
RC22831 (W0306-152) June 27, 2003
Computer Science

IBM Research Report

An Implementation of the POMP Performance Monitoring
Interface for OpenMP Based on Dynamic Probes

Luiz Derose
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Bernd Mohr
Forschungszentrum Jülich

ZAM
Jülich, Germany

Seetharami Seelam
Univeristy of Texas

El Paso, TX

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

An Implementation of the
POMP Performance Monitoring Interface for OpenMP

Based on Dynamic Probes

Luiz DeRose Bernd Mohr Seetharami Seelam
IBM Research Forschungszentrum Jülich University of Texas

ACTC ZAM at El Paso
Yorktown Heights, NY, USA Jülich, Germany El Paso, TX, USA
laderose@us.ibm.com b.mohr@fz-juelich.de seelam@cs.utep.edu

Abstract. OpenMP has emerged as the standard for shared memory parallel programming.
Unfortunately, it does not provide a standardized performance monitoring interface, such that
users and tools builders could write portable libraries for performance measurement of OpenMP

programs. In this paper we present an implementation of a performance monitoring interface for
OpenMP, based on the POMP proposal, which is built on top of DPCL, an infrastructure for binary
and dynamic instrumentation. We also present overhead measurements of our implementation
and show examples of utilization with two versions of POMP compliant libraries.

1 Introduction

OpenMP has emerged as the standard for shared memory parallel programming, allowing users to
write applications that are portable across most shared memory multiprocessors. However, applica-
tion developers still face a large number of application performance problems, which make it harder
to achieve high performance on these systems. Moreover, these problems are difficult to detect with-
out the help of performance tools.

Unlike MPI which includes a standard monitoring interface (PMPI), OpenMP does not provide yet
a standardized performance monitoring interface. In order to simplify the design and implementation
of portable OpenMP performance tools, Mohr et. al. [10] proposed POMP, a performance monitoring
interface for OpenMP. This proposal extends experiences of previous implementations of monitoring
interfaces for OpenMP [1, 8, 12], and is under review for standardization by the OpenMP architecture
review board.

In this paper we present a POMP implementation based on dynamic probes. This implementation
is built on top of DPCL [5], an object-based C++ class library and run-time infrastructure, developed
by IBM, which is based on the Paradyn [9] dynamic instrumentation technology from the University
of Wisconsin. To the best of our knowledge, this is the first implementation of the current POMP
proposal, as well as the first implementation based on binary modification, instead of a compiler
or pre-processor based one. It extends previous experiences with binary instrumentation of OpenMP
programs from OMPTrace [3] and CATCH [7].

The advantage of this approach lies in its ability to modify the binary with performance in-
strumentation, without requiring access to the source code or re-compilation, whenever a new set
of instrumentation is required. This is in contrast to the most common instrumentation approach,
which augments source code statically with calls to specific instrumentation libraries (e.g., TAU [11],
Pablo [13], SvPablo [6], and the HPM Toolkit [4]). In addition, since it relies only on the binary, this
POMP implementation is programming-language independent. Moreover, it will provide a validation
infrastructure for the POMP proposal, which has as one of its main goals the definition of a generic
and portable monitoring interface for OpenMP.

1

The remainder of this article is organized as follows: In Section 2 we briefly describe the main
DPCL features, as well as the IBM compiler and run-time library issues that make our dynamic in-
strumentation tool for POMP possible. In Section 3 we describe our experiences in implementing our
tool. In Section 4 we present examples of utilization of our POMP monitoring library implementa-
tions.

2 A Dynamic Instrumentation Tool for POMP

2.1 The Dynamic Probe Class Library

Dynamic instrumentation provides the flexibility for tools to insert probes into the binary of applica-
tions, without requiring that programs be re-compiled after being instrumented. The Dynamic Probe
Class Library, developed at IBM, is an extension of the dynamic instrumentation approach, pio-
neered by the Paradyn group at the University of Wisconsin [9]. DPCL is built on top of the Dyninst
Application Program Interface (API) [2]. Using DPCL, a performance tool can insert code patches
into the application binary and start or continue its execution. Access to the source code of the tar-
get application is not required and the program being modified does not need to be re-compiled,
re-linked, or even re-started.

DPCL provides a set of C++ classes that allows tools to connect, examine, and instrument a
spectrum of applications: single processes to large parallel applications. With DPCL, program instru-
mentation can be done at function entry points, exit points, and call sites. We refer to [5] for a more
detailed description of DPCL and its functionality.

2.2 The IBM OpenMP Compiler and Run-time Library

The utilization of DPCL as an infrastructure for a dynamic instrumentation tool for the POMP inter-
face is based on the fact that the IBM compiler translates OpenMP directives into function calls. Fig-
ure 1 shows, as an example, the compiler transformations for an OpenMP parallel loop. The OpenMP
directive is translated into a call to xlsmpParDoSetup, a function from the OpenMP run-time li-
brary, which is responsible for thread management, work distribution, and thread synchronization. In
addition, an “outlined” function containing the body of the OpenMP parallel region is created. This
outlined function, (“A@OL1” in the example in Figure 1), is called by each of the OpenMP threads.

Since DPCL allows the installation of probes at function call entry and exit points, as well as
before and after a function call, POMP probes can be inserted for each parallel region in the target
application. As shown in Figure 2 the first pair (DPCL probe (1)) can be inserted before and after
the call to the OpenMP runtime library function (corresponding to the POMP parallel enter and exit
events), while the second pair (DPCL probe(2)) is inserted at the call entry and exit point of the
parallel region (corresponding to the POMP parallel begin and end events). Additionally, a third pair
of probes (DPCL probe (3a)) can be inserted at the call entry and exit points or before and after the
call site (DPCL probe(3b)) of each function of interest (i.e., representing POMP function begin and
end events).

3 Evaluation

In this section, we describe our experiences implementing a tool which allows instrumentation of
an OpenMP application with calls to functions of a monitoring library which conforms to the POMP
API using binary instrumentation at runtime. The main advantages of this approach are that no spe-
cial preparations like recompiling or relinking are necessary and that it works independent of the

2

Fig. 1. Compiler transformations for an OpenMP parallel loop.

Fig. 2. DPCL probes on functions that contain parallel regions.

3

programming language used for the OpenMP program. The tool takes a POMP compliant monitor-
ing library in the form of a shared library as well as the OpenMP executable as input parameters.
After loading the program, the tool instruments the executable code so that at locations which repre-
sents events in the POMP execution model the corresponding POMP monitoring routines are called.
From the user’s view point, the amount of instrumentation can be controlled through environment
variables which describe the level of instrumentation for each group of OpenMP events as proposed
by the POMP specification. Instrumentation is also controlled by the set of POMP routines provided
by the shared library, i.e., instrumentation is only applied to those events that have a corresponding
POMP routine in the shared library. This means that tool builders only need to implement the routines
which are necessary for their tool and that instrumentation is minimal (i.e., no calls to unnecessary
dummy routines which don’t do anything). Once instrumentation is finished, the modified program
is executed.

3.1 Limitations of Dynamic Binary Instrumentation

Although the advantages of dynamic binary instrumentation are manifold, there are some limitations
that preclude us from fulfilling all the features or requirements of the POMP proposal. As we have had
no experiences with binary instrumentation systems other than DPCL, it is not clear whether these
are limitations of dynamic instrumentation in general or limitations of the DPCL instrumentation.

Events

Almost all of the events proposed by POMP can be instrumented. The exceptions are:

– Due to compiler optimization, the POMP events Loop iter begin, Loop iter end, and
Loop iter event are not always visible at the binary level. For example, the compiler can
choose to unroll (parts of) the parallel loop body. As it is not clear yet, whether the monitoring of
these events really makes sense for OpenMP performance analysis, since they would introduce
excessive overhead, we consider it to be acceptable for our tool not to handle these events.

– DPCL cannot instrument code inside shared libraries that are loaded into the executable at run-
time. This would only be a problem if the code inside such a library uses OpenMP constructs
(e.g., a mathematical parallel library). Unfortunately, the IBM OpenMP run time system is also
linked as a shared library. Hence, the instrumentation of implicit barriers inside work-share con-
structs is not feasible. Possible work-arounds are to use static linking, which can be achieved
with compiler flags, or to provide pre-instrumented versions of libraries, which use OpenMP.
Unfortunately, both options would require re-linking of the executable.

Event Context Information

Not all the optional fields from the CTC string, as well as the run time context are obtainable at the
binary level. This is the current status:

– Compile Time Context (CTC).
� Available: region type, start SCL, end SCL, and function name
� Not available: hasFirstPrivate, hasLastPrivate, hasNowait, hasCopyin, schedule, hasOrdered,

and hasCopypriv attributes. We would need additional compiler support to provide these
fields.

� Available, but not implemented yet: function group, and hasReduction.
– Run Time Context (RTC)

� Available: thread ID, and num threads
� Not available: if expr result
� Available, but not implemented yet: chunk size, init iter value, iter value,
final iter value, and section num.

4

Open Issues in the POMP Specification

Unfortunately, the POMP specification (as described in[10]) is incomplete, i.e., not everything needed
for a working implementation is specified. Here is a list of issues we came across:

– We had to define a format specification for the layout of the CTC strings describing the compile-
time context of OpenMP events.
The string is a list of “attribute=value” pairs which are separated by a star ("*") character
(which is very unlikely to appear in function and file names). The string is prepended by the
length of the string counting only the number of characters between the first star and the last,
inclusive, without counting the C termination \0 or any blank fill characters in Fortran. The
string is terminated by an empty field, e.g., a double star "**". The length is required, all other
fields are optional. So the shortest possible string is "2**".
We defined the attributes:

Attribute Possible Values Meaning
rtype pregion,loop,section,share,single, Region type

critical,master,ebarrier,ibarrier,
flush,atomic,ordered,func,user

sscl filename[:line1[:lineN]] Start source code location
escl [filename][:line1[:lineN]] End source code location
name string Name of a function or name

of a ”named” critical region
group string For functions: Name of class,

module, or namespace
schedule stat,dyn,guided,rt Schedule for parallel loops
hasfpriv T,F Boolean attributes of
haslpriv T,F parallel regions and
hasred T,F workshare constructs:
hasnowait T,F absence of the attribute
hascopyin T,F means false
hasord T,F
hascopypriv T,F

– It is not clear to what extend should user-defined functions be instrumented. We are currently
instrumenting the begin and end of the main program and calls to user functions inside main
but only outside of parallel regions. This seems to be a reasonable default that avoids excessive
overhead.

– There needs to be an easy and compact way for a user to specify the extend of user function
instrumentation.

3.2 Limitations of Source-code Instrumentation

For comparison, here is a list of limitations we determined when we tried to implement OPARI [12],
a POMP instrumentation tool which works as a preprocessor (i.e., source-to-source translator).

– OPARI makes implicit barriers explicit. Unfortunately, this method cannot be used for measuring
the barrier waiting time at the end of PARALLEL directives because they do not allow a NOWAIT
clause. Therefore, OPARI adds an explicit barrier with corresponding performance interface calls
here. For OPARI, this means that actually two barriers get called. But the second (implicit) barrier
should execute and succeed immediately because the threads of the OpenMP team are already
synchronized by the first barrier.

5

– The OpenMP standard (unfortunately) allows compilers to ignore NOWAITs, which means that
in this case OPARI inserts an extra barrier and the POMP functions get invoked on this extra (and
not the real) barrier.

– OPARI cannot instrument the internal synchronization inside !$OMP WORKSHARE as required
by the OpenMP standard.

– We were told that some compilers use different implementations (with different characteristics)
for implicit and explicit barriers. If OPARI changes implicit to explicit barriers, we measure the
wrong behavior when using these compilers.

4 Examples of POMP Monitoring Libraries

To test and evaluate our dynamic instrumentation for POMP, we implemented three versions of POMP
compliant monitoring libraries: a dummy library for overhead measurements, a POMP monitoring
library for trace generation, and a POMP monitoring library for collection of profiling data.

4.1 Overhead of our POMP Library

The dummy POMP library implements all functionality necessary for all compliant implementations
of the POMP interface without monitoring or measuring anything. Figure 3 shows the implementa-
tion of the POMP Parallel begin() event function. After checking whether POMP monitoring
is activated at all and whether monitoring of the parallel begin event is activated, event context in-
formation is retrieved from the passed-in event handle. This version of the POMP library is used to
measure the minimal overhead introduced by dynamic instrumentation for the POMP API. Our mea-
surements on an IBM POWER4 system indicate that the minimum overhead for the instrumentation
of one OpenMP or user function call is about 3 microseconds of cpu time.

int32 POMP_Parallel_begin(POMP_Handle_t handle, int32 thread_id)
�

if (pomp_active && is_activated[MYPOMP_PAR_BEGIN])
�

mypompdescr* d = (mypompdescr*) handle;
/* -- perform monitoring for parallel begin event here -- */�

return 0;�

Fig. 3. Typical implementation of a POMP event routine.

4.2 KOJAK POMP Library

We implemented a POMP monitoring library which generates EPILOG event traces. EPILOG is an
open-source event trace format used by the KOJAK performance analysis tool framework [14]. Be-
sides defining OpenMP related events, it provides a thread-safe implementation of the event reading,
writing, and processing routines. In addition, it supports storing hardware counter and source code
information and uses a (machine, node, process, thread) tuple to describe locations. This makes it
especially well suited for monitoring Open or mixed MPI/OpenMP applications on today’s clustered
SMP architectures.

6

EPILOG event traces can either be processed by KOJAK’s automatic event trace analyzer EXPERT
or be converted to the VTF3 format used by the Vampir event trace visualization tool.

Figure 4 shows a screen-dump of the resulting display of the EXPERT automatic event trace
analyzer. Using the color scale shown on the bottom, the severity of performance problems found
(left pane) and their distribution over the program’s call tree (middle pane) and machine locations
(right pane) is displayed. By expanding or collapsing nodes in each of the three trees, the analysis
can be performed on different levels of granularity. We refer to [14] for a detailed description of
KOJAK and EXPERT.

Fig. 4. Result display of EXPERT automatic trace analyzer.

Figure 5 shows (in the right half) a time line diagram of a small example application (shown in
the source code display in the upper left corner). The EPILOG-to-VTF3 conversion maps OpenMP
constructs into Vampir symbols and activities, as well as OpenMP barriers into a Vampir collective
operation. This allows to see the dynamic behavior of an OpenMP application using a Vampir time-
line diagram as well as to use Vampir’s powerful filter and selection capabilities to generate all kind
of execution statistics for any phase of the OpenMP application. In addition, all source code informa-
tion contained in a trace is preserved during conversion; allowing the display of the corresponding
source code simply by clicking on the desired activity.

4.3 POMP Profiler Library

The POMP Profiler library generates a detailed profile of the time spent in each parallel region of
an application in the form of an XML file and in a text file. The XML file can be visualized by a
graphical user interface, as shown in Figure 6. Total time taken by the master thread in a parallel
event, the average time incurred by all work-sharing threads, and the deviation of the time spend
by each from the average time are displayed for each of the tasks running in parallel. A detailed
timing information of the threads is displayed by selecting the task of interest. The visualizer also
maps the regions of the source code with the timing information. The timing information is crucial

7

Fig. 5. Vampir time line diagram of example application.

8

in detecting load imbalances among threads and could also help application developers in choosing
appropriate scheduling mechanism for parallel loops.

5 Conclusion

We presented an implementation of a performance monitoring interface for OpenMP based on the
POMP proposal. Our POMP implementation uses binary instrumentation technology to insert calls
to a POMP compliant library into the application binary for instrumentation of OpenMP directives,
as well as user function calls. Our measurements, on an IBM POWER4 system, indicate that the
instrumentation overhead is in the order of 3 microseconds of cpu time per call. In addition, we
demonstrate the usability of our POMP interface with the interface of two versions of POMP compliant
monitoring libraries: a library for trace generation and a library for collection of profiling data.

Fig. 6. Visualization of data generated by Profiler POMP Library for an example application.

References
1. E. Ayguadé, M. Brorsson, H. Brunst, H.-C. Hoppe, S. Karlsson, X. Martorell, W. E. Nagel, F. Schlim-

bach, G. Utrera, and M. Winkler. OpenMP Performance Analysis Approach in the INTONE Project. In
Proceedings of the Third European Workshop on OpenMP - EWOMP’01, September 2001.

9

2. B. R. Buck and J. K. Hollingsworth. An API for Runtime Code Patching. Journal of High Performance
Computing Applications, 14(4):317–329, Winter 2000.

3. Jordi Caubet, Judit Gimenez, Jesús Labarta, Luiz DeRose, and Jeffrey Vetter. A Dynamic Tracing Mech-
anism for Performance Analysis of OpenMP Applications. In Proceedings of the Workshop on OpenMP
Applications and Tools - WOMPAT 2001, pages 53 – 67, July 2001.

4. Luiz DeRose. The Hardware Performance Monitor Toolkit. In Proceedings of Euro-Par, pages 122–131,
August 2001.

5. Luiz DeRose, Ted Hoover Jr., and Jeffrey K. Hollingsworth. The Dynamic Probe Class Library - An
Infrastructure for Developing Instrumentation for Performance Tools. In Proceedings of the International
Parallel and Distributed Processing Symposium, April 2001.

6. Luiz DeRose and Daniel Reed. Svpablo: A Multi-Language Architecture-Independent Performance Analy-
sis System. In Proceedings of the International Conference on Parallel Processing, pages 311–318, August
1999.

7. Luiz DeRose and Felix Wolf. CATCH - A Call-Graph Based Automatic Tool for Capture of Hardware
Performance Metrics for MPI and OpenMP Applications. In Proceedings of Euro-Par, August 2002.

8. Seon Wook Kim, Bob Kuhn, Michael Voss, Hans-Christian Hoppe, and Wolfgang Nagel. VGV: Supporting
Performance Analysis of Object-Oriented Mixed MPI/OpenMP Parallel Applications. In Proceedings of
the International Parallel and Distributed Processing Symposium, April 2002.

9. Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth, R. Bruce Irvin,
Karen L. Karavanic, Krishna Kunchithapadam, and Tia Newhall. The Paradyn Parallel Performance Mea-
surement Tools. IEEE Computer, 28(11):37–46, November 1995.

10. B. Mohr, A. Mallony, H-C. Hoppe, F. Schlimbach, G. Haab, and S. Shah. A Performance Monitoring Inter-
face for OpenMP. In Proceedings of the fourth European Workshop on OpenMP - EWOMP’02, September
2002.

11. Bernd Mohr, Allen Malony, and Janice Cuny. TAU Tuning and Analysis Utilities for Portable Parallel
Programming. In G. Wilson, editor, Parallel Programming using C++. M.I.T. Press, 1996.

12. Bernd Mohr, Allen Malony, Sameer Shende, and Felix Wolf. Towards a Performance Tool Interface for
OpenMP: An Approach Based on Directive Rewriting. In Proceedings of the Third European Workshop
on OpenMP - EWOMP’01, September 2001.

13. Daniel A. Reed, Ruth A. Aydt, Roger J. Noe, Phillip C. Roth, Keith A. Shields, Bradley Schwartz, and
Luis F. Tavera. Scalable Performance Analysis: The Pablo Performance Analysis Environment. In Anthony
Skjellum, editor, Proceedings of the Scalable Parallel Libraries Conference. IEEE Computer Society, 1993.

14. Felix Wolf and Bernd Mohr. Automatic Performance Analysis of Hybrid MPI/OpenMP Applications. In
Proceedings of the 11th Euromicro Conference on Parallel, Distributed and Network based Processing,
February 2003.

10

