in 
every programmer’s toolbox. 
Despite these laudable efforts, programming is still an onerous 
and therefore costly endeavor, specifically, we argue, because the 
programmer is left with a large conceptual gap between the 
problem domain and the artifacts of programming. It is our 
experience that the most useful problem-solving models remain 
on white-boards or paper scraps as diagrams, or as conceptual 
mental images – most of which gets discarded in the course of 
development. Tooling offers little or no help in building a 
comprehensive view relating the ideas embodied in the 
application to the concrete programming entities.  As a result, the 
need to continually translate between problem conceptualization 
and programming wastes much time and energy. 
This paper presents an applicative approach to programming 
based on several key ideas. First, the kind of intuitive diagrams 
one draws when working out a solution on paper can in fact 
become the program. Second, programmers need help 
understanding the evolution of the data’s state throughout a 
parallel or sequential program’s execution. In MindFrames, this 
help takes the form of “state reflection,” a means for reflecting 
information about a data entity’s state in its visualization. Third, 
domain-specific visualizations are critical to narrowing the 
conceptual gap. Finally, programming environments need to 
provide operations for constructing and manipulating code that 
are semantically aware (cf. textual editing operations like “delete 
character”). 
This paper is organized as follows. The next section is a detailed 
look at the current state of programming and the problems therein. 
This is followed with a discussion of a conceptual solution to 
these issues in the spirit of the MindFrames project. This is 
followed by a close look at the MindFrames programming 
environment. The architecture of the various components is 
described at length. Finally, we share our thoughts on future work 
and direction. 
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2. Transforming Ideas into Code 
Inasmuch as the prior section points out inadequacies in the 
current state of programming tools, it indicates a better approach 
to programming, based in part on common engineering practices 
not strictly limited to programming. These include white-board 
diagramming, state drawing, design sketching, along with state 
evolution diagramming in reaction to process.. In this section, we 
examine a few such approaches and motivate how their use 
provides a foundation for improving programming tools. We 
show that these approaches relate intuitively to the methods we 
use to think about the core problem-solving domains. So, not only 
do diagrams help us clarify ideas, but also provide a means to 
facilitate working with ideas, e.g. to change or morph ideas into 
different or better ideas. The result is an environment wherein the 
focus is building on the concepts being manipulated, thus 
facilitating a path from ideas to code, and de-emphasizing the 
mere management of programming details. 

2.1 Diagrams and the Programming Process 
The path to learning and understanding a discipline is often rich 
in visual illustration. Be it in textbooks, the classroom, or 
industrial practice, graphical depiction is often the best means to 
convey an idea, related ideas, and their relationships, and further 
their dynamics. 

The similarity in illustration use over many domains is quite 
striking, but is particularly striking for the mathematical, 
scientific, and computing disciplines. In mathematics, depicting 
sums as areas on a Cartesian plot, and abstractions such as sets as 
Venn diagrams, are standard tools for facilitating conceptual 
understanding. In physics, drawings illustrate physical elements 
and states and dynamics in real-world phenomena. In 
programming, data elements and their relationships are illustrated 
in many variations of block diagrams. Further, illustrations 
enhance our understanding when each phase of reasoning about 
conceptual artifacts is reflected in a graphical transition in the 
drawing. For example, in mathematics, reasoning steps result in 
diagrammatic changes relating mathematical objects; the changes 
due to the onset of physical dynamics is clarified by changes in 
depictions of affected physical objects; and depictions of data 
element state transitions clarify the impact of executing processes. 

To date, conceptual illustrations as described above have chiefly 
been utilized effectively for educational or design purposes. In the 
latter case, the diagrams are tossed aside, in favor of less intuitive 
artifacts used during the implementation phase. How to turn them 
into a basis for a pragmatic programming paradigm is less 
apparent. An appreciation of the fundamental programming 
activities, however, provides motivation for pursuing this 
paradigm and clues as to what that paradigm entails. Consider the 
following typical programming activities: 

• Creating or identifying programming objects or data of 
interest, e.g. variables and data structures, and establishing 
relationships, e.g. pointer structures, lists. 

• Inferring the current state of data of interest, e.g. x is set, 
unset, possibly set, or pointer p points to a FOO object. 

• Reasoning about the correct execution order through 
repeated application of the above. 

• Trying abstract code with concrete values in-situ to gain 
confidence that the computation proceeds as anticipated.  

• Abstracting specific code fragments to more general use. 

The above indicates that imperative programming has as a vital 
component an exercise in state management through an 
incremental state-transition process. Through pencil and paper, or 
“in our heads”, we conceptualize what is happening at each point 
in a program, usually through visual representations of data and 
state, and often through example. The current state of practice in 
programming tools does not externalize these state management 
processes, nor the movement from abstraction to concretization. 
Consequently, at best we store the results of such efforts on 
secondary media (e.g., paper or whiteboard) so that they exist 
only “outside the system,” or discard them, only to reconstruct 
them when needed again. 

A close look at the above reveals several key facets of the 
programming process: 

• Construction – Programming is a process of data state 
construction and evolution. We carefully choose program 
operations that transform the data to new desired states. 

• State Reflection – Knowledge about a program’s data state 
at any execution point is critical to reasoning effectively 
about what should be done constructively or correctively 
with the code.  

• Domain Specific Representation – Application 
programming is deeply rooted in our conceptualization of 
the application model, its objects and relationships. 

• Causal Localization – Operation execution order 
dependence or independence is a significant factor in state 
inference and management. 

• Virtualization – Propositions over abstract state (such as “x 
is non-NULL”), though important, often don’t provide 
enough leverage to understand program behavior. We need 
to explore concrete examples within a localized context. 

These facets are examined more closely in the following sections 
from the perspective of using diagrams as a means for facilitating 
their utilization. 

2.2 Construction 
A program can be viewed as a constructive process based on the 
notion of building or managing data state, and evolving state 
through program operations. The act of programming, however, 
can be viewed as a constructive activity with a more proactive 
dynamic in which data state manipulations map onto program 
operations that achieve that change. This takes the usage of 
diagrams from being informally descriptive to being the program 
artifacts themselves. 

Key to constructive program development is isolating the data and 
relationships of interest, and manipulating them to further develop 
process. From a diagrammatic viewpoint, that means that data and 
relationships are visualized, and their manipulation results in 
process, i.e., a program. Viewed from this perspective, a program 
may be broken into sequences or hierarchies of state goals, each 
with their own state evolution. 
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Figure 1 illustrates constructive activity. The example shows 
several data structures and relationships, along with two visual 
value assignments (arcs). The two resulting programming 
statements appear on the lower right. Pointer p refers to object 
instance A, whose member table refers to array B of data 
elements. Element C is the third element in B, and has members x 
and y. Pointer r refers to object D with member z. There is also a 
free-standing expression a+b. 

In this example, the expression a+b is assigned to 
p.table[3].x, and the value r.z is assigned to 
p.table[3].y. In a visual system, these assignments could be 
created through drag/drop of value sources onto value 
destinations. In this case, the expression a+b is dropped onto x, 
and z dropped onto y. With each gesture, the appropriate program 
statement is generated. The arcs 1) and 2) may remain on the 
diagram indicating the flow of data. 

Notice the conceptual clarity in the rendered data representation, 
including the levels of pointer indirection. Also note that the use 
of drag/drop as an assignment gesture is simple, powerful, and 
appropriate, especially given that drag/drop operations do not 
disturb the source object, instead moving a copy of the image 
while interacting with target objects. 

2.3 State Reflection 
Clearly, the usefulness of diagrams in a constructive programming 
paradigm increases with the level of useful detail provided about 
the data and their relationships. The definition of appropriate 
detail is typically context-dependent. For example, relevant detail 
might include the state of variable initialization (i.e., set, unset, 
possibly set). Alternatively, detail could include known “points-
to” relationships (reference p points to object instance A). In state 
diagrams, detail could refer to the present state or a set of possible 
present states. This information can be reflected visually using 
any of a variety of methods, e.g. colorations, arcs, highlights, fill 
patterns, and so on. 

Providing such informative detail about program state is referred 
to here as state reflection. This information is dynamic and 
changes with constructive activity; thus, it is important that visual 
cues are updated properly after each constructive action. 

Figure 2 depicts a constructive state in which pointer p refers to 
an object A with pointer member x. Pointer q references object B; 
and r, C. Consider the data state after execution of the “if” 
statement: A’s data member x may point to B or C. This state is 
“reflected” in the two dashed “possible pointer relationship” arcs. 
Having this information readily available is critical to making 
decisions in subsequent programming activities. 

2.4 Domain-Specific Representation 
Programming is never done in a vacuum, but rather in the context 
of some conceptual model. Application programming involves the 
analysis and manipulation of that model to such an extent that we 
are forced to translate back and forth between program and model. 
That is, we continually reconstruct the state of the model from the 
code and visa-versa. Thus, the closer the model is to the 
application structure, the easier the programming. 

In other words, the more accurately the application corresponds to 
the illustration, the greater confidence we have in its use as a 
programming medium. The diagrams presented earlier 
demonstrate an effective use of pointer and array representations 
which, while useful, utilize traditional programming artifacts. It is 
possible to gain even more leverage by broadening the scope of 
visualizations. Figure 3 shows a traditional state diagram, along 
with the corresponding code fragment. Other useful examples 
include visuals related to physics, such as spring-mass diagrams, 
or mathematics, such as Cartesian plots. 

We envision many representations specific to application domains 
that are interactive and state reflective, as well as multiple 
visualizations for the same domain objects, each with specific 
capabilities. As importable/exportable conceptual artifacts, such 
diagrams over time define a “MindShare” or knowledgebase of 
composable re-usable ideas. The vision is that using this 
knowledgebase would replace the current preoccupation with 
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a+b

(1) p.table[3].x = a+b;
(2) p.table[3].y = r.z;
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Figure 1- Programming as a constructive process 
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Figure 2 - State reflection of pointer relationships 
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programmatic details with a more focused attention to composing 
and managing the higher level concepts behind  programs.  

2.5 Causal Localization 
Visualizing the order of program operation execution is another 
critical factor in our paradigm, because it is the source of many 
problems in conventional imperative programming. This happens 
because the partially gratuitous sequence imposed on a program 
coded in a linear medium (such as text) obscures its true data-flow 
and control dependencies. As a result, problems regarding order 
of value assignments derive from inaccurate analyses of 
sequentially ordered operations. In fact, it is just as important to 
know when operations are order-independent as when they are 
order-dependent. This is especially true in today’s increasingly 
concurrent software. Understanding the flow of data related to a 
given value assignment is called causal localization.  

Ferreting out order dependence is laborious and time consuming, 
but state reflection can help. Figure 4 depicts a constructive 

drawing accentuating causal localization. The assignments (solid 
arcs) to a and b are unrelated, and therefore can be executed in 
parallel, or in either order. Their values are combined (dashed 
arcs) into the value assigned to x. The assignment to x causally 
succeeds the other two assignments. This is very clear from the 
diagram, and would remain clear even in significantly more 
complex diagrams, which cannot be said for the generated code. 
Having this sort of clarity early in the programming process 
would avoid errant uses of values. 

2.6 Virtualization 
Desk-checking or debugging program fragments with actual 
values are among the most overlooked methods for acquiring 
program understanding. This process, often affiliated with defect 
localization, is used in all phases of program development, 
especially the development phases, to ensure or check that the 
coding matches intention. However, desk checking is tedious, 
error-prone, and time-consuming. Debugging traditionally 
requires execution of a fully built or scaffold system, or at best 
(when used with unit testing), forces one to decide a priori the 
granularity at which one must test before building the software. 

A more effective development environment would allow 
exercising code with values, without requiring execution from the 
program’s beginning, and without requiring a fully specified 
program. Allowing “partial evaluations” wherein programs are re-
written or simplified with known values for some, but not 
necessarily all, data elements extends this “virtualization” 
approach in a most useful way. 

Figure 5 illustrates an example wherein a complex value 
generation scheme is combined with linked list generation. 
Without concrete values, the behavior of the code is difficult to 
surmise. In this case, with f set to 15, the value of “slot” stabilizes 
to 0. The order of elements along with the depiction of next 
references gives confidence in the correctness of the program. 

2.7 Putting the Vision Together 
We propose that a programming environment based on these 
facets provides a positive step in the evolution of the art of 

Foo p = new
Foo()
For(int i=0;
i<7; i++) {

p.slot = f
mod 10;

f = (f div
4)*10;

q = new
Foo();

p.next = q;
p = q;

}

3 2 2 2 0 0 0

Assume f=15;

Figure 5 - Virtualized execution 

B

DC

A

S
a2

a1

a2

a1

while ((input = getInput()) != EOF) {
switch(presentState) {

case S:
if (input == a1)

presentState = A;
else if (input == a2)

presentState = C;
…

Figure 3 - State diagram as domain-specific visual 
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Figure 4 - Causal localization; data-flow 
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programming. In the following sections, we explore our 
prototype, MindFrames for Programming, which demonstrates 
how many of these ideas can be combined effectively. 

3. Overview of MindFrames Programming 
Environment 
We built a prototype programming environment to demonstrate 
many of the ideas exposed in the prior sections. As our focus is on 
tools that facilitate concretizing ideas and abstracting from 
implementations, our belief is that many of these ideas transfer 
naturally to many other disciplines led us to name our 
programming domain-specific tool “MindFrames for 
Programming”, or MFP.  Our infrastructure is designed to support 
a fluidly dynamic interface to the programming structures to be 
manipulated. Likewise, the user interface attempts to provide 
flexible, intuitive and powerful personalized information 
management. Although MFP itself represents a somewhat neutral 
imperative language, it is compliant with either Java or C++. In 
the next sections, both the user interface and infrastructure are 
explored in more detail. 

3.1 MFP – The Environment & Class 
Construction 
The MFP screen shot in Figure 6 shows the construction of a 
class. The general work area is a free-form graphical area, 
somewhat similar to what one would find in Smalltalk or Squeak. 
A number of palettes are available to assist program construction 
(ref. basic type, expression, and class/package palettes), along 
with a trashcan for discarding items. The interactive paradigm is 
primarily drag-and-drop (DnD) along with text focusing visuals 

allowing text input and change. 
The type palette is typically used as a source to construct values, 
fields or methods, or change types of existing data or methods, 
through a DnD operation of a type onto an appropriate context. 
The expression palette provides a set of standard programming 
constructs such as expressions, if statements, etc., which are 
similarly instantiated in programs through DnD operations. The 

file palette provides a list of classes and packages, including those 
in available class libraries. 
In this example, a class definition view for MyClass is shown. 
This view displays declarations for all data and method members 
in the given class. Populating the definition is generally 
accomplished by dropping types onto the view. In this example, 
the class has three members: the method MyMethod, the string 
myString, and an unnamed integer field. Unlike most systems, 
ours does not arbitrarily restrict the usage of incompletely defined 
elements. In this case, the unnamed int data member may be 
used freely. Mostly likely, however, it should be named at some 
point; the state reflective dashed highlight indicates so. 
Although MFP supports customized visuals of programming 
elements, a default set of visuals is provided. These are seen in the 
type and expression palettes, as well as in the class definition 
view. The default graphics provide some consistency, for 
example, in the color-coding of types, and the appearance of type 
information on the right of various programming elements. In this 
case, the method has two parameters p1 and p2, and returns a 
Boolean. The parameter signature can be changed easily, for 
example, by dragging items to re-order them, or by dragging them 
to the trashcan. A set of buttons provides an interactive means of 
changing an item’s access level, e.g. public, protected, and 
private. 

Below the class definition view is a source view, showing the 
source code corresponding to the class, as either Java or C++. 
This view is updated with each graphical action. The source view 
is intended as a “crutch” (the visual is the program), to increase 
the comfort of new users by giving a familiar frame of reference. 

3.2 MFP – Method Construction 
The MFP screenshot in Figure 7 highlights features for visually 
programming methods. Here the main window is the coding pane 
for a method implementing the LZW compression algorithm. The 
top border displays the name, signature (void), and return type 
(Boolean) for the method, and a visual for the “this” variable 
for easy access. 
In MFP, a program is constructed as a hierarchy of coding frames. 
Each frame is a visual work area in which a set of program 
operations appear. Visual nesting corresponds directly to context 
scoping. That is, a loop’s body and nested contexts within 
conditionals are represented by frames visually nested within the 
frame of their outer context. In the figure, the vertical column and 
horizontal row of frames, somewhat reminiscent of [7], present a 
portion of the frame hierarchy. The vertical column depicts a 
program context stack, while the horizontal column displays the 
sequence of frames at the lowest context level. A border highlight 
on a miniature depicts it is the “current” frame shown in the 
middle. The miniatures are “live” in that one can manipulate these 
frames in the same manner as the “current” frame, and scale 
automatically when resized by moving the column or row borders. 
Figure 7 presents several uses of array. The array visual is highly 
interactive, providing convenient means for building array-based 
expressions, e.g. first, last, length, and for producing 
iterations. The iteration depicted in the top live miniatures 
represents a forward traversal of the array. The dark square 
represents the iteration body that is further hierarchically 
expanded in the miniature below it. The other two uses of array 
within the nested frame, indicates array slots indexed by 

Files PaletteTypes Palette

Expression Palette

Class 
Definition
View

Source View

Trash Can

Figure 6 - MFP class definition 
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“hashcode” within each. These are the targets of a number of 

data assignments indicated by the red arrowed lines. 
The iteration visual uses a very compact visual cue (a small 
asterisk) to indicate the most common type of traversal (forward 
end-to-end by one). This conveys in a tiny space what in source 
code would consume an entire line of text. More important, 
perhaps, is the cognitive burden of the verbose textual 
representation: a programmer must mentally scan source text 
consisting of 10 tokens or so to conclude that a loop indeed 
represents an iteration. Moreover, it is possible to create an 
iteration with a single action, whereas in a textual form many 
errors are possible due to the complexity of the representation. 
Unfortunately, due the limitations of printed text, it is difficult to 
discuss the dynamics of this figure. It should be noted that 
through simple graphical gestures, it is easy to traverse the frame 
hierarchy, to make data assignments, to produce or remove 
variables, and much more. Further, through the use of a 
sophisticated underlying program model, it is very easy to make 
changes that accurately permeate the entire program, include 
operations such as renaming variables or type changes.  

3.3 MFP - Additional Features 
3.3.1 Partial Evaluation 
The snapshots in Figure 8 illustrate a user interface for partial 
evaluation functionality, seamlessly incorporated into the code 
editing environment. The first snapshot shows the result after 
selecting “Instantiate” from the context (right-mouse) menu of an 
if-then-else visual. The pane below the if-then-else is an inspector, 
which collects all of the free variables in the if-then-else 
construct, and offers an editable value field for each. In this case, 
there is only 1 free variable, p1, defined in an outer scope. 
The value shown in the edit field, 0, is an initial value taken from 
the “default value” for double-precision floats (the declared type 
of p1). After typing 3 and hitting return, the “Replace” function is 
activated, causing the if-then-else to be evaluated (constant-folded 
and simplified) and replaced by the resulting expression, which is 
simply 6.0. Hitting the “Cancel” button restores the target 
expression to its original state, that of the if-then-else construct. 

Any valid expression can be entered as the value of a free variable 
(not merely literal expressions), and will be evaluated in the 

context of the given construct. For example, one can substitute the 
expression f(p2-5) for p1, obtaining an if-then-else expression 
for the result, rather than a literal value. Such evaluation is 
available for all constructs, including loops, array operations, and 
so on. Moreover, certain algebraic simplifications are performed, 
such as x-x=0. It is our belief that this set of capabilities is very 
useful in exploring the boundary between the abstract and 
concrete. More details are provided in the section “Support for 
Partial Evaluation and Abstract Interpretation.” 

3.3.2 Design Pattern Interface 
The snapshots in Figure 9 depict a simple experimental user 
interface for design patterns, which has been implemented roughly 
as a composition of the user interface elements for Class, Type, 

and Expression. A single pattern, DirtyPattern, is shown, 
containing a single class role, DirtyThing, which in turn has 1 
data member, m_isDirty, and 2 methods, isDirty() and 

Live Miniatures

Nested 
Frame

Arrays

Iteration

Call

IfSignatureCoding Pane

Current Frame

Figure 7 - MFP method construction 

Figure 9 - User Interface components for design patterns 

Figure 8 - User interface components for partial evaluation 
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save().1 Below the pattern is an instance of that pattern, 
containing a role instance for DirtyThing, presently unbound. 

Interacting with these components is straightforward. To create a 
role in an existing pattern, simply drop a type, method signature, 
or an expression on the pattern view. To add, delete, or change the 
members in a ClassRole, the interactions are the same as for an 
ordinary Class view. To bind a class to the role instance, a class is 
dropped onto the role instance 

4. MFP Infrastructure 
In this section, the infrastructure that enables the MindFrames 
environment’s differentiating features is described. 

4.1 The Semantic Programming Model 
Underlying all of the programming visuals in the MindFrames 
environment is a set of objects that model the program under 
construction. To first order, the model is that of a generic object-
oriented language, with objects describing program entities such 
as packages, classes, methods, expressions, object references, and 
so on. However, it does not limit itself to strictly object-oriented 
structure, and so is able to represent compilation units, free-
standing functions, lambda functions as first-class values, 
closures, and other higher-order concepts. The model also 
provides support for design patterns (manifested as a form of 
generalized template with constraints), evaluation, and partial 
evaluation. 
The model has the following core features: 

• Support for interacting with the editing environment 

• Extensibility 

• Semantically-aware manipulation operations 

• Program analysis to support the above  
For editing support, notifications are broadcast on changes to 
relevant objects, e.g., from a bound (possibly) symbolic reference 
to its defining entity upon a type change. These notifications 
permit the model to update the derived type of an expression as 
changes are made to variables, fields, or member function 
signatures. Also, each model object maintains an “edit state” 
property which reflects the presence of various kinds of errors, 
e.g. type errors, dangling references, write access to a read-only 
entity, and so on. This state is automatically updated as changes 
are made to a model object’s structure (e.g. by setting the left-
hand side of a binary expression) or to things upon which it 
depends. The edit state is made accessible to clients to be used in 
composing higher-level constructs from lower-level ones, and for 
visualization in the user interface. 
The model is designed to be extensible, and beyond the existence 
of a very simple base class (SemanticObject), no set of 
programming entities are distinguished from any others. As a 
result, any application or domain can define and create additional 
program entities (types, code, or meta-level structures) that stand 
on equal footing with the constructs provided in the MindFrames 
base. Using this facility, higher-level concepts such as state 
machines, physical simulation building blocks, and the like, can 
all be defined for use by the program under construction. As a 

                                                                 
1 See the section entitled “Design Pattern Support” for a detailed 

description of the MindFrames model for design patterns. 

simple example, we have implemented a simple set of bit-field 
manipulation operations (such as concatenation and extraction) in 
this manner, layered on top of the more basic primitives. 
Semantically-aware operations are the norm in the MindFrames 
environment, which clearly places demands on the basic 
operations provided by model entities. The operations fall into 
two categories: semantic-preserving and non-semantic preserving. 
The operations are given this semantic awareness in two ways: (1) 
by the basic structure of the model (e.g. the use of direct, non-
symbolic references to various entities whenever possible), and 
(2) by engineering the operation to “consciously” respect or affect 
the semantics in specific ways. The net effect of this 
infrastructural capability is that, unlike the case with textual 
source code editors, refactoring is “always on”. 
In support of the refactoring operations, relevant program analysis 
is performed incrementally, lazily and directly on the model, 
rather than whole-sale and over basic blocks or other intermediate 
representations, roughly as done in [8]. At the moment, the 
analysis consists of a set of flow-sensitive data flow analyses, such 
as use-def chains and basic “points-to” analysis, all using a 
common infrastructure based on the use of work-lists to 
implement the fixed-point computations. The infrastructure 
factors out the common structure of the various analyses, such as 
the interface for defining the flow equations for each construct, 
the interface for defining the results of the computation (expressed 
as a set of objects), the traversal of the model, and the top-level 
fixed-point algorithm. To fit within this framework, each model 
construct is responsible for implementing certain basic analysis 
operations, such as initialization of the result set, definition of the 
generate, kill, and propagate flow equation for that kind of 
construct, and the constructs on which the results depend. 
Finally, in support of state reflection, certain “facts” are 
computed, as a by-product of program analysis, that identify 
important conditions about the data state at the various points of 
execution. A fact is represented as a predicate/truth-value pair. 
Predicates include facts such as “this variable is uninitialized at 
this point”, or “variable A and variable B point to this object.” 
Three-valued logic is used to represent a fact’s truth value, so that 
“unknown” is a valid value for any given fact. This feature is 
especially important, since many useful forms of predicates are 
undecidable in general. The model associates a possibly-empty set 
of facts with each execution instant, where an execution instant is 
defined as an instance of a state-altering operation. Since a given 
fact may be true across several execution instants, facts can be 
shared across instants. 
The information encoded in a fact can be presented by visuals in 
various ways; for example, an “uninitialized” fact concerning a 
particular variable may manifest as a highlighted border in a 
particular style around the visual for that variable. Likewise, a 
“points-to” fact is typically represented by a directed arc from a 
reference variable to the quantity to which it refers.  
Facts are computed for one of two possible reasons. First, the 
analysis can choose to always compute certain kinds of facts, such 
as the initialization state of variables and fields. Second, a client 
can explicitly query the model for the value of a particular 
predicate at a particular instant, which is either retrieved if already 
known (and cached), or computed on demand otherwise. Much 
work remains to be done to extend and refine the set of 
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expressible facts, and to determine the most effective computation 
strategy for generating them. 

4.2 Design Pattern Support 
A design pattern is defined in the MindFrames model to be a set 
of roles, each of which has a kind, an arity, and a set of zero or 
more constraints. To use a design pattern in MindFrames, the 
pattern is instantiated create a pattern instance. For each role in 
the pattern, there is a corresponding binding in the pattern 
instance which associates the role with one or more entities in the 
program. The role’s kind, arity and constraints constrain the 
entities which may be bound into the role. 
The role kind restricts the sort of entities that can be bound into 
an instance of the given pattern. A role kind is one of type, code, 
or value. Each kind requires more specific additional information 
relevant to that kind of role. For example, a type role is one that 
can be bound only to types, and requires a base type that 
constrains the set of types that can be bound into that type role. If 
the type role happens to be a class role, it may define data 
members and methods. A code kind can be bound only to 
functions or methods, and has a signature that defines its 
parameter and return types. Finally, a value kind can be bound 
only to an expression (i.e., any computation that results in a value, 
whether it is statically evaluatable or not). Value roles also have a 
base type that constrains the type of value to which they can be 
bound. 
Each role in the original pattern must be bound to one or more 
entities in the program; a type role must be bound to a specific 
type (which may in the case of a class role be an abstract class). A 
class role’s data and method members are inserted into any class 
bound to the corresponding role instance when the pattern gets 
instantiated. If the class role has no members, then presumably the 
base class for this class role defines members used in other parts 
of the pattern, say, in some other class role that does define 
method members. 
Because of the direct and live linkage between referencing objects 
and the objects to which they refer, changing a class role’s 
characteristics has an immediate effect on any classes bound to 
that role. For example, removing a data member from the class 
role will result in the deletion of this member from all classes 
bound to that role. 
In this framework, it is easy to define patterns corresponding to all 
of the classical design patterns from [3]: singleton, factory, proxy, 
visitor, and so on, as well as other, perhaps more domain-specific 
patterns that have yet to be catalogued. 
Note that, unlike other environments, MindFrames maintains 
patterns and pattern instances as first-class entities that do not 
suffer from the classic problem of “disappearing into the code”. 
That is, in those IDE’s that provide even wizard-based support for 
using design patterns, the norm is that, once the pattern has been 
applied to the source code, the only way to tell that the pattern is 
still there is to inspect the source code of all classes, and attempt 
to determine whether some pattern is in use. In MindFrames, all 
patterns and pattern instances are explicitly represented, so that 
their use is obvious. Moreover, pattern instances have appropriate 
portions (e.g. members originating in a class role) locked , so that 
the pattern’s implementation cannot be unintentionally corrupted 
by stray edits. 

4.3 Support for Partial Evaluation and Abstract 
Interpretation 
The model supports partial evaluation, i.e., the specialization of a 
given code construct under a set of one or more bindings of free 
variables, and a currently very limited form of abstract 
interpretation. Partial evaluation is accomplished by the use of 
one of the following pair of API functions defined on the 
Expression class : 

• instantiate() 

• instantiateWith(Bindings) 
The purpose of instantiate() is to non-destructively return a 
distinct Expression of identical structure, replacing all free 
variable references with literal values. The net effect of this 
operation is to “concretize” the given Expression, and, in concert 
with evaluation, can aid in understanding the behavior of a piece 
of code. 
instantiateWith() is similar to instantiate(), but accepts an explicit 
set of bindings for the free variables in the given Expression. Each 
binding is also in the form of an Expression, which is substituted 
for each appearance of the corresponding free variable. 
Abstract interpretation takes the form of the following calls, also 
defined on the Expression class: 

• evaluate() 

• simplify() 
evaluate() performs constant folding as much as is possible and 
returns the resulting Expression. This is also a non-destructive 
operation that always returns a distinct Expression structure. In 
general, the result will not be a literal, but rather some form of 
Expression. 
simplify() is a simple-minded implementation of an abstract 
interpretation which takes advantage of several of the most basic 
laws of algebra and Boolean operators, e.g. x+0=x, x*1=x, x-x=0, 
x OR 0 = x, x AND false = false, x XOR x = false, and so on. At 
present, no attempt is made to rearrange the expression using the 
commutative or distributive nature of the various algebraic 
operators in order to achieve the above simplifications, but in 
principle such things can be readily done. 
The purpose behind all of these operations is to provide the 
programmer with a toolkit for exploring the boundary between the 
abstract specifications that constitute the program, and the specific 
instances of concrete invocation that are often more easily 
understandable. 

4.4 Visual Framework 
The MindFrames visual environment imposes demanding 
requirements on its software design. The main challenges are: 

Visual Independence: The environment should freely 
accommodate new visuals with unique behavior. At the same 
time, there needs to be sufficient framework or grounding in rules 
and protocols to avoid chaotic interaction or behavior. This is true 
of the environment itself as well as across visuals. Further, the 
environment and the visuals should not hold direct references to 
each other by explicit type. 

Visual Relationships: The environment should allow for the 
visual representation of relationships among visuals, independent 
of their visual type. For example, binary relationships, such as 
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data assignments, have sources and targets anchored on other 
visuals. However, the source and target visuals can be of arbitrary 
type, or nested inside arbitrary visuals. As a concrete example, 
consider representing assignment to an array slot (a[i] = x); 
the target visual (a[i]) is deeply nested within the array visual. 

Restoration: The environment requires a mechanism for 
reconstructing the visuals comprising a view in a visual 
independent manner. For performance reasons, it must take 
advantage of the fact that not all visuals are visible at all times. 

Reactive Update: Since a visual may represent one or more 
model objects, it must react to relevant model changes. On the 
other hand, a model object can be changed by more than one 
visual. Also, visuals may need to coordinate updates of non-
functional (model-independent) visual attributes. For example, 
several live miniatures may show the same frame at the same time. 
These live miniatures thus need to coordinate updates for model-
independent properties, such as hiding, positioning and colors. 

4.5 The MindFrames Visual System 
A primary goal in designing the MindFrames prototype was to 
ensure visual type independence. We allowed visual definitions 
and their implementations to be dynamically loaded. However, we 
wanted to avoid visual type dependencies both in the system and 
across visuals themselves. This posed challenging questions 
regarding visual identity, restoration, defining and maintaining 
visual relationships, and visual interaction. 
In part, the solution is to use a standard MVC paradigm with the 
program model as the reference model for the system. Visuals 
typically reference one or more model objects, and base their 
visual characteristics and behavior on the model’s state. The basic 
interactive cycle is well defined and is depicted in the Figure 10: 

• Visuals change model objects by direct user interaction 

• Model object changes may result in changes to other 
model objects 

• Changed model objects notify referencing visuals to 
update visual state 

The MVC approach provides an added benefit, namely, that the 
model is the “language” for communication at the visual level. We 
found, for example, that using model objects as the drag-and-drop 

(DnD) payload served as a consistent and simple means for 
interaction among visuals. Additionally, the system defines a 
default visual type to represent each model object type, so that an 
appropriate visual can be constructed for any given model object. 
Thus, visuals embody, react to, and interact with the lingua franca 
of model objects, providing visual type independence. 
There remained issues concerning visual restoration, as well as the 
thorny issues of how visual relationships, e.g. pointers, could exist 
in the presence of visual type independence. Our system defines a 
base class called VisualRestoreObject (or VRO), which is sub-
classed for each visual class, and which holds all information 
needed to restore an instance of the visual class. It also identifies 
the visual class, allowing the VRO to instantiate the visual, 
allowing for overriding the default visual representation. The 
VRO is in essence a proxy for the visual. VROs may also 

reference other VROs, as means to facilitate population of a 
complex visual with other visuals. See Figure 11. 
The model objects used in the context of a given visual 
presentation each point to a visual instance. For this, we add a 
property to the model object’s “property bag” (a dictionary of 
key/value pairs). Properties can have values of arbitrary type, and 
can be persistent or transient, allowing a wide variety of uses. 
The VRO concept was valuable in designing relationship visuals. 
In this case, the relationship maintains a list of the related VROs. 
This mechanism was vital to visual type independence. 
Finally, the VRO mechanism was valuable in maintaining visual 
consistency when several instances of the same visual or view 
appear. This occurs, e.g., when a live miniature frame and the 
current frame are the same. The VRO maintains a list of 
concurrent visual instances derived from it. In reaction to various 
types of updates, the VRO publishes an update notification to the 
other visuals. In this way, for example, when a visual position 
changes or resizes, all sibling visuals update appropriately. 

4.6 Graphics Foundations 
It is known that highly effective user interfaces assist the user in 
maintaining “flow state”, in which the flow of creative thought is 
unbroken, because tools behave as a seamless extension of the 
user’s intentions. This higher-level thread of activity is easily 
broken by latency, gratuitous modality and other interface flaws. 

Program Structure in Model Objects

Visual in MindFrames Environment

Update

Update

Reference/Interact

Figure 10 - Visual update 

Visual Class

Visual Instance

Visual Restore Object

Other VRO’s

Property

Reference

Model Object

Figure 11  - VRO structure 
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Thus, to fully leverage the programmer’s focus on the semantic 
level, the graphics framework must provide fluid, amodal 
interactions, and support the many unique kinds of visuals our 
system uses. 
Examples of the kinds of interactions permeating the MindFrames 
environment that are a challenge to the graphics toolkit include 
full-detail dynamic-update move, resize and drag-and-drop 
operations. In all of these, full detail is superior to wire-frame 
representation, which obfuscates an operation’s effect. Likewise, 
the common use of complex, large, nested program elements 
requires the graphics framework to make dragged components 
translucent, so that the drop context can be seen. 
The impacts of these design goals are several. Clearly, in such an 
environment, the graphics framework’s performance in several 
areas is a critical component of system responsiveness. 
Unfortunately, investigation into many graphics systems found 
none to meet our needs; hence, we built the MindFrames graphics 
toolkit directly on top of the Java2D library. Our toolkit relies 
heavily on Java2D’s 2D transforms and alpha blending, creating 
performance bottlenecks where Java2D renders slowly. To solve 
this problem we designed a unique caching system to minimize 
the amount of work done to refresh the screen. 
Although we have not compiled performance data, as a subjective 
indication of the MindFrames’ toolkit performance, the graphics 
system was very responsive and smooth with several hundred 
components on a 600MHz Windows 2000 machine. 

5. RELATED WORK 
Program visualization is traditionally related to dynamic program 
animations [1]. While this type of visualization could add value to 
our environment, the key problem we address is program semantic 
visualization. 
Visual representations of data types are found in [5], applied to a 
data-flow paradigm. In contrast, our visualizations of data are 
operational, rather than merely declarative, and thus participate in 
semantic interactions during construction of program behavior. 
A seamless environment supporting execution, visualization, and 
multiple views can be found in [4]. Our work developed along 
many of the same lines, but with a stronger focus on the 
construction of detailed behavior, and the semantics of program 
operations, which affect editing manipulations. Further, 
MindFrames offers an extended notion of program execution and 
exploration through partial evaluation and abstract interpretation. 
MindFrames is a significant extension of many ideas found in [9]. 

6. CONCLUSIONS AND FUTURE WORK 
Designing and implementing a multi-domain-specific 
programming environment embodying the many ideas mentioned 
earlier is a daunting task. The challenges derive from the need for 
extensibility without crippling semantic interoperability. In 
particular, the visual system supports type-independent 
composition, while permitting very different visuals to interact in 
a well-defined manner. The program model provides complete 
information about a program’s structure and semantics in a largely 
language-independent manner. It provides for manipulation at 
both high and low levels, along with a notification system rich 
enough to express a wide variety of changes and editing states. 
The model also provides support for moving across the boundary 
between abstraction and concreteness. 

Thus far, we have produced a functional prototype demonstrating 
many of our goals. Further development would extend the 
model’s semantic manipulation and refactoring abilities, along 
with corresponding presentation and manipulation support in the 
visual domain. Causal dependencies should be better exposed, 
taking advantage of data-flow and control-flow analyses. Finally, 
the visual framework should be enhanced to more easily define 
new visuals and the semantic connections between them and the 
model. 
Another open question concerns ease of development of new 
visuals. It is highly desirable for visual representations to be as 
composable as the model objects that they represent. For example, 
if the model of an expression permits operands of any expression 
type, it should be similarly easy to use expression visuals of any 
type in creating the composite expression visual. Because the 
widget class hierarchy generally does not mirror that of the model; 
however, such interoperability does not come for free. 
We believe that with refinement, MindFrames will contribute 
significant progress to state-of-the-art software development. 
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