
RC22876 (W0308-056) August 14, 2003
Computer Science

IBM Research Report

Approaches to Building Self-Healing Systems
Using Dependency Analysis

Jie Gao
Department of Computer Science

Stanford University
Stanford, CA 94305

Gautam Kar, Parviz Kermani
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Approaches to Building Self Healing Systems using Dependency

Analysis

Jie Gao1,*, Gautam Kar2, Parviz Kermani2

1Department of Computer Science, Stanford University, Stanford, CA, 94305. jgao@cs.stanford.edu (646)2442146
2IBM T.J. Watson Research Center, Hawthorne, NY, 10532. {gkar, parviz}@us.ibm.com (914)7847733

Keywords

Self Healing, problem determination, dependency analysis, transaction performance management,
root cause analysis

Abstract

Typical distributed transaction environments are a heterogeneous collection of hardware and software resources. An example

of such an environment is an electronic store front where users can launch a number of different transactions to complete one

or more interactions with the system. One of the challenges in managing such an environment is to figure out the root cause

of a performance or throughput problem that manifests itself at a user access point and take appropriate action, preferably in

an automated way Our paper addresses this problem by analyzing the dependency relationship among various software

components. We also provide theoretical insight into how a set of transactions can be generated to pinpoint the root cause of

a performance problem that is manifested at the user access point.

1 Introduction

Typical e-business environments, such as distributed transaction processing systems, are a collection of

heterogeneous hardware and software components that interact in very complex ways to support end user

transactions. Customers of such systems expect high availability, rapid response time and guaranteed throughput.

Such customer expectations are usually captured in Service Level Agreements (SLA) with the provider. When

a situation arises such that one or more elements of the SLA is violated, for example a user transaction

experiences degraded response time, the root cause of the problem needs to be found rapidly and corrective

actions need to be taken to minimize the impact of the fault. This paper details an approach for doing this based

on dependency analysis. This work builds on previous effort [16][5].

Consider any two resources, say A and B, which are part of a distributed system. “A” might, for example, be a

servlet within a web application server, which implements part of the logic for a business transaction. “B” might

be an SQL processing agent, such as an EJB, which provides database access to servlet “A” for completing the

business transaction. These resources are typically monitored by management agents [37][38], which supply

information about their status through a set of observable metrics. In the general case, A is said to be dependent

* Work done while Jie Gao was an intern at the IBM T.J. Watson Research center, Summer 2003.

Page 1 of 22

on B, if B’s services are required for A to complete its own service. We may represent this fact by directed graph

with A and B as nodes and an edge drawn from A to B. A weight may also be attached to the directed edge from

A to B, which may be interpreted in various ways, such as a quantitative measure for the extent to which A

depends on B or how much A may be affected by the non-availability or poor performance of B, etc. In this paper

we are interested primarily in designing and analyzing algorithms for managing end-user transactions and,

therefore, are interested in their dependency on all, i.e. the complete set of monitored resources in the distributed

system that supports these transactions. In such a case, a useful representation of the dependency knowledge

could be in the form of a matrix, where the rows are the different transactions and the columns are the monitored

resources. In a simple representation the fact that transaction depends on the services of resource can be

represented by a 0 or 1. The starting point of this is such a 0/1 dependency matrix that is computed using

algorithms described in [4][5][16]. A more complete approach would look at a non-binary set of values to

encode the degree (or strength) of dependency. This paper looks at how one can use the dependency matrix to

address two important questions that arise in the management of distributed transaction processing systems:

it js

1) When an alert or fault indication is received by the management system that a particular transaction

type is experiencing degraded performance, e.g. unacceptably long response time, how can the root

cause of the problem be rapidly determined?

2) Provided that we have found the root cause(s), what steps can be taken to correct the problem?

The paper is organized as follows: In section 2 we given an overview of related work and describe in short a way

of computing the dependency matrix. In section 3, we provide a conceptual architecture of the system that we

are in the process of building, using the algorithms reported in this paper. In section 4, we provide a formal

definition of the problem. In sections 5, 6, 7 and 8 we describe our algorithms for the root cause analysis, for

different scenario. In section 9 we discuss a few implementation issues. We conclude the paper by listing a

number of problems for future research in section 10.

2 Related Work

The dependency matrix of a large distributed system can be obtained in a number of ways by using direct or

indirect methods [4]. Direct methods rely on a human or a static analysis program to analyze system

configuration, installation data, and application code to compute dependencies. Indirect methods operate at

runtime and may be intrusive [2][3][8], semi-intrusive [5], or non-intrusive [16] with respect to the operational

system in the manner they extract dependencies. The non-intrusive method proposed by Gupta et al. [16] uses

the activity periods to infer the dependency relationship. A depends on B with strength p, if the probability that

the activity period [of a resource B is contained in the activity period [of a resource A, i.e.,], 21 bb], 21 aa
Page 2 of 22

11 ba ≤ and b . There are also methods using neural networks [11] or belief networks [34] to

automatically generate dynamic dependencies.

22 a≤

The self-healing problem, especially the problem of locating the root cause error as quickly as possible, has

attracted a lot of interest in the recent years due to difficulty in managing very large distributed systems. There

are three major approaches: rule-based systems, codebook systems [27][41], and artificial intelligence systems

based on Bayesian networks or neural networks [34][39]. Our solution falls in the codebook approach which was

firstly proposed by Kliger et. al. [27][41]. They proposed the construction of a “codebook” with distinguishable

ability so that any single failure in the system can be determined by matching the results of the transactions with

the entries in the codebook. While the running time of the codebook approach primarily depends on the size of

the codebook, Brodie et. al. proved that finding the codebook with minimum size is NP-hard [6][7]. Several

heuristics for finding a codebook have been proposed [6][7][16]. Notice that this is an “offline” version

compared with the online problem we study here. Specifically, in the above cited references, when there is an

error in the system, all the transactions of the codebook are run and the results are compared with the columns in

the dependency matrix to determine the root cause. . In the present work, based on the current status of the

system, we select a transaction to run, the result of the transaction is collected and the system status is update

accordingly. We aim to find the root cause error as quickly as possible, i.e., we want to minimize the number of

transactions that would need to be run to get our result. A similar problem was also studied by Rish et. al. [33],

who provide a general framework using information theory.

3 System Architecture

The initial architecture of a self-healing system, using the results of our dependency analysis, is illustrated in

. The components are briefly described below: Figure 1

• The Distributed System box denotes a typical, multi-tier e-Business system consisting of a user or client

layer, web access layer, web application services layer and a backend database layer. The system

supports a predefined, fixed set of user transactions types. In our experimental setup, we simulate such

a system using the TPC-W benchmark [40], which is a standard setup for building an experimental

electronic store-front.

• The Monitoring System in this picture includes the various monitoring agents that are typically

deployed in a distributed environment to support the collection and dissemination of performance and

availability data to management applications. In our setup, we use two important monitoring agents: 1)

an agent that monitors the response time of the transactions, from a user perspective, 2) an agent that

monitors the various components within an application server environment, such as servlets, EJB’s,

Page 3 of 22

etc.. [38]. Initially, the data collected by the monitoring agents are fed into the Dependency Analysis

engine for it to calculate the dependency matrix. On a continual basis, when the monitoring system

detects an unacceptable response time for any of the transactions, it invokes the Self-Healing Engine, so

that the latter can orchestrate a set of steps for problem resolution.

System
Configuration

Root Cause Set
Monitoring

System
Self-healing

Engine

Distributed
System {Run Customer Transaction}

Synthetic
Transaction
Composer {Run Synthetic Transaction}

User Transactions

Dependency
Analysis

Dependency
Matrix

Algorithms

Figure 1 : Logical System Architecture

• The Dependency Analysis box incorporates our dependency extraction algorithm [16]. It is started

when the distributed system becomes operational and is allowed to run for a length of time dependent

on the traffic load. It is assumed that within this time period, a large majority of the various different

types of user transactions have had the opportunity to execute and, hence, provide the necessary data to

the Dependency Analysis box to compute the dependency matrix, an example of which is provided in

the next section.

• The Self Healing Engine is the focal point of this paper. It consists of two parts: a problem

determination component and a problem resolution component. In this paper we report on algorithms

for the problem determination part. The problem resolution part is an area for future research. On

being invoked by the Monitoring System, as a result of a transaction that is experiencing degraded

response time, the Self Healing Engine runs one or more algorithms to quickly narrow down the root

cause, i.e., the offending resource(s) that is (are) contributing to the degraded response time. The

algorithms used in the implementation of the Self Healing Engine, operate in one or both of two ways.
Page 4 of 22

It can observe the operations of other transactions in the system and based on their performance narrow

down the root cause. Additionally, it may invoke the synthetic transaction composer to construct

artificial transactions that can be executed to further eliminate potential candidates for the root cause.

• The Synthetic Transaction Composer consists of a set of pre-canned transactions, one or more of which

is selected to run, based on input from the Self-Healing Engine.

In this paper we are going to focus mostly on algorithms that the self-healing engine can use and provide some

guidelines for designing the synthetic transaction composer. We assume that the dependency analysis part has

been executed and, therefore, the dependency matrix, is available [2][3][4][5][8][11][16][26][34].

4 Problem statement

Given a large system with a set of resources },....,,{ 21 nsssS = and a set of customer transactions

, the dependency of each transaction on the resource is represented by a number v .

The dependency matrix is an m matrix with the entry being v . We also call the dimension

vector the dependency vector of transaction . One example of the dependency matrix is

as follows:

},,{ 21 mtttT Κ=

n ,{ 1ii vv =

it

),(ji

it

js ij

D

}in

n× ij

vΚ

10101011
11001001
01010100
11000010
01111001

5

4

3

2

1

87654321

t
t
t
t
t

ssssssss

When the execution of a transaction succeeds, all the resources that depends on are assumed to be working

fine. If t fails, then at least one of the resources that depends is assumed to have failed. We assume the

resources are independent of each other. The failure detection problem is to figure out what resources are faulty

by using the dependency matrix along with the information that certain transactions fail/succeed. There are

several issues to consider in the failure detection problem, as shown in the following.

it it

i it

1. Offline or online: the information about the transactions can be obtained from the system log, in which

case, we know a set of transactions failed and some others succeeded. We can then narrow down the

root cause set by using this offline information. If this is not enough to pinpoint the root cause error, we

choose one of the other transactions to run, and based on the result (failure or success), choose the next

transaction, etc., until the root cause is determined. Our objective is to minimize the total number of

Page 5 of 22

transactions we will need to run to achieve this goal. This is an online version of the problem since the

results of the transactions are revealed step by step.

2. 0/1 matrix or non-0/1 matrix: the dependency matrix can be a matrix, where D 1/0 1=ijv means

that if fails then transaction fails for sure, js it 0=ijv

i

 means that t doesn't depend on the state of

resource . More generally, could also be a non- matrix, for example, each entry v could

denote the conditional probability that transaction t fails given that resource fails. The entries can

also represent quantities other than conditional probability. In this paper we focus on the 0/1

dependency matrix case. Extension of our work to non-0/1 matrix will be reported in the future.

i

js D 1/0 ij

js

3. Single failure or multiple failures: the number of resources that fail at the same time can be one or

more. In practice, there is little loss of generality if we assume that only one resource fails at a time. If

there could be more than one resource failure, the resources could be either independent of each other,

meaning that if and by itself works fine, then the combination of and is also working

fine. A more realistic assumption is that the combination of two resources may fail even if each of the

resources is functioning properly. In this paper, we concentrate on single failures, since in a practical

transaction processing system, a single failure will typically invoke the problem determination system.

1s 2s 1s 2s

4. Fixed set of transactions or synthetic transactions: the set of transactions T is fixed ahead of time,

meaning that the users have no freedom to compose new transactions. If the users are given this extra

power the problem becomes much easier as we will show later. However, synthetic transactions require

programming and impose additional costs.

5. Zero knowledge or prior knowledge: if we have no prior knowledge about the system state, we

assume that every resource in the system has equal probability of failure. In many practical cases, we

can get prior knowledge about the system state by studying log files and management metric variables,

i.e., we have a probability distribution },,,{ 21 npppP Κ= on the resources in the system,

with representing the failure likelihood of resource . ip is

The most common scenarios that we focus on in this paper are as follows.

1. Offline Failure Detection Problem (OFD): We get the information (failure/success of some

transactions) from the system log. We try to narrow down the possible faulty resource set.

2. Single Failure Detection Problem w/ fixed transactions (SFD1): there is a single failure in the

system. The set of transactions one can use to test the system is fixed, as is typical in a transaction

system that implements a standard electronic store front. We have zero-knowledge or partial

Page 6 of 22

knowledge about the system status. The dependency matrix is 0/1-matrix. The goal is to minimize the

number of transactions that need to be run to identify the failed resource.

3. Single Failure Detection Problem w/ synthetic transactions (SFD2): we can synthesize new

transactions. This could be a transaction processing system, e.g., a financial clearing house system,

where application programmers have more freedom in creating test transactions. The other assumptions

are the same as above.

4. Probabilistic Failure Detection Problem (PFD): this is the most general version. We assume the

dependency matrix is non-0/1. We may have prior information about the resources, which can be

obtained by long-term observation, for example, the failure rate of each resource. We may also get

some other short-term observations, for example, we find out by probing that certain resources are

working fine. There can be multiple failures in the system. Again, the goal is to find the faulty

resources.

We will go over the four problems starting from section 5.

4.1 Our results

Our results are listed as follows,

1. We have a linear algorithm for the OFD problem.

2. SFD1 is NP-hard, even in the offline version where we assume that all the transactions are known a

priori.

3. Any online algorithm to solve SFD1, in the worst case, runs a factor of transactions more

compared with the optimal (smallest) set of transactions in the static setting. The worst case of online

SFD1 problem happens when the dependency matrix has specific characteristics. In practice, the

dependency matrix is much better than the one corresponding to the worst case scenario. We propose

heuristic algorithms for both SFD1 and SFD2.

)(nΩ

4. For the probabilistic fault detection problem, we designed a framework by using Bayesian Theorem.

5 Offline Failure Detection Problem

The offline version is probably the easiest problem among the four. We are given a set of transactions T and we

need to conclude from their performance (for example, response time) which resource in the system is faulty.

First we should observe that there aren't always solutions to this problem. For example, if the dependency matrix

 is 1 everywhere, we have no information to pin down the root cause of the error. To guarantee a unique

solution to the failure detection problem, i.e., we can find out the single faulty resource, no two column vectors

D

Page 7 of 22

of the matrix can be the same. This condition is sufficient and necessary as we will show later. (Note that the

case of being 1 everywhere is a special case of the non-identical columns case.)

D

D

{ jsS

|js =

S

kss

Since one transaction failed before the Self Healing Engine is invoked, the resources in the system that the failed

transaction depends on must contain at least an error. Denote the set of suspicious resources as . The

algorithm works as follows. We check the results of the transactions

S

T one by one, if succeeds, we update

 as , or, alternatively, set to

it

S }1| =− ijv S }0|{ =ijvjsS Ι ; if fails, we update as

. When contains only one resource, we have pinpointed the faulty one. If contains

more than one resource after we run out of transactions, then there is not enough information to narrow down the

root cause. One should either consider more transactions that don’t appear in the system log, or use synthetic

transactions. The running time of the algorithm is linear to the number of transactions in the system log. We

now prove the correctness of the algorithm, i.e., by the time we try all the transactions from

it S

}1ijv{ΙS S S

T , there is only one

resource left in if no two column vectors of the matrix are the same. Assume otherwise, i.e., we have two

resources , in the set . Then by the algorithm we know that for any transaction t that succeeds, and

 are both 0; for any transaction that fails, and v are both 1. Then in the dependency matrix we

should have the columns corresponding to the resource and identical. This contradicts our starting

assumption.

D

ik

js s

j S i ijv

Dikv it ijv

k

6 Single Failure Detection Problem w/ fixed transactions (SFD1)

We assume that there is only one failed resource in the system. Unlike the offline case, the online problem is

much harder.

6.1 SFD1 is NP-hard

In this section, we show that the online failure detection problem, i.e., minimizing the set of transactions to run

in order to pin down the root cause, is NP-hard. In fact, we prove a stronger result than our original setup: even

in the offline version where we assume the results of the transactions are known, selecting the minimum number

of transactions to pin down the error is NP-hard.

Assume we have run all the transactions and know which of them succeed/fail. We want to pick up a subset

of transactions which uniquely determines the failed resource. The goal is to minimize the number of

transactions in U . For each transaction , in the set of all transactions, we define to be {

U

it iS }0| =ijj vs if it

Page 8 of 22

succeeds, and { }1| =ijj vs if t fails. Then the failed resource is the common intersection of all the ’s.

Now the problem becomes: for a set of resources and sets

i js iS

n S m },,{ 21 mSSS Κ=Π , with , find a

minimum subset

SSi ⊆

Π⊆Π' so that }{ ji
S

s
i '

S =
Π∈
Ι . Then }'|{ Π∈= iS

js

itU . The problem can be further

reduced. Assume resource ,1 , is the failed resource. We take out from each set , now we

want to find a minimum subset Π so that |

js n≤

Π

j

⊆

≤

'

iS

0|
'

=
Π∈

iS
Si

Ι .

S m },,{ 21 mSSS Κ= Si ⊆

Π⊆Π' Si
Si

S =
Π '
Υ
∈

iS iSS −=

}m,1 Κ{S=Π' ⊆ S φ=
Π∈

iS
'

Ι
Si

Π
si∈

= Υ S
'Π

' S≠ iS

|V

nln

iS

Theorem: Finding the minimum number of transactions which uniquely determine the failed resource is

NP-hard.

Proof: This is shown by reducing this problem to the Set Cover problem which is known to be NP-hard [16][18].

The Set Cover problem assumes a set of elements and sets Π , with , find the

minimum subsets so that

S

. For each subset , we define its inverse iS , then

we want to find a minimum subsets Π so that . This is exactly the problem of

finding the minimum number of transactions that uniquely decide the failed resource.

Since our problem is equivalent to the Set Cover problem, we can adapt the approximation algorithm for the Set

Cover problem. The greedy algorithm works as follows: we initialize ' as an empty set. Define iV .

If , then we are done with a set of transactions SV = Π . If V , select the set so that

|| V −

+

|SiΥ is the maximum among all the remaining . The greedy algorithm has an approximation

factor of 1 [23]. And it’s all we can hope for because getting a better approximation factor is also NP-hard

[32]. In plain English, the algorithm is,

1. Choose that transaction from the set of all transactions such that the set of possibly failed resource is the

smallest.

2. Choose the next transaction in such a way that the above set can be reduced by the maximum number of

resources.

3. Repeat step 2 until the set of possibly failed resources cannot be reduced further.

6.2 On-line SFD1 Problem

Page 9 of 22

Assume the status of the transactions is not known, so we want to choose the transactions and run them one by

one until we can determine the failed resource. The goal is to minimize the number of transactions we need to

run, so that the root cause of the failure can be determined rapidly. We compare the performance with the

optimal off-line solution in terms of competitive ratio, which is defined as the number of transactions obtained

by our solution compared with the best offline solution. The first observation is discouraging (in terms of

competitive ratio). Compared with the optimum offline solution, any online algorithm (deterministic or

randomized) can have a competitive ratio)(nΩ in the worst case, where n is the number of resources. Assume

we have an dependency matrix as following, where nm× 1+= nm in this special case.

=

+ 1000

0010
0001
1111

1

3

2

1

Λ
ΜΟΜΜΜ

Λ
Λ
Λ

Μ

nt

t
t
t

D

Transaction depends on all the resources and the other transactions depend on one resource each. Assume

that transaction has failed; we want to then run some other transactions to help us decide which resource has

failed. Therefore in the worst case one has to run Ω(n) transactions to determine the root cause: all the first

 transactions return “successful” answers and the last transaction fails. In another word, any online

algorithm has to run

1t n

1t

1−n

1−n transactions before it is able to discover the failed resource. However, the offline

algorithm has all the results of the transactions and can choose the single transaction which uniquely determines

the failed resource. So the competitive ratio is)(nΩ . Notice that here randomization doesn’t help either. The

above analysis is based on the worst case scenario. But even for average-case scenario, for example, if the

resources fail with equal probability, then the competitive ratio of any online algorithm is still)(nΩ : the

average number of transactions we need to run is 2/)1()12 +=+−+ nnn1(1
+

n
+Κ .

6.3 Greedy on-line algorithm for SFD1

Despite the pessimistic results, the dependency matrices in real e-business systems are not like the worst case

examples most of time. There is, typically, a lot of overlap between the resources that the transactions depend

on. So the worst case as described in the previous section may happen very rarely. Therefore we propose the

following heuristic. We first make the zero-knowledge assumption, i.e. each resource is equally likely to have

failed. Assume contains the possible failed resources, where each resource in has probability |1 to

be the failed one. Suppose a transaction t depends on

S S |/ S

i x resources out of the resources in . Then the

probability that t fails is , and in that case we narrow down the set of possibly wrong resources to a set of

k S

i kx /

Page 10 of 22

x resources that t depends on. Similarly, the probability that succeeds is , and then only

can possibly go wrong. Therefore, the expected number of resources left after we run t is

i it

−

kxk /)(−

i

k

x−k

S∈

x

id

P

2/

S

jp

−=PH)(

'

'(P

kkxxkxkxkkxx /)22(/)()(/ 22 +=−⋅−+⋅ ,

which has a minimum value of when 2/k 2/kx = . Therefore, when we choose the next transaction, we

always choose one which depends on as near to half of the resources from as possible. The intuition is that

irrespective of whether the transaction fails or not, we are going to rule out half of the possibilities. In other

words, we are trying to get as much information as we can from the result of the transactions. Another

observation on the performance of this algorithm is that if we can always find a transaction which depends on a

fraction of the resources in at each step, we can always eliminate a fraction of the resources by running each

transaction. So the final running time under this assumption is going to be .

S

(log

S

)nO

In the real world we usually have or can acquire, through the monitoring system, additional information about

the state of the resources. This information will enable us to associate a probability of failure with each of the

suspected resources. Assume we have associated with each resource which represents the

probability of being the failed one.

jp s j

js 1=∑
∈S

jp
c j

. Assume a transaction t depends on i resources in with

the summation of their probabilities as , by the intuition shown in the algorithm with zero-knowledge, the

criterion of choosing the next transaction is to choose the one with as close as 1 as possible. After we are

done with one transaction, we then rule out those in that cannot be wrong and re-normalize the probability

 for those that are left. This process is continued until either contains only one resource, or we’ve run out

of the transactions. In the later case, where there is more than one resource left in , we don’t have enough

information from the dependency matrix to make further distinction.

S

id

S

S

The intuition is also explained by the entropy method in information theory [28]. Specifically, the entropy of the

system where the probability of being the failed one is js p j ∈ , is defined as .

Assume after we run the transaction t , the system state is

∑
=

n

i
ii pp

1
log

i ' Pp j ∈ , the information gain of the transaction

is defined as

it

))()',,(HPHPPtI i −= .

One thing to notice is that by running a transaction the entropy of the system is never increased. The inference

method in information theory tries to decrease the entropy as much as possible. Assume the transaction it
Page 11 of 22

depends on x resources in with the summation of their probabilities as S ∑
=

=
1ijv

ji pd . Then the entropy before

and after we run the transaction as well as the information gain is respectively, it

=

p
1

−=

1
log

− i

j

i

j

d
p

d

ii dd log)

(−
v

= d

P)' =

)'P, Pi

ip

S

i

2/

i

it

S

∑
n

j
jj pPH log)(;

)
1

)(1()log)'(
01

∑∑
== −

−−+
ijij v

i
i

j

i

j
i

p
d

d
p

d
p

PH ;

iii ddPHPHPtI 1(log)'()(,,(−−−=− .

The information gain is maximized when ,(tI 2/1=id . This coincides with out intuition of how to

choose the next transaction to test.

To summarize, the algorithm to SFD1 is,

1. The set of possible failed resources is initialized to be the set of resources that the first failed

transaction depends on. is the probability distribution on , representing the failure likelihood

of resource

S

P S

si ∈ .

2. Choose the transaction t so that the summation of the probabilities of the resources that t depends on

is the closest to 1 among all the remaining un-tested transactions.

i

3. Run t . If it succeeds, then the resources that t depends on are all working fine. We then change their

probabilities of failure to be zero. Otherwise, if fails, the resources that t depends on must contain

the failed resource. We change the probabilities of the resources that doesn’t depend on to zero.

i i

ti

4. Renormalize the probabilities P so that 1=∑ ip for the remaining resources.

5. Repeat step 2 until has only one resource or we’ve run out all customer transactions. is the

minimal faulty resource set.

S

Page 12 of 22

},....,,{ 21 nsss=

},,,{ 21 npppP Κ= ip Si ∈
},,{ 21 mttt Κ=

1|>S 1|>T
∑
=

=
1ijv

jpd

|T
∑
=

=
1ijv

ji p

|2/1||2/1 −<− ddi id= i=

k }{ ktT −=

k

1=kj 0=jp }{ jsS −=
)1/(dpp jj −=

0=kj 0=jp }{ jsS −=

dpp jj /=

Given: a set of possible faulty resources S and a probability distribution
, with representing the failure likelihood of resource s . A set of

transactions T is used to test the resources.

while | and | do
, k=1;

for i=2 to |
 d ,

 if | then d , k ;

Run t ; T ;

if t succeeds
 then for j=1 to n
 if v then ; S ;

 else ;
 else for j=1 to n
 if v then ; S ;

else ;

7 Single Failure Detection Problem w/ synthetic transactions (SFD2)

7.1 Online SFD2

In the case that the fixed set of customer transactions cannot pin point the root cause, we need to compose

synthetic transactions. Construction of synthetic transactions for testing and fault diagnosis is a difficult task,

since in a real customer environment, they need to be constructed with care, such that they do not interfere

adversely with the operation of the real system. Also, construction of synthetic transactions that involve the

participation of any arbitrary subset of the total set of resources in the distributed environment may be

impossible to do, given the constraints of the physical system. In our analysis below, we ignore such constraints

and assume that our Synthetic Transaction Composer component is able to construct any transaction to exercise

an arbitrary set of resources. In a subsequent report we will address the challenge of incorporating the

constraints mentioned above.

The algorithms and analysis for the fixed transactions case work here, except that when we choose the next

transaction to run, we choose from among the set of transactions that depend on all possible subset of resources.

The zero-knowledge algorithm is easy – we select the next transaction which depends on resources,

where is the number of suspect resources. The algorithm with prior probability distribution

 2/n

n P , however, is

not. The problem of finding the transaction t with i ∑
=

=
1ijv

ji pd to be the closest to 1 among all the possible 2/

Page 13 of 22

transactions, is equivalent to the Partition Problem (also called Subset-Sum Problem), which is one of the first

six problems known to be NP-Complete [13].

Theorem: Finding the best transaction with respect to the current failure probability distribution is NP-

hard.

P

Proof: The Partition Problem is as follows. Given a set of numbers, decide whether one can select a subset

whose sum is equal to one half the sum of all the numbers in the original set. The reduction from the Partition

Problem to the problem of finding the best transaction is not hard to see: if we can find t with i ∑
=

=
1ijv

ji pd to

be the closest to 1 among all the possible transactions, then whether equals to 1 solves the Partition

Problem.

2/ id 2/

The Partition Problem, admits a pseudo-polynomial algorithm [13]. That is, if the probability has finite

precision, the problem can be solved by dynamic programming with running time O(n) [30]. The hidden

constant factor in the running time, however, is very large (inverse of the precision). Instead, we use a simple

greedy algorithm that works in time.

jp

)log(nnO

1. Sort the probabilities in decreasing order, so that , for all 1 . jp 1+≥ ii pp 1−≤≤ ni

2. A set U is initialized as an empty set.

3. Inspect the probabilities one by one, if
2
1

≤+ ∑
∈Up

ji
j

pp , add to U ; otherwise, discard . ip ip

4. Stop when we inspect all . Output U . jp

},,,{ 21 nppp Κ=

jp
{}=U

2
1

≤+ ppi

}{ ipU += ippp +=

Given a probability distribution P , find a subset U with summation close to ½.

Sort the probabilities in decreasing order.
; p=0;

for i=1 to n

if

 then U ; ;

The approximation ratio of the greedy algorithm is defined as the ratio
∑

∑

∈

∈
==

Up
j

Up
j

j

j

p

p

u
u **

α , where U is the

optimum set.

*

Theorem: The greedy algorithm has an approximation ratio at most 2.

Page 14 of 22

Proof: If the largest probability , then u , therefore 4/11 ≥p 4/11 ≥≥ p 2
4/1
2/1*

=≤=
u
uα . If

, then if we take the largest so that , we have 4/11 <≤ pp j i 4/1
1

≤∑
=

i

j
jp

2
1

4
1

1
1 ≤+< ∑

=
+

i

j
ji pp . This

implies that u and therefore4/1≥ 2≤α . We also note that the approximation ratio is attainable, for example

in the case where the probability distribution εεε ,2 −+ εε
4
1,

4
1,

4
1

−−,
4
1

, for a very small ε. The greedy

algorithm will have ε2
4
1
+=u and the optimum algorithm has ε2

2
1
−* =u .

Theorem: The number of transactions to narrow down the root cause is O , is the number of

suspicious resources initially.

)(log n n

Proof: To guarantee the total number of transactions to be small, we interleave two strategies, the one as above

and the one that always compose a transaction that depends on half of the resources with non-zero probabilities.

For the second strategy, each transaction eliminates at least half of the possible faulty resources. The total

number of transactions is therefore no more than O , where is the number of suspicious resources

initially.

)(log n n

8 Probabilistic Failure Detection Problem

Assume we have a non-0/1 dependency matrix }{ ijnm vD =×

jr '
1
∑
=

n

j
ijv

 and system state on the

 resources . represents the dependency strength of transaction t on resource . We

denote by v the total dependency strength of transaction t and the relative

dependency strength of transaction t on resource . . is the probability that resource r is the

faulty one. . Before we start the self healing engine, the system state might be zero-knowledge, i.e.,

, for all , or some prior knowledge obtained through other observations.

},,,{ 21 npppP Κ=

i r

iijij vvv /'=

i

n

pi

},,,{ 21 nrrrR Κ=

∑
=

=
n

j
iji v

1

1
1

=∑
=

n

i
ip

i

ijv

i

j

i

1= ip

n/1=

8.1 System state update

Unlike the case of 0/1-dependency matrix, where it’s kind of obvious to update our belief of the possible faulty

set when we get new information from the performance of a transaction, it’s not immediately clear what should

Page 15 of 22

we do to incorporate the new information with the system state in the case of the non-0/1 dependency matrix.

The system state P , can be taken as our current belief on the resources. When we run a transaction, the result

of the transaction gives us some new information }'{ iji pP = obtained from the transaction t , we would like

to update the system state

i

P . We use Bayesian theorem.

The system state P can be interpreted in another way. We denote by e the vector with the j-th element to be 1

and 0 elsewhere. represents the state that resource is the faulty one. Then the state

 means that is the “true” system state

j

je

}n

jr

, p,,{ 21 ppP Κ= je *P with probability , i.e.,

. By taking into account the new information , we update the system state, i.e., the prior

probability distribution, to approach the real hidden state

jp

}jePr{ *
j Pp == iP

*P . We denote by the result of the transaction t ,

i.e., the event “ t fails/succeeds”. The new information

iE i

i }'ijp{iP = , is actually the likelihood function

. So the new system state Q should

be the posterior . By Bayesian theorem, we have

}je

}i

|Pr{| *
iEPsucceeds ==

Pr{| **
j ePEeP ==

}je

}i =

/fails

jq

Pr{' iij tp =

=

*P =

|j E

}j{q=

Pr{

∑∑
==

⋅

⋅
=

==

==
=== n

k
kik

jij
n

k
kki

jji
ijj

pp

pp

ePePE

ePePE
EePq

11

**

**
*

'

'

}Pr{}|Pr{

}Pr{}|Pr{
}|Pr{

8.2 Probabilistic fault detection algorithm

The fault detection problem in the case of non-0/1 dependency matrix, is to choose a transaction t and update

the system state accordingly, with the goal of finding the faulty resource(s) as quickly as possible. Using the

same idea as the case of the 0/1 dependency matrix, we choose the transaction t with the greatest information

gain. To refresh the memory, the information gain is defined as the difference of the entropy before and after the

new information from t , i.e.,

i

i

i)()(),,(PHQHQPtI iii −= , where the entropy is defined as

. The entropy of the posterior Q , is the expected entropy, since we don’t know

whether the transaction fails or not. In fact, t fails with probability d , and succeeds with

probability . We denote the system state by Q (Q) if t succeeds (fails). So Q =Update(),

=Update(). The entropy Q is,

∑
=

−=
n

i
ii ppPH

1

log)(

t

id−1

−
iQ 0,, Pti

i

i

+
i

−
i i

i

i ∑
>0ijv

jp=i

+
i 1,, Pti

Page 16 of 22

)()1()()(+− ⋅−+⋅= iiiii QHdQHdQH .

The algorithm is as follows,

},,,{ 21 npppP Κ= i

),,,(21 inii vvv Κ is i is i

},,,{ 21 nqqq Κ=

ii sPt ,,

},,,{ 21 nrrrR Κ=
},,,{ 21 npppP Κ= ip

},,,{ 21 mttt Κ=
*r

*r

je j ∀≠ , 1|>T
|T
∑
>

=
0ijv

ji p

+
i 1,, Pti
−
iQ 0,, Pti

)()1()()(+− ⋅−+⋅= iiiii QHdQHdQH
)()(),,(iii QHPHQPtI −=

k),,(ii QPtI

k

}{ ktTT −=

k
+
k
−= kQP

jj ∃

j

Input: Prior knowledge , dependency vector for transaction t is

, =1 if t succeeds, and =0 if t fails.

Output: Posterior Q .

Q=Update();

Given: a set of possible faulty resources and prior knowledge

 with representing the failure likelihood of resource. A set of

transactions T is used to test the resources.

Output: the faulty resource .
=FaultDetection(R, P, T)

begin
while P and | do

for i=1 to |

 d ;

 Q =Update();

=Update();

;

 choose t to be the one with greatest ;

Run t ;

;

if t succeeds

 then = QP ;

else ;

 if eP = ,

then return r ;

 else we can not determine the fault, but P gives the likelihood.
end

Figure 2 shows the architecture of the probabilistic fault detection engine. It contains a main loop to take new

information and update the system state. The loop is stopped when one of the followings happens:

1. The system state P clearly reflected the faulty resources, e.g., the distribution P contains several high

peaks.

2. We’ve run out of the transactions.

3. Time is up! In fact, the loop can be stopped anytime for the system administrator to check the current

system state.

Page 17 of 22

Observations

Use Bayesian New information

Run the transaction that System State
maximizes the information gain

||
Likelihood of the resources being

Figure 2: Probabilistic Fault Detection Engine.

The last point we want to make clear about the probabilistic fault detection problem is that, the entropy of the

system state is not always decreasing, as the case of the 0/1 dependency matrix. For a simple example, if the

system state is (0.9, 0.1), and the new information, i.e., the likelihood function is (0.1, 0.9), the updated system

state is (0.5, 0.5). The entropy is increased, since the new information gives a contradictive belief as the previous

system state. However, the updated system state, as we believe, is “closer” to the real state (although we don’t

know what the true state is), since it is the combination of more information of the transactions.

8.3 An example

The above two sections give the general framework of detecting the failures. One remaining problem is how to

compute the new information from the result of a transaction. There could be multiple ways of

doing that based on how the dependency matrix is obtained and interpreted. The following gives one example.

Remember that , is the likelihood function . Assume there is

only one root cause error in the system, we run a transaction t and it fails. Then the likelihood that t fails,

given that the resource is faulty, can be taken as the relative dependency strength , since we believe the

transaction is more likely to fail, if it depends more on the faulty resource. Similarly, we take the likelihood that

 succeeds, given that the resource r is faulty, as

}'{ iji pP =

j

'ijp }|/Pr{' *
jiij ePsucceedsfailstp ==

i

'ijv

i

jr

it 1
'1

−

−

n
vij . In another word, from the result of t , the

likelihood function, is a distribution on the resources

i

−
−

−
−

−
−== .)

1
'1

,,
1

'1
,

1
'1

(

;)',,','(
}'{ 21

21

succeedstif
n

v
n

v
n

v
failstifvvv

pP
i

inii

iinii

iji Κ

Κ

The procedure to update the system state is then described as follows:

Page 18 of 22

},,,{ 21 nppp Κ= i

),,,(21 inii vvv Κ is i i i

},,,{ 21 nqqq Κ=

ii sP,,

0=i ∑
=

==
n

k
ikijijij vvvp

1
/'' nj ≤≤

)1/()/1(
1

'1
'

1
−−=

−

−
= ∑

=

nvv
n

v
p

n

k
ikij

ij
ij nj ≤≤

∑
=

⋅

⋅
= n

k
kik

jij
j

pp

pp
q

1

'

'
nj ≤≤

Input: Prior knowledge P , dependency vector for transaction t is

, =1 if t succeeds, and s =0 if t fails.

Output: Posterior Q .

Q=Update(t)
begin

if s then , for 1 ;

 else , for 1 ;

 , for 1 ;

end

9 Discussion

To implement the self healing systems, there are some other issues besides the algorithmic part. It may not be

possible to run the customer transactions arbitrarily, for example, if the transaction is to add money to one’s bank

account. Also, it may not be able to compose transactions arbitrarily. Composing new transactions, also involves

further cost – one may have to write programs, etc. For implementation consideration, we may want to associate

some costs with each transaction, indicating the amount of effort we need to do to run it. Forbidden transactions

could be assigned infinite cost. The selection of the transactions, therefore, may not be based entirely on the

dependency matrix. A balance between efficiency and cost is thus considered.

10 Conclusion and Future Work

In this paper we have discussed the failure detection problem in a large distributed transaction processing

system. In order to build a viable “self healing” transaction processing system, one has to design algorithms that

can rapidly determine the root cause of a failed transaction. After the root cause is determined, depending on its

type, a variety of corrective measures can be taken. This combination of problem detection and resolution steps,

along with a high degree of automation in each, would lead to a “self healing” system.

The starting point of the work reported here is a dependency matrix that captures, for every transaction, the

resources that it depends on. In typical transaction processing systems, usually when a user transaction manifests

degraded response time, there is generally one root cause resource that lies at the heart of the problem. In such

cases, if multiple resource failures are noted by the management system, it is usually because the other resources

are directly or indirectly dependent on the failed resource. Based on this observation, in this paper we have

Page 19 of 22

focused on the situation where transactions fail because of single resource failures. This has allowed us to design

and analyze our problem determination algorithms in tractable way, without losing generality.

As continuation of the work reported here, we are planning to consider the following problems:

• How to design appropriate problem resolution algorithms based on the information generated in the

problem detection stage.

• How to find out the prior knowledge about the system.

• How to get observations about the system state other than the transaction-based approach.

11 Acknowledgment

The authors wish to thank Manoj Agarwal, Sugata Ghosal and Manish Gupta, IBM India Research Lab., for

providing valuable feedback on ideas related to the results presented in this paper.

12 References

[1] R Agarwal, T.Imielinski, and A. Swami, “Mining Association Rules Between Sets of Items in Large Databases”, In

Proc. of the ACM SIGMOD Conference on Management of Data, pages 207-216, May 1993.

[2] J. Aman, C.K. Eilert, D. Emmes, P. Yocom and D. Dillenberger, “Adaptive Algorithms for managing a distributed data

processing workload”, IBM Systems Journal, vol.36, no.2, 1997.

[3] “Systems Management: Application Response Measurement”, OpenGroup Technical Standard C807, UK ISBN 1-

85912-211-6, July 1998, http://www.opengroup.org/products/publications/catalog/c807.htm.

[4] S. Bagchi, G. Kar and J.L. Hellerstein, “Dependency Analysis in Distributed Systems using Fault Injection: Application

to Problem Determination in an e-commerce Environment” 12th International Workshop on Distributed Systems:

Operations & Management, 2001.

[5] A. Brown, G. Kar, and A. Keller, “An Active Approach to Characterizing Dynamic Dependencies for Problem

Determination in Distributed Environment”, IM 2001.

[6] M. Brodie, I. Rish and S. Ma, “Intelligent probing: a Cost-Efficient Approach to Fault Diagnosis in Computer

Networks”, to appear in IBM Systems Journal, 2001.

[7] M. Brodie, I. Rish, S. Ma, A. Beygelzimer and N. Odintsova, “Strategies for Problem Determination Using Probing”.

IBM Technical Report, 2002.

[8] M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint: Problem Determination in Large, Dynamic

Internet Services”, International Conference on Dependable Systems and Networks (DSN'02), June 2002.

[9] J. Choi, M. Choi, and S. Lee, “An Alarm Correlation and Fault Identification Scheme Based on OSI Managed Object

Classes,” In 1999 IEEE International Conference on Communications, pp. 1547–51, 1999.

[10] CIM: http://www.dmtf.org/standards/standardcim.php.

Page 20 of 22

http://www.opengroup.org/products/publications/catalog/c807.htm

[11] Ensel, Christian, “New Approach for Automated Generation of Service Dependency Models” Second Latin American

Network Operation and Management Symposium, LANOMS, 2001.

[12] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to Algorithms, MIT Press, 1990.

[13] J. Gao, G. Kar, P. Kermani, M. Agarwal, S. Ghosal and A. Neogi, Approaches to Building Self Healing Systems using

Dependency Analysis, IBM Research Report, 2003.

[14] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H.

Freeman And Company, New York, 1979.

[15] B. Grushke, “Integrated Event Management: Event Correlation using Dependency Graphs”, Proceedings of 9th

IFIP/IEEE International Workshop on Distributed Systems: Operations and Management (DSOM 98), October 1998.

[16] M. Gupta and A. Neogi and M. K. Agarwal and G. Kar, “Discovering Dynamic Dependencies in Enterprise

Environments for Problem Determination”, IEEE/IFIP International Workshop on Distributed Systems Operations and

Management (DSOM),Heidelberg, Germany, 2003, to appear.

[17] M. Gupta and M. Subramanian, “Proprocessor Algorithm for Network Management Codebook”, 1st USENIX Workshop

on Intrusion Detection and Network Monitoring, 1999.

[18] D. Hochbaum, ed., Approximation Algorithms for NP-Hard Problems, PWS Publishing Company, Boston, MA, 1995.

[19] J.L. Hellerstein and S. Ma, “Mining Event Data for Actionable Patterns”, The Computer Measurement Group, 2000.

[20] IBM WebSphere Application Server, http://www-3.ibm.com/software/webservers/appserv/.

[21] A.K. Iyengar, M.S. Squillante and L. Zhang, “Analysis and Characterization of Large-Scale Web Server Access Patterns

and Performance”, World Wide Web vol. 2 #1, 2, June 1999.

[22] Java 2 Platform, Enterprise Edition, http://java.sun.com/j2ee.

[23] D. S. Johnson,”Approximation Algorithms for Combinatorial Problems”, J. Comput. System Sci. 9, 256-278. 1974.

[24] G. Kar, A. Keller and S. Calo, “Managing Application Services over Service Provider Networks: Architecture and

Dependency Analysis”, Proceedings of the 7th IEEE/IFIP Network Operations and Management Symposium (NOMS),

2000.

[25] S. Katker and M. Paterok, “Fault Isolation and Event Correlation for Integrated Fault Management”, Integrated Network

Management V, Chapman and Hall, May 1997.

[26] A. Keller and G. Kar, “Classification and Computation of Dependencies for Distributed Management”, 5th IEEE

Symposium on Computers and Communications (ISCC), July 2000.

[27] S. Kliger, S. Yemini, Y. Yemini, D. Ohsie and S. Stolfo, “A Coding Approach to Event Correlation”, Proc. 4th

International Symposium on Integrated Network Management (IFIP/IEEE), May 1995.

[28] D. J.C. MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003.

[29] S. Martello and P. Toth, Knapsack Problems: Algorithms and computer Implementations, John Wily and Sons, Ltd.,

New York, 1990.

[30] D. Psinger, An O(n) Algorithm for the Subset Sum Problem, DIKU, University of Copenhagen, Denmark, Report 95/6,

1995.

Page 21 of 22

Page 22 of 22

[31] S. Rangaswamy, R. Willenborg, and W. Qiao, “Writing a Performance Monitoring Tool Using WebSphere Application

Server’s Performance Monitoring Infrastructure API”, In IBM WebSphere Developer Technical Journal, Feburary 2002.

[32] R. Raz and S. Safra, “A Sub-constant Eerror-probability Llow-degree Test, and Sub-constant Error-probability PCP

Characterization of NP”, Proc. 29th Ann. ACM Symp. on Theory of Comp., ACM press, 475-484, 1997.

[33] I. Rish, M. Brodie, N. Odintsova, S. Ma and G. Grabarnik, “Problem Determination via Active Probing”, manuscript,

2003.

[34] J. W. Sheppard and W. R. Simpson, “Improving the Accuracy of Diagnostics Provided by Fault Dictionaries”,

Proceedings of the 14th IEEE VLSI Test Symposium, 1999.

[35] M. Steinder and A.S. Sethi, “Multi-layer Fault Localization using Probabilistic Inference in Bipartite Dependency

Graphs”, Technical Report 2001-02, CIS Dept., Univ. of Delaware, Feb 2001.

[36] D. Thoenen, J. Riosa, and J. L. Hellerstein, “Event Relationship Networks: A Framework for Action Oriented Analysis

for Event Management,” Proceedings of the IFIP/IEEE International Symposium on Integrated Network Management,

pp. 593-606, 2001.

[37] http://www.tivoli.com.

[38] http://www-3.ibm.com/software/webservers/

[39] H. Wietgrefe, K-D Tuchs, K. Jobmann, G. Carls, P. Froelich, W. Nejdl and S. Steinfeld, “Using Neural Networks for

Alarm Correlation in Cellular Phone Networks”, International Workshop on Applications of Neural Networks to

Telecommunications, 1997.

[40] TPCW Wisconsin website, http://www.ece.wisc.edu/~pharm/tpcw.shtml.

[41] S. Yemini, S. Kliger et al., “High Speed and Robust Event Correlation,” IEEE Communications Magazine, vol. 34, no.

(5), pp. 82–90, May 1996.

	Introduction
	Related Work
	System Architecture
	Problem statement
	Our results

	Offline Failure Detection Problem
	Single Failure Detection Problem w/ fixed transactions (SFD1)
	SFD1 is NP-hard
	On-line SFD1 Problem
	Greedy on-line algorithm for SFD1

	Single Failure Detection Problem w/ synthetic transactions (SFD2)
	Online SFD2

	Probabilistic Failure Detection Problem
	System state update
	Probabilistic fault detection algorithm
	An example

	Discussion
	Conclusion and Future Work
	Acknowledgment
	References

