
RC22826 (W0306-106) June 20, 2003
Computer Science

IBM Research Report

Insights on the Performance of Cache Management Policies
for Fragment-Assembling Caches

Daniela Rosu, Xindian Long
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Insights on the Performance of Cache Management Policies for
Fragment-Assembling Caches

Daniela Rosu
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights NY 10598, USA

drosu@us.ibm.com

Xindian Long
�

CMU
xlong@andrew.cmu.edu

Abstract

The Edge Side Includes (ESI) standard enables
Web proxy caches to deliver dynamic web content,
such as personalized portal pages and e-business
queries, by assembling it on demand from page
templates and content fragments retrieved from lo-
cal caches or remote servers.

This paper investigates whether ESI caches can
benefit from exploiting the structure of the com-
posed pages. Toward this end, we view the space
of dynamic pages as a partition defined by page
templates; the fragments used for each template are
grouped in classes, based on the ESI tags that de-
fine them. Thus a dynamic page is composed from
a page template and one fragment from each of the
associated classes.

We consider two components of the cache man-
agement infrastructure: the replacement policy and
the space allocation. Our experiments show that re-
placement policies that account for page-structure
dependencies can improve hit ratios in compari-
son to Greedy-Dual Size-Frequency policy. Simi-
larly, partitioning the cache space among fragment
classes can improve hit ratios in comparison to
sharing the entire cache space among all fragment
classes, as traditionally used. The study is con-
ducted through simulation with simple synthetic
workloads.

�
Work done during a Summer Internship with IBM T.J.

Watson Research Center.

1 Introduction

Driven by the need to provide personalized con-
tent and time sensitive information, Web content
providers are producing an increasing volume of
dynamic content. This trend raises significant chal-
lenges for the supporting Web infrastructures due
to higher demand for computation and network re-
sources, and to increased interactions between ap-
plication and database servers.

Addressing these problems, previous research
proposed to build dynamic content by assembling
content components, called fragments, which can
be cached and selectively updated [6, 19]. Numer-
ous studies show that caching fragments at appli-
cation servers reduces the resource consumption on
origin Web site infrastructures [11, 22].

More recent proposals advocate the offload of
dynamic content composition onto Web proxies
[5, 9, 10, 18, 23] or Web browsers [20]. Provided
with an appropriate specification of the dynamic
page structure, such as an ESI template [7], a Web
proxy or browser can identify the component frag-
ments, retrieve them from the local cache or origin
sites, and, finally, assemble and deliver the content
to the client.

Related to this approach, previous research has
addressed the problems of dynamic content repre-
sentation [7, 10] and of consistency management
for the cached fragments [23, 18]. In this study,
we address the problem of cache management, con-
sidering the issues of replacement policy and space
allocation. The problem is relevant because, for ac-
ceptable performance, Web proxy caches that as-

1

semble fragment-based content need to maximize
hit ratios and to rely heavily on main-memory
caches [8, 9]. Therefore, the available cache sizes
are typically small, which makes it hard to achieve
acceptable hit ratios, in particular for sites with
large content spaces, such as the sport-event sites.

Our study is based on the Fragment Class (FC)
model of dynamic content, designed to capture the
correlations among content fragments that derive
from the structure of dynamic pages. This model
extends the previously proposals [21, 23], which
consider each dynamic page as an independent en-
tity, obtained through the composition of a con-
tainer and several objects. In contrast, in the FC
model, the universe of dynamic content is com-
posed of groups of pages with similar fragmen-
tation features. All pages in a group are derived
from the same HTML template. Further, each frag-
ment tag in the template is associated with a frag-
ment class, which is a set of fragments generated
by the same method but with different parameters.
To compose a dynamic object one has to retrieve
the template and one fragment from each of the
classes associated with the template. The FC model
can describe the characteristics of a wide range of
dynamic content by appropriately setting the char-
acteristics of templates and fragment classes, like
number of objects and object popularity model.

With respect to cache replacement, this study
proposes a new policy, called ’Greedy-Dual Size-
Class Relative Frequency’ (GDS-CRF), which ex-
ploits the correlations that derive from the structure
of fragment-based content. This policy can provide
better hit ratios than Greedy-Dual Size-Frequency
(GDS-F) [1], a cache replacement policies consid-
ered optimal for static content. The limitation of
GDS-F and similar policies [12] derives from the
use of access frequency as a measure for the rela-
tive importance of objects. This approach is appro-
priate for static-content caches, in which each client
request translates into a single cache request. How-
ever, for fragment-based content, access frequency
is not a good measure for the relative importance
of fragments. For instance, a fragment X included
from two templates tends to have a higher access
frequency than fragments Y and Z included from
each of the two templates. However, fragment X
does not bring more value to the cache than either

of fragments Y and Z.
With respect to cache space allocation, this study

demonstrates that by partitioning the cache space
among fragment classes one can achieve better per-
formance than by the traditional sharing the entire
cache space among all classes.

In this simulation-based study, we use several
dynamic content pages modeled with the FC model.
Our results represent only the initial steps towards
understanding the cache performance in fragment-
assembling proxies. A limitation of our study,
which we expect to address in the future, is the
lack of realistic content models, and this derives
from the scarce information available in the liter-
ature on workloads for fragment-assembling CDNs
or reverse proxies.

The remainder of this study is organized as fol-
lows. Section 2 presents the related work. Section 3
presents the details of the FC model. Section 4
describes the simulator for FC workloads used in
this study. Section 5 presents the experimental re-
sults. Finally, Section 6 summarizes our contribu-
tions and highlights several future-work items.

2 Related Work

The problem of improving the performance of
dynamic content Web sites has received signifi-
cant attention during the past several years. The
most advocated solutions are based on caching dy-
namic content in various representations, includ-
ing the whole pre-computed content [11, 24], frag-
ments ready to be assembled [18], or intermediary
database query results[16]. This study is related to
work in the area of fragment-based decomposition
and caching.
Fragment-based Decomposition. Drawing from
results in the area of Web site content management
[6, 13, 24], previous work advocates the idea of en-
abling Web proxies to compose dynamic content on
demand, by assembling a collection of component
objects (fragments) [5, 9, 10, 17, 23]. One approach
is to provide the Web proxy with an explicit de-
scription of the dynamic pages that it can compose
and serve to clients. Tag-based specifications, in-
cluding ESI [7], HPP [10], and others [17], allow
to describe a dynamic page as composed of a page

2

template and a set of content fragments; the frag-
ment specification may be determined by request
parameters. Upon serving a request, a Web proxy
retrieves the page template from the cache or ori-
gin server, it processes the included tags [7, 17] or
macros [10] in the context of current request pa-
rameters, and it issues requests to the local cache or
remote servers to retrieve the identified fragments.

Another approach is the Active Cache paradigm
[5], in which dynamic content is specified implic-
itly, by a URL-specific applet. A cache applet can
retrieve request parameters, access local databases,
and if necessary, interact with the origin server.
The applet output represents the requested dynamic
content.

In this study, we do not restrict the specification
paradigm. However, we assume that some parame-
ters of the content fragmentation model, such as the
mapping of fragments to classes, can be provided to
the caching infrastructure.
Modeling Dynamic Content Characteristics.
Several studies [21, 23] attempt to model the char-
acteristics of fragment-based content with respect
to object size and update rate distributions. These
studies use the home pages of several popular sites
and identify the segments of content that could rep-
resent fragments by tracing the changes across a se-
quence of page versions. While providing insights
on the characteristics of dynamic content across
several sites, both studies omit to explore the char-
acteristics of dynamic content within a single site.

We submit that one has to consider the structure
of the entire dynamic content of a Web site in order
to appropriately evaluate the implications of proxy-
level fragment assembling. This is because we be-
lieve fragment assembling is more likely to be de-
ployed at reverse proxies and CDNs, which han-
dle complete sites, rather than at forward proxies,
which handle individual pages.

The content space of an entire site is considered
in [22]. With focus on motivating the need for frag-
ment cacheability, the study takes a global view to
the fragment space, focusing on statistical charac-
teristics of client requests and fragment size distri-
bution across all channels. However, the study does
not model channel characteristics, like popularity
and size distributions.

The Fragment Class model proposed in this pa-

per allows us to describe the complete content
space of a site in a way that is consistent with the
page and fragment generation process. In addition,
the model allows us to represent content from one
or more sites, as necessary for reverse proxy and
CDN studies. The FC model can capture a wide va-
riety of dynamic content, including portal content
[22], or content with frequently updated fragments
[21, 23].
Proxy Cache Management. A significant body
of research has addressed the problem of cache re-
placement in Web proxy caches, analyzing the ef-
fect of various caching policies on object and byte
hit ratios. The better performing methods extend
the LRU object utility value based on access re-
cency to include object size [4] and access fre-
quency components [1, 12]. This approach im-
proves object hit ratios. Byte-hit ratios and system-
specific cost metrics, such as download latency, are
addressed by adding corresponding cost functions
to the utility value.

All of the previous studies of cache replace-
ment policies address the problem in a universe
of static objects. Applied to fragment-based con-
tent, these policies consider the page templates and
fragments are independently accessed entities. Our
study demonstrates that replacement policies that
account for the page structure and fragment-class
characteristics can result in better hit ratios than tra-
ditional policies.

Previous studies have also proposed cache re-
placement policies that differentiate among the
cached objects. For instance, [14] proposes a pol-
icy in which origin servers are assigned different
weights for caching, and these weights reflect in the
utility value of their objects: the higher the server
weight, the larger the bias towards maintaining its
objects in the cache. Similarly, [15] proposes a
control-theoretical method for providing differenti-
ated service to the set of origin servers represented
in the cache; the solution is based on partitioning
the cache space among origin servers, with parti-
tion sizes adjusted dynamically according to the ob-
served hit rates.

Different from these studies, we consider cache
replacement and space allocation policies that dif-
ferentiate objects based on the structural character-
istics of the dynamic content rather than on the con-

3

tent affiliation to particular servers.

3 Fragment Class Model

The Fragment Class (FC) model captures the char-
acteristics of dynamic content in an approach con-
sistent with the page and fragment generation pro-
cess.

More specifically, in the FC model, a collection
of dynamic pages is defined by three components:
(1) a set of page templates, (2) a collection of sets
of content fragments, called fragment classes, and
(3) a mapping between page templates and frag-
ment classes. For instance, for an ESI-based page
template, each ESI tag corresponds to a fragment
class, and the mapping associates these classes with
the template.

Each dynamic page is assembled from a tem-
plate and one fragment from each of the classes as-
sociated with the template through the mapping.

A fragment class can be associated with several
templates. For instance, distinct personalized portal
templates, like My.Yahoo pages, can refer to a frag-
ment class of common interest for their owners, like
the Technology News.

In order to characterize a dynamic workload, the
templates and the fragment classes have several at-
tributes. Template attributes include (1) size and
(2) request probability. Fragment class attributes
include (1) number of fragments, (2) distribution
of fragment sizes, (3) distribution of fragment pop-
ularity, and (4) distribution of computation over-
heads. For studies that address the cache consis-
tency problem, templates and fragment classes can
be associated with an update model.

We assume that the likelihood of selecting a frag-
ment from the class is identical for all the including
templates; i.e., the distribution of fragment popu-
larity in a class depends on the class and not on the
templates associated with the class. Also, we as-
sume that fragment classes do not share objects.

Dynamic content with a hierarchy of embedded
fragments is represented by flattening the hierarchy
to one page template and considering that all frag-
ment classes are associated with the template, irre-
spective the levels of the corresponding ESI tags.

The FC parameters allow us to characterize a

wide range of dynamic content spaces. For in-
stance, for news sites like CNN, one can have a
template for the main page, one template for each
per-section main pages, e.g., health main page,
and one or more templates for article pages. The
template of the main page has several fragments,
but the corresponding classes have only one ob-
ject. Article-page templates have several fragments
as well, but the class sizes are much larger. For
portal sites, like My.Yahoo and the Web site ana-
lyzed in [22], one can have several templates, one
for each combination of content sources. For in-
stance, for My.Yahoo, each content source corre-
sponds to a fragment class; some classes can have
only one item, like the ‘Health Features’ class,
some can have several items, like the ’Horoscope’
class, while others can have numerous items, like
the ’Weather’ class.

4 Experimental Methodology

This study is conducted through simulations with
synthetic workloads. The content space is defined
by the FC model, described in Section 3. We rely
on synthetic workloads because of the lack of real-
istic traces or models that provide the information
necessary for the FC model. Although [22] reports
the number and size range of objects in each class
fragment, it gives no information about the popu-
larity distributions.

Our simulator can use an FC model specified ex-
plicitly or one generated from a set of input param-
eters including: number of templates, template size
distribution, distribution of fragment classes per
template, distribution of number of shared classes
among templates. For the experiments reported in
this paper, we use an explicit specification.

The size and popularity distributions for a frag-
ment class can be defined by several types of distri-
butions. For these experiments, all fragments in a
class have the same size, and the popularity distri-
bution is Zipf.

The simulator works with traces computed of-
fline or online. The use of offline traces is moti-
vated by our intent to integrate temporal locality for
fragment requests. We have experimented with the
methods integrated in ProWGen [3] and SURGE

4

[2], but could not achieve acceptable distribution of
fragment IDs across the request series. As a conse-
quence, for this study we ignore temporal locality
and use online generated traces.

For each experiment, the simulator reports sev-
eral performance metrics including (object) hit ra-
tio, complete-page hit ratio, per-class hit ratios,
and distribution of fragment misses per request.
Complete-page hit (CPH) ratio is defined as the ra-
tio of pages requests for which all fragments are
available in the local cache. The measurements
start after the amount ‘serviced’ content reaches a
specified threshold. In our experiments, this thresh-
old is equal to the total content space.

Given our interest in performance of cache re-
placement policies, the simulator does not model
client request rates and content updates. We assume
that cached content is always valid.

5 Experimental Results

In this study, we focus on two components of the
cache management, the replacement policy and the
space allocation policy. The replacement policy
is used by the cache to decide which objects can
be discarded when space is needed to accommo-
date new objects. In Section 5.1, we propose and
evaluate a new replacement policy, called Greedy-
Dual Size Class-Relative Frequency (GDS-CRF).
This policy exploits information about the structure
of dynamic content in order to alleviate the limi-
tations with respect to fragment-based content spe-
cific to policies like GDS-F [1].

The space allocation policy determines how the
cache space is divided among various categories of
cacheable objects. Most studies related to cache
management do not consider the space allocation
policy, assuming that the cache manager uses the
entire cache space to store all of the objects, inde-
pendent of their content provider or access charac-
teristics. In Section 5.2, we evaluate the benefits of
partitioning the cache among fragment classes.
Dynamic Content Configurations. In this study,
we use three dynamic content configurations. Ta-
ble 1 presents their FC models.

All configurations have two templates and three
fragment classes. Each template is accessed with

50% probability and includes two fragment classes.
Both templates include the class C0 of the corre-
sponding configuration.

Configurations differ by the number and size of
objects the fragment class; object popularity within
each class is defined by a Zipf distribution with co-
efficient

�����
. In configuration FreqLarge (frequent-

is-large), the objects in the most frequently ac-
cessed class, � � , are significantly larger than the
objects in the other two classes. In configuration
FreqMany (frequent-is-many), the most frequently
accessed class, C0, has significantly more objects
than other classes, which results much smaller ac-
cess probabilities for its objects. Finally, in config-
uration FreqSmall (frequent-is-small), the objects
in the most frequently accessed class, C0, are sig-
nificantly smaller than the objects in other classes.

5.1 Implications of Replacement Policy

In traditional static-content caches, in which one
client request translates to a single cache object, the
best replacement policies use an object value func-
tion defined by a combination of access probability,
size, and retrieval cost. For instance, the GDS-F [1]
value of an object � is defined by: 	�
����������������������! #"�$&% ��"!��'� #"!$�)(+*,�, #"!$.

This type of value function models the intuition
that the system gets more benefit by caching the
objects with the largest access frequency per size
unit. This matches the need of static content caches
because it maximizes the number of client requests
that can be served with cached content.

For fragment-assembling caches, cache accesses
are no longer independent, as one client request
translates to several cache objects. We identify
two limitations of the value model used for static-
content caches when applied to fragment-based
content.

The first limitation is related to class access from
multiple templates. Let us consider a content con-
figuration in which one fragment class is included
by several templates, while other fragment classes
included by these templates are included by only
one template. The configurations considered in this
study match this profile, because class C0 is in-
cluded by two templates while classes C1 and C2
are included by only one template. The intuition

5

Table 1: Dynamic Content Configurations.
Configuration Fragment Classes Templates

Id Number Size Zipf Id Access Size Classes
Objs. KB Coeff. Prob. KB

FreqLarge C0 2000 10 0.3 B0 0.5 2 C0, C1
‘frequent-is-large’ C1 500 1 0.3 B1 0.5 1 C0, C2

C2 2000 2 0.3
FreqMany C0 10000 1 0.3 B0 0.5 2 C0, C1
’frequent-is-many’ C1 500 1 0.3 B1 0.5 1 C0, C2

C2 2000 10 0.3
FreqSmall C0 2000 1 0.3 B0 0.5 2 C0, C1
’frequent-is-small’ C1 500 9 0.3 B1 0.5 1 C0, C2

C2 2000 10 0.3

is that objects in class C0 yield the same benefit to
the cache as objects in classes C1 and C2, when
the differences in size and intra-class popularity are
ignored. However, in the static-content model, ob-
jects in class C0 are considered more valuable than
objects in classes C1 and C0.

The second limitation of the GDS-F value model
is related to intra-class access probabilities. Let
us consider a template that includes two classes
with very different number of objects, like template
B0 in configuration FreqSmall. Objects in the less
populated class tend to have higher access frequen-
cies than objects in more populate class, like class
C2 vs. class C0 in configuration. By the static-
content model, C0 yields much lower value to the
cache than C2, as even its most popular objects
have lower values than almost all objects in C2.
However, the intuition is that both classes yield a
comparable benefit to the cache.

To address these limitations, we consider a
value function which discounts an object’s ac-
cess frequency relative to the access frequency in
the class. We call this value function Greedy-
Dual Size Class-Relative Frequency (GDS-CRF).
Given an object - , the function is defined by.0/214365�708:9 -<;>= ?�@�@�A�BCB,DFE!GH ?,I ?J@�@)AKBKB @�L�?MBCB,DFE!G @�E!B�N�D#E�GB)O+P,AJDFE!G ,where QSRUT RWVMVYX[Z[Z V]\�R�Z[Z 9 -<; is the maximum of
RUV]VYX^Z_Z for all objects in the same class as - .

This function addresses the limitation related to
access from multiple templates by eliminating the
related bias in access frequency. Also, it addresses

the limitation related to intra-class accesses by re-
quiring that objects be accessed significantly more
frequently relative to their class in order to achieve
a much larger value than objects in other classes.

Figures 1- 3 present the (object) hit ratios (HIT)
and the complete-page hit ratios (CPH) when vary-
ing the available caches space for all the configura-
tions, when using GDSF, GDS-CRF, and LRU. The
available cache space is expressed as a fraction of
the space required to accommodate all of the ob-
jects in a configuration. Figures 4-6 presents the
per-class hit ratios for GDSF and GDS-CRF.

The plots illustrate that both GDSF and GDS-
CRF provide better performance than LRU for all
configurations. Further, GDS-CRF benefits Freq-
Many and FreqLarge, but not FreqSmall. For Freq-
Many, Figure 5 illustrates that the most numerous
class, C0, observes a better hit ratios because of
discounted value of objects in class C2. For Fre-
qLarge (see Figure 4), class C2 observes larger hit
ratio with GDS-CRF due to a decrease in value for
objects in class C0. For FreqSmall, the lower hit
ratio of GDS-CRF is mostly due to the fact that ob-
jects in class C1 observe a discount relative to the
objects in class C2 (see Figure 6).

For all configurations, the policy with the best hit
ratio provides also the best complete-page hit ratio.

Overall, these experiments show that accounting
for fragment-class characteristics helps improve the
overall hit ratio in comparison to GDSF for some
types of dynamic content configurations. Unfortu-

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
IT

/C
PH

 p
ro

ba
bi

lit
y

cache size rel to obj.space

GDS-F HIT
GDS-CRF HIT

LRU HIT
GDS-F CPH

GDS-CRF CPH
LRU CPH

Figure 1: FreqLarge: HIT and CPH ratios.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
IT

/C
PH

 p
ro

ba
bi

lit
y

cache size rel to obj.space

GDS-F HIT
GDS-CRF HIT

LRU HIT
GDS-F CPH

GDS-CRF CPH
LRU CPH

Figure 2: FreqMany: HIT and CPH ratios.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
IT

/C
PH

 p
ro

ba
bi

lit
y

cache size rel to obj.space

GDS-F HIT
GDS-CRF HIT

LRU HIT
GDS-F CPH

GDS-CRF CPH
LRU CPH

Figure 3: FreqSmall: HIT and CPH ratios.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
IT

 p
ro

ba
bi

lit
y

cache size rel to obj.space

GDSF C0
GDS-CRF C0

GDSF C1
GDS-CRF C1

GDSF C2
GDS-CRF C2

Figure 4: FreqLarge: Class Hits.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
IT

 p
ro

ba
bi

lit
y

cache size rel to obj.space

GDSF C0
GDS-CRF C0

GDSF C1
GDS-CRF C1

GDSF C2
GDS-CRF C2

Figure 5: FreqMany: Class Hits.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
IT

 p
ro

ba
bi

lit
y

cache size rel to obj.space

GDSF C0
GDS-CRF C0

GDSF C1
GDS-CRF C1

GDSF C2
GDS-CRF C2

Figure 6: FreqSmall: Class Hits.

7

nately, we could not find a solution that benefits all
configurations.

5.2 Implications of Space Allocation

In order to evaluate the implications of global
vs. partitioned space allocation in a fragment-
based cache, we consider two partitioning policies,
namely:`

MAXTP, in which each class is assigned
space proportional to the maximum access
probability of the templates that include it;`
CDF, in which each class is assigned space
such that the expected cumulated access prob-
ability of stored objects is equal across all
classes. For a class, the expected access prob-
ability is computed by summing the probabil-
ities of the first a objects in rank order, where
a:bdc�e�e�f�g�cJh+i+fCjc,k,lYm n)i+o,p .

For both policies, if a class is entitled to more
than its maximum needs (i.e., q�r�s�tvu]q_wyx{z^|F}U~<�yt��^�)���),
the extra space is reassigned to the other classes
based on the same policy. We assume that the space
allocation is decided offline, and is fixed for the du-
ration of an experiment.

In the following experiments, the replacement
policy for all cache partitions, either global or per-
class, is GDS-F. Figure 7 presents the hit ratios for
the three configurations when using a global allo-
cation (’GDSF’) and when using the two per-class
allocations (’Class MAXTP’ and ’Class CDF’).

The plots illustrate that per-class allocation en-
ables noticeable hit rate improvements for Freq-
Many throughout the range of cache sizes. For
FreqSmall, improvement is observed only for small
caches. Comparing the two per-class allocations,
CDF provides better hit ratios. The difference is
due to changes in per-class hit ratios. Figure 8 il-
lustrates the hit ratios for FreqMany showing that
CDF increases more significantly the hit ratio for
C0 by reducing the hit ratio for C2.

For the FreqMany and FreqSmall, experiments
with better hit ratios exhibited also better CPH ra-
tios. However, the results for FreqLarge (see Fig-
ure 9) at small cache sizes illustrate that a better
complete-page hit ratio is not always a consequence
of a better object hit ratio.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
IT

 p
ro

ba
bi

lit
y

cache size rel to obj.space

FreqMany GDSF
FreqMany Class MAXTP

FreqMany Class CDF
FreqSmall GDSF

FreqSmall Class MAXTP
FreqSmall Class CDF

Figure 7: Space Allocation: FreqMany and FreqS-
mall Hits.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
IT

 p
ro

ba
bi

lit
y

cache size rel to obj.space

C0 GDSF
C0 Class MAXTP

C0 Class CDF
C1 GDSF

C1 Class MAXTP
C1 Class CDF

C2 GDSF
C2 Class MAXTP

C2 Class CDF

Figure 8: Space Allocation: FreqMany Class Hits.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
IT

 p
ro

ba
bi

lit
y

cache size rel to obj.space

HIT GDSF
CPH GDSF

HIT Class MAXTP
CPH Class MAXTP

HIT Class CDF
CPH Class CDF

Figure 9: Space Allocation: FreqLarge Hits and
CPH.

8

To summarize, our experiments illustrate
that cache partitioning policies that account for
fragment-class characteristics can achieve better
object and complete-page hit ratio than global
cache allocation.

6 Conclusion and Future Work

This paper makes the following contributions to the
problem of modeling and caching fragment-based
Web content:� the Fragment Class model for fragment-based

dynamic content, which captures correlations
among content fragments that derive from the
structure of dynamic pages;� the Greedy-Dual Size-Class Relative Fre-
quency, a cache replacement policy that con-
siders the fragment correlations derived from
the structure of dynamic pages. The study
demonstrates that this policy can provide bet-
ter hit ratios than optimal cache replacement
policies for static content, like GDS-F [1];� the approach of cache space partitioning based
on fragment-class characteristics. This study
demonstrates that this approach can provide
better object and complete-page hit ratios than
the traditional sharing of the entire cache
space among all fragment classes.

Albeit small, the performance improvements il-
lustrated in this study advocate the need for further
investigation.

Our experiments illustrate that the relative per-
formance of various cache replacement policies de-
pends on content characteristics. Therefore, we
submit that an important future-work item is to be
able to identify which is the most appropriate cache
management policy for given content characteris-
tics. We plan to extend this study with dynamic
content that has simple, easy to control characteris-
tics, like in this study, but also with more complex,
real-life content.

References

[1] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich,
and T. Jin. Evaluating Content Management Tech-
niques for Web Proxy Caches. International Web
Caching and Content Delivery Workshop, 1999.

[2] P. Barford and M. Crovella. Generating Represen-
tative eb Workloads for Network and Server Per-
formance Evaluation. Performance ’98/ACM SIG-
METRICS ’98 and BUCS-TR-1997-006, 1998.

[3] M. Busari and C. Williamson. On the Sensitiv-
ity of Web Proxy Cache Performance to Workload
Characteristics. IEEE INFOCOM, 2001.

[4] P. Cao and S. Irani. Cost-Aware WWW Proxy
Caching Algorithms. USENIX Symposium on In-
ternet Technologies and Systems, 1997.

[5] P. Cao, J. Zhang, and K. Beach. Active
Cache: Caching Dynamic Contents on the Web.
IFIP International Conference on Distributed Sys-
tems Platforms and Open Distributed Processing,
1998.

[6] J. Challenger, A. Iyengar, K. Witting, C. Ferstat,
and P. Reed. A Publishing System for Efficiently
Creating Dynamic Web Content. IEEE INFO-
COM, 2000.

[7] O. Corp. and I. Akamai Technologies. ESI
- Accelerating E-Business Applications.
http://www.esi.org/index.html, 2001.

[8] A. Datta, K. Dutta, H. Thomas, and D. Vander-
Meer. A Comparative Study of Alternative Middle
Tier Caching Solutions to Support Dynamic Web
Content Acceleration. VLDB, 2001.

[9] A. Datta, K. Dutta, H. Thomas, D. VanderMeer,
Suresha, and K. Ramanritham. Proxy-Based Ac-
celeration of Dynamically Generated Content on
the World Wide Web: An Approach and Imple-
mentation. SIGMOD, 2002.

[10] F. Douglis, A. Haro, and M. Rabinovich. HPP:
HTML macro-Preprocessing to Support Dynamic
Document Caching. USENIX Symposium on In-
ternetworking Technologies and Systems, Dec.,
1997.

[11] A. Iyengar and J. Challenger. Improving Web
Server Performance by Caching Dynamic Data.
USENIX Symposium on Internet Technologies and
Systems (USITS ’97), 1997.

[12] S. Jin and A. Bestavros. Popularity-Aware
GreedyDual-Size Web Proxy Caching Algorithm.
International Conference on Distributed Comput-
ing Systems 2000, 2000.

[13] K. Kant and P. Mohapatra. Current Research
Trends in Internet Servers. Performance and Ar-
chitectures of Web Servers, 2001.

[14] T. Kelly, Y. M. Chan, S. Janim, and J. MacKie-
Mason. Biased Replacement Policies for Web
Caches: Differential Quality-of-Service and Ag-
gregate User Value. International Web Caching
Workshop, 1999.

[15] Y. Lu, A. Saxena, and T. Abdelzaher. Differenti-
ated Caching Services; A Control-Theoretical Ap-

9

proach. International Conference on Distributed
Computing Systems, Apr., 2001.

[16] Q. Luo and J. F. Naughton. Form-based proxy
Caching for Database-Backed Web Sites. VLDB,
2001.

[17] M. Mikhailov and C. Wills. Change and
Relationship-Driven Content Caching, Distribu-
tion, and Assembly. Technical Report WPI-
CS-TR-01-03, Computer Science Department,
Worcester Polytechnic Institute, Mar., 2001.

[18] M. Mikhailov and C. Wills. Exploiting Object Re-
lationships for Determininstic Web Object Man-
agement. International Web Caching and Content
Delivery Workshop, May, 2002.

[19] P. Mohapatra and H. Chen. WebGraph: A Frame-
work for Managing and Improving Performance
of Dynamic Web Content. Special Issue of Inter-
net Proxy Servers in the IEEE Journal of Selected
Areas in Communications, Sept., 2002.

[20] M. Rabinovich, Z. Xiao, F. Douglis, and
C. Kalmanek. Moving Edge Side Includes to the
Real Edge – the Clients. USENIX Symposium on
Internet Technologies and Systems, 2003.

[21] W. Shi, E. Collins, and V. Karamcheti. Modeling
Object Characteristics of Dynamic Web Content.
IEEE Global Internet Conference, Nov, 2002.

[22] W. Shi, R. Wright, E. Collins, and V. Karamcheti.
Workload Characterization of a Personalized Web
Site – And Its Implications for Dynamic Content
Caching. International Web Caching and Content
Delivery Workshop, May, 2002.

[23] C. Wills and M. Mikhailov. Studying the Impact
of More Complete Server Information on Web
Caching. International Web Caching and Content
Delivery Workshop, May, 2000.

[24] H. Zhu and T. Yang. Class-based Cache Man-
agement for Dynamic Web Content. IEEE INFO-
COM, 2001.

10

