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Intelligent Information Navigation in Conversation Systems

Abstract

We define information navigation as
strategies used by a conversation system
to help a user locate targets in an informa-
tion space. Intelligent information navi-
gation concerns how a system can most
effectively guide a user to find his targets.
It is useful in information seeking applica-
tions such as finding flight or house infor-
mation from databases. Unlike the static
approaches adopted in today’s conversa-
tion systems, we propose an approach that
is sensitive to the data in the current search
space as well as the user’s search prefer-
ences. Our results demonstrate the effec-
tiveness and feasibility of this approach.

1 Introduction

Information navigation concerns how a system ac-
quires information to form a data query. This in-
cludes the order in which information should be
acquired as well as whether additional information
should be acquired. For example, in order to form
a query to find house information, a system needs
to acquire many different information such as price,
town, school, bedroom number, bathroom number
and various amenities1. To achieve this, the system
can either rely on the user to provide information
voluntarily or actively guide the user following a
productive path. For the user-guided navigation ap-
proach to work well, since the system operates in the

1None of the above information is mandatory because a user
can use any features to find his preferred houses.

user initiative mode, both the speech recognizer and
the natural language interpreter have to work well
so that the system understands flexible and complex
user queries. Moreover, it also requires the user to
understand the system’s capability so that he knows
when and what to ask at each conversation state. In
addition, the user also needs to know the data in the
current search space so that he has enough knowl-
edge to choose optimal navigation paths. For ex-
ample, house style is not a good navigation feature
because the system will return either the previous re-
sults or empty set when all the houses in the current
search space are “colonial”. All these requirements
pose challenges to today’s conversation systems and
make the user-guided approach inadequate in infor-
mation navigation. Thus, when needed, the conver-
sation system should actively provide help and guide
the user in information seeking.

In many existing conversation systems, if multi-
ple attributes are missing, which attribute should be
prompted next is pre-determined. For example, an
application designer may decide that attribute A is
more important than attribute B. Thus, the system
should always acquire A before B if both A and B
are unspecified. Because the relative order in which
the system acquires A and B will not change from
user to user and from conversation to conversation,
we call it a static navigation approach. Moreover,
before it issues a data query, the system will keep
acquiring missing information until all of them are
obtained.

There are problems with the static navigation
strategy. First, if there are too many features to be
acquired, prompting each unspecified feature one by
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one until all the features are acquired is likely to pro-
duce a long and tedious conversation. For example,
in a real estate application, a house may have a few
dozen features. Acquiring all of them one by one
will take many turns. An intelligent system needs
to know when to stop if obtaining more constraint is
unnecessary. Second, this strategy tends to produce
over-constrained queries. This occurs because the
system acquires new constraints in a pre-determined
manner, regardless of what is in the search space.
Over-constrained query results are empty and thus,
not useful to a user. Third, since the order in which
a system prompts for missing information is pre-
determined, it will not change from user to user.
This one-size-fits-all strategy may not be the best
for each individual user. To overcome these prob-
lems, we propose an efficiency-based dynamic data
navigation approach that is sensitive to the data in
the search space. In addition, we also incorporate a
user’s preferences so that the navigation is sensitive
to a user’s specific needs.

Information navigation is only one functionality
implemented in a multimodal conversation system
that helps a user find houses in a given region. A
user interacts with the system using multiple input
channels such as speech and gesture. The system
acts/reacts to a user’s request/response with auto-
matically generated speech and graphics presenta-
tion. In addition to information navigation, a con-
versation manager has many other responsibilities
such as generating a set of conversation acts based
on a user’s input and a current conversation context;
tracking initiatives; handling exceptions like ambi-
guity, timeout, unknown input, and incomplete in-
put; retrieving and manipulating information from
the back channel, as well as constructing and main-
taining the conversation history. Since we can not
address all these topics in one paper, we only focus
on the issues in intelligent information navigation.

2 Related Work

A large number of conversation systems have been
developed to provide access to information systems
such as travel information (Pellom et al., 2001;
Potamianos et al., 2000; Litman and Pan, 1999;
Rudnicky et al., 1999; Carlson, 1996; Albesano et
al., 1997), movie information (Chu-Carroll, 2000),

automobile information (Goddeau et al., 1996), fi-
nancial information (Papineni et al., 1999) and
weather forecast (Zue et al., 2000). However, there
has not been much effort known to us that focuses
on intelligent information navigation. Most systems
still use static navigation. For example, in (Litman
and Pan, 1999), a telephone-based train schedule
system is implemented using a Finite-State-Machine
(FSM)-based dialog manager. It handles dialogue
management by explicitly enumerating all possible
dialogue states, as well as allowable transitions be-
tween states. Before it queries the web for train in-
formation, the system needs to acquire four manda-
tory features: departure city, arrival city, departure
data and departure time. Since the system allows
mixed-initiative conversations, the user can spec-
ify any constraints in the order he chooses. How-
ever, if there is any missing information, the system
uses static information navigation and prompts each
value one by one using an order determined at the
system design stage.

Form-based conversation management is another
approach commonly used in today’s conversation
systems (D, 1999; Papineni et al., 1999; Goddeau et
al., 1996). For example, in (Goddeau et al., 1996),
the Wheels conversation system can help use find au-
tomobile information. The conversation is modeled
based on the notion of filling in a form consisting of
slots like make, model, price, mileage and year etc.
The user again can provide any information in an or-
der he chooses. However, if after the user specifies
his constraints, there are still too many cars in the
database, the system will cycle through an ordered
list of prompts, choosing the first one whose corre-
sponding field in the form remains empty. Thus, in
terms of system-guided information navigation, the
Wheels system still uses a static approach.

Unlike the approaches described in this section,
we propose a dynamic information navigation ap-
proach that is sensitive to the changes in different
conversation states. The order in which information
is acquired will be different from one conversation to
another. In addition, we also incorporate user prefer-
ences in navigation so that the search is specifically
tailored to each user’s special needs.

2



3 Efficiency-based Dynamic Navigation

Efficiency-based navigation is designed to help a
user find his target quickly. In this paper, efficiency
is defined as the number of system or user turns
needed to reach a target, assuming the system only
prompts the value of one new attribute at a time.
Efficiency-based navigation minimizes the number
of exchanges required to reach a target. To apply
this strategy, at a given point of a conversation, the
system uses greedy search to select, among all the
unspecified features, a navigation feature. The nav-
igation feature, if prompted first, is likely to mini-
mize the number of turns needed to reach a target.
In the following, first we describe how to use greedy
search to find the next navigation feature. Then we
describe the experiments that demonstrate the effec-
tiveness of this approach.

3.1 The Approach

To select a navigation feature, our system computes
the expected search space reduction for each un-
specified feature. The one with the largest reduction
is chosen as the navigation feature. The expected
search space reduction for a categorical feature �� is
defined as:

��� � �� ���������� �������� � �� (1)

Where ������� is the likelihood a user selects
� when he is prompted for the value of �� and
�������� � �� is the probability distribution of �
in the current search space. Since the real �������
is sensitive to a user’s preferences, ��� is sensitive to
a user’s special needs. Moreover, since �������� �
�� is sensitive to the data in the current search space,
���� changes dynamically when each new query
constraint is acquired. Because �������� � �� is
also a measure of the size of the resulting search
space, ��� directly measures the excepted size re-
duction if �� is prompted next.

For continuous attributes like the house price or
size, people usually care more about a range with a
max and min than a specific value. Thus, two possi-
ble navigation features, 	����� and 	�����, are used
for each continuous attribute 	 �. Their expected size
reduction can be computed as:

�������
� ��

� �

��
���������������� 
 �� (2)

�������
� ��

� �

��
���������������� � �� (3)

Where ������� is the probability a user selects �
when the system prompts for 	����� (or 	�����),
and �������� 
 �� (or �������� � ��) is the prob-
ability of � satisfying �� 
 �� (or �� � ��) in the
current search space. Similar to ��� , both �������

and �������
are sensitive to user preferences as well

as data in the search space. Finally, the feature that
maximizes ���, �������

and �������
is selected as

the navigation feature and will be prompted next. In
the following, we use experiments to demonstrate
how each probability distribution is estimated. We
also report the experiment results that confirm the
effectiveness of this approach.

3.1.1 The Experiments

To demonstrate the effectiveness of this approach,
we apply it to a real estate application in which 18
possible navigation features are used2. We use con-
versation simulations instead of full-fledged conver-
sation systems for two reasons. First, many factors
are known to affect a system’s performance, such
as efficiency (Walker et al., 1997). It is hard to tear
these factors apart in a real human-computer conver-
sation. Since we are only concerned about how the
conversation efficiency is affected by different infor-
mation navigation approaches, it is easier to use sim-
ulation to control the experiments. Second, without
involving real human subjects, we can easily repeat
the experiment over a large data set, which may not
be possible with real human subjects. For example,
it will require hundreds of conversation sessions be-
fore the same statistics can be computed.

The data in the experiment are house informa-
tion taken from the Multiple Listing Service (MLS)
database. There are a total of 325 houses in the test-
ing database. The experiment starts with the system
randomly picking a target house from the database.
Then it initiates a conversation to locate the target
house. At each point of the conversation, the system
computes the expected space reduction for each un-
specified feature. The feature with the largest space
reduction is chosen as the navigation feature. Once a

2We did not use all the attributes in the MLS database be-
cause some of the fields are not clean. For example, the value
of basement contains free text. Without any clean up, we can
not use it in a meaningful way
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navigation feature is prompted, the value of the tar-
get house is used as the answer. The search starts
with the entire database. Each time a new constraint
is applied, the search space is reduced. The search
stops when the number of houses in the search space
is small enough to be presented directly3. We repeat-
edly use a different house as the target and apply the
same process until all the 325 houses in the database
are tested. This experiment simulates situations in
which a user knows exactly what he wants and the
system tries to help him find his target house quickly.

To compute the expected search space reduction,
we need to estimate two probabilities: the proba-
bility of a user choosing a particular value � when
a navigation feature is prompted (�������) and
the probability distribution of value � in the cur-
rent search space. The second probability is rela-
tively easy to compute. For categorical variables,
�������� � �� � �����

��� , where �� � �� is the num-
ber of entities satisfying this constraint and ��� is the
number of entities in the current search space. Simi-
larly, for continuous variable 	�����, �������� 


�� � ��	��
��� , and for 	�����, �������� � �� �

��
��
��� .

To estimate �������, which is how likely a user is
to choose � when a navigation feature is prompted,
we start with a simple case in which a particular
user’s preferences are not taken into consideration.
In this case, we estimate ������� using the pref-
erences of the general population. Since a region-
wise poll on home buyer’s preferences is hard to
conduct, we approximate this using the distribution
of the houses in the entire region by assuming the
house supply and demand in an area are balanced.
Because of this, ������� for a categorical variable
�� is estimated as the probability distribution of each
� in the entire MLS database. For a continuous vari-
able 	�, ������� in both 	����� and 	����� can be
estimated using a normal distribution with mean �

equal to the average of 	� and standard deviation 

equal to
�

�������

�
, where � is the number of houses

in the database.

Since we did not take a particular user’s pref-
erences into consideration in this experiment, the

3Right now, we stop the search if less than three houses are
in the search space.

Table 1: Efficiency-based Navigation: an Example

Nav. Fea. Exp. Red. Tgt. Val. Sp. Size

heat 0.7633 Hot Air 325 to 38
garage 0.6500 3 38 to 7

bed(max) 0.9532 7 7 to 7
bath(max) 0.9448 8.2 7 to 7
price(max) 0.6633 5999000 7 to 7
tax (max) 0.6458 1100 7 to 1

probability for a user to choose � when a naviga-
tion feature is prompted is a static distribution. It
will not change from one user to another. It is only
affected by the preferences of the general popula-
tion. However, the probability distribution of each �
in the current search space will dynamically change
from one conversation state to another.

Table 1 shows how the system locates a target
house. At each navigation step, we list the naviga-
tion feature selected by the system and the expected
search space reduction if the navigation feature is
prompted next. We also list the target value derived
from the target house and the size reduction when
the new constraint is applied. At the very begin-
ning, heat is chosen as the navigation feature. Its ex-
pected search space reduction is 76.33%. When heat
is prompted, the value of the target house, hot air, is
used as the answer. Once this new constraint is ap-
plied, the search space is reduced from 325 to 38.
In the next step, since the search space has changed,
the system re-computes the expected search space
reduction for each unused feature. This time, garage
has the largest value with expected space reduction
equals to 65%. When garage is used as the naviga-
tion feature, the search space is further reduced to
7. This process is repeated until the target is located.
Overall, only 6 out of the 18 possible navigation fea-
tures are used in locating the target. The final statis-
tics in table 2 include the navigation approaches
used, the average number of exchanges needed to
reach a target. We compare this approach with a
static feature selection approach in which each fea-
ture is prompted one by one until all the features are
used. The order in which each feature is acquired
in the static approach is also fixed4. Finally, we
compute the statistical significancy to verify whether

4The order used in this experiment is randomly determined.
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Table 2: Results on Navigation Efficiency

Approach Average Exchanges Significance

Dynamic 4.91 0.01
Static 18 na

there is any improvement in conversation efficiency
when the new approach is used. The results in ta-
ble 2 indicate that we are able to significantly im-
prove the conversation efficiency by employing an
efficiency-based approach that is sensitive to the dy-
namically changing search space. The average num-
ber of exchanges require to reach a target is reduced
from 18, as in the static approach, to 4.91, as in the
efficiency-based approach. Based on the one-sample
t test, this difference is statistically significant with
� 
 ����. This experiment confirms our assumption
that efficiency-based dynamic navigation can help a
user reach his target faster than the static one. In the
following, we demonstrate how user preferences can
be used to facilitate information navigation.

4 Combining Conversation Efficiency with
User Preferences

Efficiency-based navigation is designed to help a
user find his target quickly. In the previous section,
we did not take a user’s preferences into considera-
tion. In this section, we will show that we are not
only able to further improve conversation efficiency
but also guide the search towards good matches
when there is no exact match in the database for a
target house. We do this by incorporating user pref-
erences.

4.1 User Preferences

We record two types of preferences in our user
model. First, which attributes are more important to
a user. Second, for each feature, important or unim-
portant, what are the preferred values. For example,
in the real estate application, a user may consider
price and location the most important features. In
addition, the user also prefers that the house price
is between 300 and 600 thousand dollars and he
prefers to live in the town of A or B.

User preferences affect information navigation in
two aspects. First, instead of using the parameters
estimated using the preferences of the general pop-

ulation, we estimate ������� more accurately using
a user’s own preferences. Since the computation is
tailored to an individual user’s needs, the efficiency-
based strategy may work better for each user. Sec-
ond, when no exact match can be found, we expect
the system to match features that are most important
to the user first.

4.2 The Combined Measure

The new preference-based navigation is based on a
weighted combination of two factors: the expected
search space reduction ��� and feature importance
��� . The definition for ��� is the same as that in
section 3.1. The feature importance ��� is a binary
variable. It is 1 when the selected feature is an im-
portant feature and 0 if the feature is unimportant.
The weight � is also a number between 1 and 0. It is
used to either direct the navigation towards finding a
target fast or matching as many important attributes
as possible. The combine navigation measure ��� is
defined as:

��� � � ���� � ��� �� � ��� (4)

Moreover, ������� in ��� or ��� has to be revised
based on a user’s preferences. To revise �������
for a categorical variable ��, first we split the entire
space into ����� and �����. ����� contains values
preferred by the user and ����� contains the rest.
Since the user prefers the values in �����, the proba-
bility of the user selecting a value from � ���� should
increase. In contrast, the probability for the values in
����� should decrease. More precisely, the revised
probability is computed as:

������� � ������ �

������� �
��� ������������������

���
(5)

������� � ������ � � � ������� (6)

where � represents values in ����� and � are val-
ues in �����, ������� and ������� are the origi-
nal probability estimated from the general popula-
tion, �������� and �������� are the revised proba-
bility estimated based on a user’s preference, ��� is
the number of values in �����, and � is a discount
factor, which is a value between 1 and 0. If � � �,
the revised probability is the same as the original.
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If � � �, the user will never chooses values from
�����

To revise ������� for a continuous variable 	 �,
the new probability distribution is a normal distribu-
tion with parameters derived from user preferences.
Assume the preferred range for � is ���������.
Instead of estimating � and  using the preferences
of the general population, the new � for 	 ����� is
the��� specified by the user. The new � for 	�����

is ���. The new  is � � ���� � ���� where �
is a flexibility factor. The larger � is, the more flex-
ible a user’s constraint is. For example, if a user’s
preferred price range is from $100K to $200K, and
� � ���, the probability distribution for a user to
choose � as the max is a normal distribution with
� equals to $200k and  equals to $20k. Similarly,
the probability for a user to choose � as the min is
a normal distribution with � equals to $100k and 

equals to $20k.

4.3 The Experiments

In this section, we use two experiments to demon-
strate the usefulness of user preferences in informa-
tion navigation. In the first experiment, we want to
show that the number of exchanges required to reach
a target can be further reduced because of more ac-
curate �������. In the second experiment, we take
both conversation efficiency and closeness to the tar-
get into consideration.

4.3.1 Revised Efficiency-based Navigation
Using Preferences

Before the start of the first experiment, we cre-
ate a user model in which each feature is assigned
a few preferred values. We also select a few impor-
tant features. Table 3 shows the user model where
“NP” means “no preference”. Features with * are
considered important.

In this experiment, the searching targets are
houses satisfying the user model. So, the set of tar-
get houses is a subset of the entire house set. There
are a total of 68 target houses retrieved based on
the user model. For each target house, the system
starts a conversation to locate it. At each step, the
system selects a navigation feature based on the re-
vised ��������. Since in each simulated conversa-
tion session, the system only locates a specific target
house with ���� �� ���� for all the continuous

Table 3: User Profile Used in the Experiment

Feature Prefer Value

Style Tudor, Colonial
��������� $5M
��������� $4M
������ NP
������ NP
������� NP
������� NP

� �!"# ������ NP
� �!"# ������ NP
��$������� 9
��$������� 4
��"%��� 9.0
��"%��� 3.1
garage NP
Town* ��&��� ��&��
water NP
sewer NP

heating NP

variable, we re-adjust the � for 	����� and 	�����

so that both of them are equal to �������
� , where

��� and ��� are the preferred values specified in
the user model. When the value of the navigation
feature is prompted, the corresponding value in the
target house is provided. The process is repeated
for all the target houses. This experiment simulates
the conversation behavior when user preferences are
used. Our target houses are houses satisfying user
preferences. Locating the target houses simulates a
user searching preferred houses.

Table 4 shows how the same house described
in section 3.1.1 is retrieved here. In this process,
the system uses a different probability estimation
�������� that is sensitive to a user’s preferences.
Based on the new probability, the expected space
reduction for bath(min) is 89.22%, which is higher
than 76.33%, the expected reduction for heat. As a
result, bath(min) is prompted first. In this case, the
minimum number of bathroom constraint is so good
that the system located the same target house in one
step.

The final results shown in table 5 include the av-
erage number of exchanges used to reach a target.
We compare this performance with the one without
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Table 4: Efficiency-based Navigation with Prefer-
ences: an Example

Nav. Fea. Exp. Red. Tgt. Val. Sp. Size

bath(min) 0.8922 8.2 325 to 1

Table 5: Navigation Results with or without User
Preferences

Approach Ave. Exchanges Significance

w/o preference 4.91 0.01
preference 4.10 na

user preferences in which ������� is estimated us-
ing the preference of the general population. The
comparison results indicate that the system in aver-
age uses 	��� exchanges to reach a target when user
preferences are used. This is less than the 	�
� steps
needed in the previous experiment. The difference is
statistically significant with � 
 ���� based on the
two-sample t test. These results confirm that using
more accurate preference-based probability estima-
tion further improves conversation efficiency.

4.3.2 Combining Efficiency with Importance

Based on our previous experiment, user prefer-
ences indeed improve navigation efficiency. But the
experiment only simulates situations where a target
house exists in the database. In reality, there may
not exist a house in the database that matches all
the preferences. That’s where feature importance ���
can play a role. In the following experiment, we use
the combined measure ��� describe in section 4.2 as
the navigation criteria.

In this experiment, we randomly generate target
houses that satisfy the user model. Since the houses
are randomly generated, some combinations do not
exist in the database. In fact, the values generated for
the continuous variables are so specific, almost none
of the target houses are in the database. This experi-
ment is used to demonstrate the combined effects of
navigation efficiency and feature importance. There
are a total of 50 houses generated. For each target
house, the system starts a conversation sequence to
locate it. The conversation stops when the number of
houses in the search space is small enough to be pre-
sented directly. After the same process is repeated

for all the target houses, a set of statistics is com-
puted, including how fast the system returns results
and the similarity between the retrieved and the tar-
get houses. The similarity between a retrieved house
' and a target house � , S(X,T), is defined as:

��'� � � � �������'��� ���� (7)

where

����'��� ���� �

�� �'�� � ����� ��� � ��(��"��"�

�� �'�� � ����� ��� � )���(��"��"�

�� �'�� 	� ���� (8)

Based on equation (7), the similarity between a re-
trieved house ' and a target house � is the sum
of the similarity of each individual feature. The
similarity of a single feature shown in equation (8)
has three possible values: 2 if an important feature
matches, 1 if an unimportant feature matches, and 0
if a feature does not match. Thus, the overall sim-
ilarity score ��'� � � can be used to evaluate the
quality of the retrieved houses. In general the higher
the score is, the closer the houses are to the user’s
target. If multiple houses are retrieved for a single
target house, we use the average similarity score in
the result. We run the experiment using ��� as the
search criteria. At each step, the system chooses a
navigation feature which maximizes ��� . We run
the experiment using two different weights: � � ��

and � � ���. We want to show the effects of � on
conversation efficiency as well as matching quality.
In general, a large � guides the navigation towards
conversation efficiency and small � guides the nav-
igation towards better matches. We also include the
performance of the static navigation approach. We
want to show when the combined measure is used,
the new approach performs better than the static ap-
proach in both conversation efficiency and matching
quality. The overall results shown in table 6 indi-
cates that larger � results in better conversation ef-
ficiency. When � � ��
, in average, it takes 6.05
turns to reach a target, which is less than the 6.84
turns used by the system when � � ���. The av-
erage similarity for � � ��
 is ����, which is less
than ����, the average similarity score when � � ���
is used. All the differences are statistically signifi-
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Table 6: Results Using Combined Measure

� Ave. Exchanges Ave. Similarity

0.9 6.05 8.02
0.1 6.84 8.78

static 18 na

cant based on the two-sample paired t test. In addi-
tion, since it takes the static system 18 steps before
issuing a data query, both dynamic navigation ap-
proaches using the combined measure out-perform
the static approach in conversation efficiency. Since
almost all the target houses are not in the database,
the static approach almost always returns empty set.
Thus, both dynamic approaches also outperform the
static approach in matching quality.

5 Discussion

In addition to conversation efficiency and user pref-
erences, information navigation can be affected by
other factors such as a user’s knowledge. In the real
estate application, features, such as price, are eas-
ier for a user to specify than features, such as school
name, because the likelihood for a user to know his
preferred price range is much higher than a partic-
ular school name, especially if he just moved into
a new area. Since prompting features that are un-
known to a user will result in a few extra turns, it
is more efficient if the system prompts for easy fea-
tures first.

In addition, conversation simulations have its lim-
itations because the target chosen by the system is
not a perfect representation of user preferences. For
example, in the simulations, we always look for one
target house instead of a set of houses in one con-
versation. This affects the accuracy of our probabil-
ity estimation. In the future, we want to reproduce
these experiments with real human subjects using
real house preferences. We want to verify if there
is any difference in the results.

6 Conclusion

In the paper, we propose a novel information navi-
gation approach that is sensitive to both search space
and user preferences. It out-performs a traditional
static navigation approach both in conversation effi-
ciency and matching quality. This approach is par-

ticularly suitable for large and complex information
systems.
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