
RC22882 (W0308-089) August 25, 2003
Computer Science

IBM Research Report

The CHAMPS System: 
Change Management with Planning and Scheduling

A. Keller, J. L. Hellerstein, J. L. Wolf, K.-L. Wu, V. Krishnan
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It  has been issued as a Research
Report for early dissemination of its contents.  In view of the transfer of copyright to the outside publisher, its distribution  outside of IBM prior to publication should be limited to peer communications and specific
requests.  After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties).  Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598  USA  (email:  reports@us.ibm.com).  Some reports are available on the internet at  http://domino.watson.ibm.com/library/CyberDig.nsf/home .



The CHAMPS System: Change Management
with Planning and Scheduling

A. Keller, J.L. Hellerstein, J.L. Wolf, K.-L. Wu, V. Krishnan
IBM T.J. Watson Research Center
P.O. Box 704, Yorktown Heights, NY 10598, USA
{alexk|hellers|jlwolf|klwu|vijaya33}@us.ibm.com

Abstract
Change Management is a process by which IT systems are modified to accommodate con-
siderations such as software fixes, hardware upgrades and performance enhancements.
This paper discusses the CHAMPS system, a prototype under development at IBM Re-
search for CHAnge Management with Planning and Scheduling. The CHAMPS system
is able to achieve a very high degree of parallelism for a set of tasks by exploiting de-
tailed factual knowledge about the structure of a distributed system from dependency
information at runtime. In contrast, today’s systems expect an administrator to provide
such insights, which is often not the case. Furthermore, the optimization techniques we
employ allow the CHAMPS system to come up with a very hiqh quality solution for a
mathematically intractable problem in a time which scales nicely with the problem size.
We have implemented the CHAMPS system and have applied it in a TPC-W environment
that implements an on-line book store application.

Keywords
Change Management, Software Deployment, Workflows, Plan, Schedule Optimization

1. Introduction

The goal of Change Management is “to ensure that standardized methods and procedures
are used for efficient and prompt handling of all changes, in order to minimize the impact
of Change-related Incidents upon service quality, and consequently to improve the day-
to-day operations of the organization” [10]. The change management process starts with
the submission of a Request For Change (RFC), which is viewed as a job in schedul-
ing terms. Many RFCs may be submitted concurrently. The RFC describes what is to be
done, usually in terms of hardware/software artifacts to change (deploy, install, configure,
uninstall), as well as the deadline by which the change needs to be completed. Examples
include changing the schema of a database table in a running application and installing a
new release of a web application server in a multi-tiered eCommerce system. An impor-
tant observation is that many changes are not explicitly included in the RFC. Rather, they
are merely implied. For example, applications must be recompiled if they use a database
table whose schema is to change. Such implicit changes are a result of various kinds of
relationships, such as service dependencies and resource sharing.

The discussion of dependencies is central to our work and so deserves some elabo-
ration. Figure 1 displays dependencies in an on-line book store application used in the



Database
DB2 UDB 8.1

Servlet Container
WAS Servlet Container

Web Application Server
WAS Runtime

OS
AIX 5.1

OS
Linux 7.2

Web Application Server Database Server

TPC-W Application

admreq

admcnf buyreq

buyconf

custreg

home

ordrdisp

newprod

orderinq

proddet

srchreq

srchres

shopcart

ORDER_LINE

SHOP_CART_L

SHOP_CART

ADDRESS
AUT HOR

ORDERS

COUNT RY

CUSTOM ER

ITEM

CC_XACTS

bestsell

Figure 1: Dependency Structure of the TPC-W benchmark implementation

Transaction Processing Council’s Web Commerce (TPC-W) benchmark [17]. This can be
viewed as a two tiered application consisting of a web application server and a database
server. The TPC-W application consists of fourteen servlets and ten database tables. The
servlets are hosted by a Servlet Container, which depends on the runtime environment of a
Web Application Server. This, in turn, uses the operating system services. A similar hier-
archy exists in the database server as well: The ten database tables depend on the services
of the database management system, which in turn uses operating system services. Thus,
a request to install the BestSellers Service operates bottom-up on both the application and
database servers. For example, on the web application server, we proceed by installing
the operating system, the server runtime environment, the servlet container, and then the
bestsell servlet (highlighted by the circle in the Figure) that implements the BestSellers
service. If one or more of these steps has already been completed, then we immediately
proceed with the next step.

There is a well established methodology for change management (e.g., [10, 5]), which
consists of the following steps:
1. Assess the impact of changes in terms of the resources and services affected.
2. Create a Change Plan that dictates how the change should be implemented.
3. Verify the Change Plan (e.g., through review by a change management team in discus-

sions with affected departments).
4. Test the Change Plan by doing “dry runs” especially for very disruptive and/or high

risk changes.
5. Ultimately implement the change by executing the plan.
In practice, steps (1) and (2) turn out to be particularly difficult. The Change Plan consists
of a set of Tasks needed to complete the RFC such as “bring down application server 1”

2



and “copy x.ini to server 2”. The plan itself specifies the partial order of tasks. Note that
items (2)-(5) relate to creating, evaluating, and implementing the Change Plan.

It turns out that impact analysis (step (1) above) also requires a Change Plan. To see
this, consider Figure 1 and suppose that: (a) there is an RFC that modifies the schema
of the ITEM Table; and (b) the installation places a high priority on the BestSellers Ser-
vice. Assessing the potential impact of the RFC means knowing when BestSellers, imple-
mented by the bestsell servlet, will be unavailable. To do this, we must know the Change
Plan and the timing of tasks in the plan (e.g., when must bestsell be taken off-line and
when will the service be restored). The former is the outcome of planning and the latter
is produced by scheduling.

The importance of change management is underscored by a recent study showing that
operator errors account for the largest fraction of failures of Internet services [14] and
hence properly managing changes is critical to availability. Many different tools exist
for handling the mechanics of software and patch distribution for end user systems and
servers, such as Microsoft Windows Update [12] and Tivoli’s Configuration Manager [8],
and more broadly systems for agent-based configuration management such as cfengine
[4, 16]. Too often, these solutions do not take a “holistic” approach [18] in that they
focus on desktop systems rather than broadly on a set of interconnected servers providing
end-to-end services. A holistic approach is facilitated by constructing a Change Plan, and
workflow descriptions are a good representation for such a plan. Indeed, there has been
interest in using workflow technologies to coordinate large scale efforts such as change
management [11], and in the application of project management techniques as well [9].
However, we are unaware of any system that dynamically constructs a Change Plan that
takes into account the impact of changes on service levels, although some have advocated
the value of doing so [13]. We note in passing that constructing a Change Plan requires
knowledge of service dependencies. This means discovering dependencies, as in [2], as
well as representing dependencies, as in [6] and [19].

This paper is about automating the construction of Change Plans as a first step to-
wards broader automation of change management. The design of the CHAMPS system
follows a ”best of breed” approach by leveraging existing tools and techniques (such as
workflows, project management, and mathematical scheduling theory) for an integrated
Change Management solution. It consists of a Task Graph Builder (TGB) and a Plan-
ner and Scheduler (P&S). The TGB determines the temporal and location constraints of
tasks needed to complete the RFC. Such a Task Graph is constructed based on depen-
dency information and installation policies (e.g., time-of-day considerations for making
changes). The P&S uses the task graph to construct the Change Plan. Planning specifies
the partial order of tasks and binds logical to physical resources (e.g., selecting which of
several available machines should become the application server). Scheduling determines
the times at which actions take place.

The remainder of the paper is structured according to several features that distinguish
the CHAMPS system from the current state of the art:

An important property of the CHAMPS system is that it enables an administrator to
extend and modify the data within both Task Graphs and Change Plans with common off-
the-shelf tools. Using a general-purpose workflow language, such as BPEL4WS [1] for

3



expressing both Task Graphs and Change Plans is key for achieving this. Our description
of the CHAMPS architecture in section 2 provides more details.

Second, by splitting the overall process into two parts (Task Graph Building, Planning
& Scheduling) and thus binding workflows to target systems at a fairly late stage in the
process, we achieve a high degree of reusability for the information dealing with the
software artifacts subject to a change. This is due to the fact that Task Graphs are not
tied to a specific environment and are thus neither influenced by the characteristics of the
target systems, nor financial constraints (expressed, e.g., in SLAs). Section 3 describes
the Task Graph Builder.

Third, our approach formulates the planner and scheduler as an optimization problem,
which allows us to apply mathematical scheduling theory. The goal is to maximize the
profits associated with performing the jobs associated with a selected subset of RFCs.
The profit for each RFC can be expressed as the value of performing the job minus the
associated costs. The generic nature of our objective function incorporates a large number
of practical variants as special cases. In addition, the resulting P&S is required to obey a
variety of realistic temporal, location-specific and other types of constraints. This formu-
lation is mathematically intractable in the sense that it is effectively impossible for our (or
any other) algorithm to find an exact optimal solution in a reasonable amount of time. The
optimization techniques we employ allow us to come up with a very hiqh quality solution
in a time which scales nicely with the problem size. Section 4 discusses the Planner &
Scheduler. Our conclusions and future directions are contained in section 5.

2. Architecture of the CHAMPS System

Figure 2 depicts the architecture of the CHAMPS system as well as the interactions be-
tween the different components. We begin our description with the submission of a new
RFC by the administrator (depicted in the upper left part of the Figure). An RFC contains
the name of the software artifact(s) that need to be changed, the name(s) of the target sys-
tem(s) and the requested operation (e.g., ”update the orderDisplay and buyConfirmation

servlets, as well as the CC XACTS database table”). In addition, the RFC contains the dead-
line (time/date) by which the change must be completed, as well as its maximum allow-
able duration (e.g., a maintenance interval with a length of 2 hours, ending at 5am). Note
that an RFC is declarative by stating what needs to be accomplished, but leaves the pro-
cedural details (how the change is carried out) open.

Based on the submitted RFC, the Task Graph Builder determines the allowable order
of the tasks that are necessary to fulfill the RFC. To do so, it exploits two sources of
dependency information:

1. The first source are Deployment Descriptors that annotate software packages, which
reside in the Package Repository (lower left part of the Figure). Deployment descrip-
tors (such as the ones used by Linux RPM or AIX installp packages) provide meta-
information, gathered at build time (and preferably automatically generated by the de-
velopment tools), about a software package, such as identifying and version data, and
dependency information. This dependency information lists the pre-requisites (pack-
ages that must be present on the system for an installation to succeed), the co-requisites

4



Planner &
Scheduler

Task Graph
Builder

Change
PLAN

StatusStatus

Administrator

deposits

▼ Submit Request for Change

▼ Modify Task Graph
▼ Modify Change Plan

Request for
Change

Policies & SLAs

SLA SLASLA SLA

I B M_D BM S

S tar tT ime  :  da te tim e
Res et Tim e : d at etim e

IB M _Da ta bas e
<<k ey >>  I nst anc eI D :  s tr ing

IB M_ DB MS Clie nt

0 .. *

1

0 .. *

1

IB M _Dat ab ase Conn ec tion

I BM _T able

< <k ey >>  In st anc eI D :  s trin g

I B M_T ab lesp ace

< <ke y >> In sta nc eID  :  st rin g
1. .n1 + Tab le1. .n

+ Tab les pac e

1

IB M _Ta bleI nT able sp ace

I BM _B uf f e rpo ol
<< k ey >>  I nst anc eID  : st r ing

1. .n1 1. .n1

IB M _Ta bles pa ceI nB uf fe rp ool

CI M_A pp lic at io nSy st em

(fr om C IM _A pplication)
C I M_S of t wa re Fe a ture

< <p rop ag ate d> > I de ntif y ing Num b er  : S tr in g
< <p rop ag ate d> > P r odu ct Nam e : S tr in g
< <p rop ag ate d> > V e ndo r : S t ring
< <p rop ag ate d> > V e rsio n : S t ring
< <k ey >>  Na m e :  S t ring

( from C IM_Application)
0.. n

1
0.. n

1

0. .n

1

0. .n

CIM _S o ft war eFe at ure Compo nen t

1

C IM _S of t wa re Ele m ent

< <ke y >> Na me  :  S tr ing
< <ke y >> V er sion  :  S tr ing
< <ke y >> S of twa re Ele m ent S tat e.. .
< <ke y >> S of twa re Ele m ent ID  : S.. .
< <ke y >> Ta rge tO per at ingS y st em.. .
O the rT arg et OS  :  S tr ing
M anu f act ur er  : S tr ing
B u ild Nu mb er  : S tr ing
S e rialN um be r :  S t ring
C ode S et : S trin g
. ..

(fr om C IM_A pplication)

0.. n1 0.. n1CI M_ S oft wa reF ea tur eS of tw are E lemen ts

Runtime 
Dependency
ModelDeployment

Descriptors

Package Repository 

Task Graph

Quiesce 
ordrdisp

Quiesce 
buyconf

Replace
ordrdisp

Replace
buyconf

Replace 
CC_XA CTS

Activate
ordrdisp

Activate
buyconf

3 M in.1  Min.

1 M in.

3 Min.

5 M in.

4 M in.1 Min.

Task Graph LibraryTask Graph Library

Deployment
System

Targets

Actions
Status

Deployment
System

Targets

Actions
Status

Package request

annotates

Figure 2: Architecture of the CHAMPS System

(packages that must be jointly installed) as well as ex-requisites (packages that must be
removed prior to installing a new package). The details on the deployment descriptors
we use, and the mechanism for collecting and consolidating this information across
multiple systems have been described in [6].

2. In contrast to the dependency information captured in deployment descriptors, a Run-
time Dependency Model captures dependencies that typically cross system bound-
aries. In [2], we have demonstrated that it is possible to discover runtime dependencies
between the servlets hosted on a web application server and the back-end database ta-
bles of a TPC-W testbed with a very high degree of confidence (41 out of 42 possible
dependencies were identified) by applying a perturbation-based approach.

With this information, the Task Graph Builder is able to determine the steps of a change
as well as the order in which they have to be carried out. We call a representation of such
information Task Graph. A task graph is an abstract workflow, consisting of tasks and
precedence constraints that link these tasks together. In addition, the task graph comprises
time estimates for every task, which may have been obtained from previous deployments.
Note that the information stored within a task graph is specific to a given combination of
software artifacts, but completely decoupled from the target systems and their character-
istics (e.g., CPU speed, RAM, total/available diskspace). Consequently, Task Graphs can
be stored in a Task Graph Library (depicted in the upper right part of Figure 2) and subse-
quently reused, modified and aggregated by an administrator using common off-the-shelf
workflow editors.

The Task Graph is then consumed by the Planner & Scheduler (P&S). Its purpose
is to assign tasks to the systems specified in the RFC according to additional monetary

5



and technical constraints, such as Service Level Agreements (SLAs) and Policies. Fur-
ther, it computes (according to various administrator-defined criteria, detailed below) a
Change Plan that includes deadlines and maximizes the degree of parallelism for tasks
according to precedence and location constraints expressed in the Task Graphs. Again, we
use a workflow language (BPEL4WS, see section 3.2) to express the Change Plan, which
facilitates further manual modifications and extensions by an administrator, if needed.

Once the Change Plan has been computed by the P&S, it is input to the Deployment
System, which retrieves the required software packages from a Package Repository, and
rolls out the requested changes to the Targets in the order specified in the plan. An im-
portant part of the deployment process is the capability of the deployment system to keep
track of how well the roll-out of changes progresses on the targets, and to feed this status
information back into the P&S. Being aware of the current deployment status enables the
P&S to track the actual progress against the plan and perform on-line plan adjustment (by
re-computing the change plan) in case the deployment runs behind schedule. In addition,
such a feedback mechanism can be used to gain an understanding on how long it takes to
complete a task. This knowledge can then be stored in the Task Graphs to gain realistic
task time estimates for future deployments.

3. Task Graph Builder

The purpose of the Task Graph Builder (TGB) is to create reusable abstract workflows
(Task Graphs) from existing dependency descriptions. Task graphs describe the partial
order in which tasks need to be carried out to transition a system from a workable state
into another workable state. In order to achieve this, a task graph contains information
about:
• The type of change to be carried out, e.g., install, update, configure, uninstall,
• the roles and names of the software artifacts that are subject to a change (either directly

specified in the RFC, or determined by the TGB),
• the temporal and location constraints that may exist between tasks, based on artifact

dependency information,
• an estimate of how long every task is likely to take, based on the results of previous

deployments. This is needed to estimate the impact of a change in terms of downtime.

3.1 Building Task Graphs from Software Artifact Dependencies

In previous work [6], we have described a system for identifying and tracking dependen-
cies between the software artifacts of distributed systems, with a focus on fault mana-
gement and problem determination. Its core component is a Dependency Query Facility
that provides a user with an API to execute operations for (recursively) traversing a de-
pendency graph from the top to the bottom (drill–down), or in the opposite direction
(drill–up).

The Task Graph Builder exploits this previous implementation by invoking the Depen-
dency Query Facility and evaluating the returned dependency graph to determine whether
tasks implied by a change must be carried out sequentially, or whether some of them can
be parallelized. The existence of a dependency between two artifacts indicates that a tem-
poral/location constraint must be addressed. If a temporal constraint exists between two

6



tasks, they need to be carried out within a sequence. Any task may have zero or more
incoming and outgoing links. If two tasks share the same predecessor and no temporal
constraints exist between them, they can be executed concurrently within a flow. The out-
ermost container for grouping tasks and their constraints on a per-host basis is a sequence.
Grouping on a per-host basis is important because the actual deployment could happen
either push-based (triggered by the deployment system) or pull-based (deployment is ini-
tiated by the target systems)

We have found that different types of changes require different traversals through the
dependency models: A request for a new installation of a software artifact leads the TGB
to invoke a recursive drill-down operation on the Dependency Query Facility to determine
which artifacts must already be present before a new artifact can be installed. On the other
hand, a request for an update, or an uninstall of an artifact leads to the invocation of a
recursive drill-up query to determine the artifacts that will be impacted by the change.

In order to be useful for change management, we need to refine the notion of a tempo-
ral constraint by extending the workflow management formalisms. More specifically, we
need to add three additional types of temporal constraints to the one temporal constraint
type that is available in typical workflow management systems. These four constraint
types are widely used in GANTT charts within the Project Management discipline [9],
but are applicable to Change Management as well:
• Finish-to-Start (FS): This temporal constraint expresses that task A must finish before

task B can begin and is the default constraint in workflow management systems. An
example in the TPC-W context is that a servlet container must be running (i.e., the task
of starting it must be completed) before a new servlet can be deployed to it.

• Start-to-Start (SS): Task B cannot start until task A does. An example of this constraint
type are nested transactions and units of work.

• Finish-to-Finish (FF): Task B cannot finish before task A does. Example: One cannot
shut a system down if the web application server is still running.

• Start-to-Finish (SF): Task B cannot finish until task A starts. Example: a failover server
cannot be taken offline before the main server is up again. Note that there is a subtle
difference between this constraint type and the aforementioned FS constraint type,
because here the start of a task determines the end of its predecessor (in the simpler FS
case, the start of a task depends on the ending of its predecessor).
As an example, Figure 3 depicts a (simplified) task graph for installing the bestsell

servlet of the TPC-W Internet storefront, described in section 1. Based on the dependen-
cies between the artifacts and assuming that an installation request has been submitted,
we traverse the dependency model by means of a drill-down, which yields the order of
the tasks, along with their temporal constraint types: in this example, they happen to be
FS-type constraints, however, any of the three other constraint types can be accomodated
as the constraint type is an attribute of a link and thus embedded in the Task Graph.

In this example, we can observe three interesting results: First, the fact that the con-
straints crossing the system boundaries apply to tasks that happen at a fairly late stage in
the install process allows the deployment system to achieve a high degree of parallelism
because the installation happens on different systems. Second, the evaluation of the de-
pendencies and their constraints yields that the most time-consuming tasks (installation

7



FS

Install AUTHOR Table

Install ITEM TableInstall Database

FS

Install ORDERLINE Table

Install ORDERS Table

Install bestsell Servlet

Install ApplicationServer 

Install Servlet Container

Install Linux OS

Install AIX OS

FS

FS

FS

FS

FS
FS

FS

time

Web Application Server

Database Server

Figure 3: Task Graph for installing the TPC-W bestsell Servlet

of application server and database server) can be carried out completely in parallel. Third,
another opportunity for concurrent installation is the fact that the four database tables
share the same antecedent and do not have dependencies among each other. Thus, they
can be concurrently installed as well. However, it should be noted that local parallelism
is difficult to exploit on current operating systems as few multithreaded installers exist as
of today. In addition, some operating systems require exclusive access to shared libraries
during installation.

3.2 Expressing Task Graphs in the BPEL4WS Workflow Language

We will now describe how the task graph described in the previous section can be rep-
resented in a format suitable for interpretation by workflow editors and engines that may
be embedded in the deployment system. Further, we assume push-based deployment. Af-
ter having evaluated several alternatives, we decided to use the Business Process Execu-
tion Language for Web Services (BPEL4WS) [1], a recent standardization proposal for a
workflow language based on XML Schema, with a focus on Web Services. BPEL4WS
provides a very flexible mechanism for composing workflows and business processes and
provides all the necessary constructs we have identified in the previous section. In addi-
tion, several tools for editing BPEL4WS workflows and checking their syntax, as well
as a workflow engine, are available to the general public (they can be downloaded from
http://www.alphaworks.ibm.com/tech/bpws4j). An administrator would therefore be able
to use these off-the-shelf tools to manually modify any task graph the TGB generates,
according to his needs.

We would like to stress the point that the structure of the BPEL4WS representation
is essentially identical to Figure 3, which gives a hint on how straightforward the map-
ping of local dependencies (i.e., the ones confined to a single system) into a BPEL4WS
workflow is. Without hardly any further information, a workflow engine would be able to
execute the tasks within the two sequences in the proper order. However, the both outer-
most sequences would be completely decoupled as well, as they are contained within a
flow. This, however, would be incorrect, as it would ignore the cross-system temporal
constraints, namely between the four database tables and the bestsell servlet. Without
this information, a deployment system would allow an administrator to start the bestsell

servlet without having checked if the four underlying database tables are actually in-

8



stalled. This problem can be fixed in the following way: One needs to insert a temporal
constraint from each of the four database tables to the bestsell servlet. We demonstrate
this for the Install ITEM Table task, whose syntax is listed below:
1 <invoke name="Install ITEM Table" joinCondition=""
2 partner="DB2 UDB v8.1" portType="tns:Install ITEM TablePT"
3 operation="Install ITEM Table" inputVariable="Install ITEM Table">
4 <source linkName="Install ITEM Table to Install BestSellers Servlet"/>
5 <target linkName="Install DB2 UDB v8.1 to Install ITEM Table"/>
6 </invoke>

Lines 1-3 of the listing declare the task itself, along with references to the interface
definition and other supporting information. In line 4, we specify the temporal constraint
between the Install ITEM Table and the Install BestSellers Servlet tasks by means
of the BPEL4WS source construct. Note that BPEL4WS requires a link to be specified
in both tasks it connects. Therefore, one needs to specify this link as well within the
Install BestSellers Servlet task by means of the target construct, which indicates
that this task has an ”incoming” link. For demonstration purposes, we have inserted a
redundant (because Install ITEM Table will be carried out after Install DB2 UDB v8.1

anyway, since it is part of a sequence) link Install DB2 UDB v8.1 to Install ITEM Table

in line 5 of the listing above. By inserting an additional link, we make sure that the de-
ployment system proceeds with executing the task Install BestSellers Servlet only
after the task Install ITEM Table has completed.

It should be noted that BPEL4WS provides an exhaustive set of functions to declare
workflows out of which we have only shown a very minor subset for illustrative purposes.
Examples for further capabilities are constructs for specifying the execution semantics of
links, or the introduction of timer events that allow tasks to be carried out based on elapsed
time intervals. Especially the latter is important for Change Plans, whose construction by
the P & S is discussed in the following section.

4. Planner and Scheduler

4.1 Overview

In this section we provide an overview of the CHAMPS Planner and Scheduler (P&S).
Given the space constraints we choose to focus on the optimization problem formulation,
limiting our discussions for now of the solution techniques. We will instead emphasize the
generic nature of our formulation, particularly as it pertains to the objective function. Our
formulation allows a large collection of interesting and useful variants to be solved as spe-
cial cases. Naturally, this generic formulation causes the overall optimization problem to
be that much harder, but most reasonable special cases fall into the NP-hard category any-
way [7]. The P&S therefore employs heuristic solution techniques, achieving high quality
but not typically strictly optimal solutions. Then we shall provide a specific example of
P&S input and output.

The CHAMPS P&S is hierarchical in nature. Each RFC corresponds to a job which
may or may not be done during the particular window of time, called the change window,
under consideration. Associated with each job are a set of tasks which are interrelated by
temporal and location-specific dependencies arising from the TGB, and a variety of other
constraints as well. The P&S solution respects this hierarchy, effectively decoupling the

9



problems of scheduling the various tasks which comprise each job from the problem of
scheduling the jobs themselves.

Roughly speaking, the CHAMPS P&S attempts to maximize the value associated with
the jobs that will be done within a given change window minus the total costs of jobs
that will be done (and thus optimizing the overall profits), while satisfying the following
extensive set of constraints:
1. Precedence constraints among tasks within a job are respected. In other words, if task

i1 of job j is required to finish before task i2 of job j starts, the scheduler will enforce
this. (In section 3.1, we have called this a finish-to-start (FS) constraint.)

2. Similarly, start-to-start (SS) constraints are respected for each job. Thus task i 1 of job
j may be required to start before task i2 of job j starts.

3. Start-to-finish (SF) constraints are respected for each job. Thus task i 1 of job j may be
required to start before task i2 of job j finishes.

4. Finish-to-finish (FF) constraints are respected for each job. Thus task i 1 of job j may
be required to finish before task i2 of job j finishes.

5. Tasks only get assigned to acceptable servers. The list of acceptable servers may be as
big or as small as desired. In particular, the list may consist of all the servers or just
one. It might also consist of a specific class of servers.

6. Colocation (CL) task/server assignment constraints are met for all jobs. Thus, tasks i 1

and i2 of job j may be required to be performed on the same server.
7. Exlocation (EL) task/server assignment constraints are met for all jobs. Thus, tasks i 1

and i2 of job j may be required to be performed on different servers.
8. Resource capacity constraints are met on each server. These constraints might be used

to meet CPU utilization, memory and disk capacities, for example.
9. Jobs get done if they are required. For example, those jobs with a deadline that falls

within the change window must be performed. Others might be postponed for the time
being, and thus might be regarded as optional. They might, for example, get done
during a subsequent change window.

10. Each task of a job that gets done is assigned to a single server.
11. No server can work on more than one task at any time.
12. All tasks on all jobs that get done must be performed during the change window.

In the above list, constraints (1)-(4) are temporal, and arise from the TGB. Constraints
(5)-(8) are location-specific, and may arise from the RFCs themselves, by virtue of policy,
or from the system state. Constraint (9) ensures that required jobs get scheduled. This
might include jobs whose deadlines fall within the change window, as specified by the
RFC. Constraints (10)-(12) are technical but standard scheduling requirements.

4.2 Optimization Problem Formulation

In order to formalize these concepts we will need some notation. So let {1, ..., J} be the
set of jobs, indexed by j. Let Ij = {1, ..., Ij} be the set of tasks in job j, indexed by
i. Let ≺j denote the precedence relation for job j derived from the TGB. (Without loss
of generality assume tasks are in topological order.) Let {1, ..., P} be the set of servers,
indexed by p, and {1, ..., R} be the set of resource types, indexed by r. Let T denote the
length of the change window.

10



There will be a set Kj = {1, ..., Kj} of cost summands for job j, indexed by k. Each
summand k will last from the start of task αj,k ∈ Ij to the end of task βj,k ∈ Ij . We
will integrate these cost summands for this duration of time, and then add these integrals
together to obtain the cost component of the objective function. Special cases include
costs which run through the duration of the entire job (K j = 1, αj,1 = 1, βj,1 = Ij) and
costs which are task-specific (Kj = Ij . αj,k ≡ βj,k ≡ k). Define Xj to be 1 if job j
must be done, and 0 otherwise. The precedence relation ≺ j for job j yields a finish/start
set FSj ⊂ Ij × Ij : (i1, i2) ∈ FSj ⇔ i1 ≺j i2. Similarly there is a start/start set
SSj ⊂ Ij ×Ij , a start/finish set SFj ⊂ Ij ×Ij and a finish/finish set FFj ⊂ Ij ×Ij . (Of
these four types of temporal constraints, the precedence, or finish-to-start, constraints are
most common.) Let Ai,j denote the acceptable server set for task (i, j). Let CLj ⊂ Ij×Ij

be the colocation set for job j, and ELj ⊂ Ij ×Ij be the exlocation set. Let ti,j,p denote
the execution time of task (i, j) if assigned to server p. (That is, we assume the servers are
heterogeneous.) Let Wp,r denote the available capacity on server p of resource r. Assume
that the net effect on resource r utilization of doing task (i, j) on server p is w i,j,r . Let
the value of doing job j be Vj . On the other hand suppose that the kth cost summand
for doing job j at time t is given by Cj,k(t). (We typically assume that this function is
constant within given intervals, though this assumption is not strictly necessary.)

The P&S employs three types of decision variables: The first two are binary, namely:

xj =
{

1 if job j is done
0 otherwise

and

ai,j,p =
{

1 if task (i, j) is done on server p
0 otherwise

The last is a real variable: si,j is the start time of task (i, j). Together these describe
whether or not the job will be done, and, if done, where and when its various tasks will be
performed.

The following dependent variables can be derived easily from these, and make the
overall optimization problem easier to formulate: The completion time of task (i, j) if
done on server p is given by fi,j,p = si,j + ti,j,p. And there is an execution indicator
function for task (i, j) given by

Zi,j,p(t) =
{

1 if ai,j,p = 1, si,j ≤ t ≤ fi,j,p

0 otherwise

At last we can formulate our optimization problem, as follows: Maximize

∑
j

Vjxj −
∑

j

∑
k

∑
i

∑
p

aβj,k,j,p

∫ fβj,k,j,p

sαj,k,j

Cj,k(t)dt

such that
fi1,j,p ≤ si2,j if (i1, i2) ∈ FSj, xj = 1, ai1,j,p = 1 ∀j (1)

si1,j ≤ si2,j if (i1, i2) ∈ SSj , xj = 1 ∀j (2)

si1,j ≤ fi2,j,p if (i1, i2) ∈ SFj , xj = 1, ai2,j,p = 1 ∀j (3)

11



fi1,j,p1 ≤ fi2,j,p2 if (i1, i2) ∈ FSj , xj = 1, ai1,j,p1 = 1, (4)

ai,j,p = 0 if p /∈ Ai,j ∀(i, j) (5)

ai2,j,p = 1 if ai1,j,p = 1, xj = 1, (i1, i2) ∈ CLj ∀j (6)

ai2,j,p = 0 if ai1,j,p = 1, xj = 1, (i1, i2) ∈ ELj ∀j (7)∑
i

∑
j

ai,j,pwi,j,r ≤ Wp,r ∀p, r (8)

xj ≥ Xj ∀j (9)∑
p

ai,j,p = xj ∀i (10)

∑
i

∑
j

Zi,j,p(t) ≤ 1 ∀p, t (11)

0 ≤ si,j < fi,j,p ≤ T if ai,j,p = 1 ∀i, j. (12)

The reader will note that the objective function and the various constraints mimic in
formal terms the scheduler definition given in section 4.1. In particular, the numbering
of the constraints corresponds exactly. The extra generality in the definition of the objec-
tive function now realizes its intended payoff: By judicious choices of the parameters, the
CHAMPS P&S can solve many different scheduling problems which might appear at first
to be unrelated. For example, within the context of this formulation one could maximize
the value of all jobs done, or maximize the number of jobs done. One could minimize
downtime, or minimize the costs associated with downtime. (See [15] for simple tech-
niques to estimate the cost of downtime.) One could minimize the total execution time.
One could maximize the number of jobs which meet their deadlines. By employing a few
additional tricks, such as the use of so called “dummy” tasks, one could minimize multiple
deadline penalties associated with the jobs and/or tasks, for example those arising from
customer service level agreements (SLAs) [3]. One could minimize the average response
time or the weighted average response time of the various jobs.

4.3 Planner and Scheduler Example

Now we show an example of assigning tasks to servers using the RFC of installing the
TPC-W bestsell servlet and other RFCs as jobs. There are 7 jobs and 5 servers. Servers
1 and 2 belong to one category (e.g., application servers) while servers 3, 4 and 5 belong
to another category (e.g., database servers). Individual servers in the same category may
have different CPU speeds, disk and memory resources.

Table 1 shows the number of tasks for each job and the finish-to-start constraints
among the tasks of 7 different jobs. These are the precedence constraints. Jobs 2 and
3 are the RFCs for installing the TPC-W bestsell servlet. There are acceptable server,
colocation and exlocation constraints among the tasks within each job. For example, for
jobs 2 and 3, tasks 1, 2, 3, 4 and 12 must be assigned to the same server (server 1, 2 or
3). Tasks 5, 6, 7, 8, 9, 10, and 11 must be assigned to the same server (server 3, 4 or
5). Finally, the server for the first subset must be different from the server for the second
subset. These temporal and location-specific constraints can be obtained from the TGB.
Other data is available from the RFCs themselves.

12



Table 1 Precedence Constraints for the Jobs

Job ID Tasks/Job FS Constraints

1 19 1 → 2, 2 → 3, 3 → 4, 4 → 19, 12 → 13, 13 → 14, 14 → 15,
14 → 16, 14 → 17, 14 → 18, 15 → 19, 16 → 19, 17 → 19
18 → 19, 5 → 6, 6 → 7, 7 → 8, 7 → 9, 7 → 10, 7 → 11,
8 → 19, 9 → 19, 10 → 19, 11 → 19

2 12 1 → 2, 2 → 3, 3 → 4, 4 → 12, 5 → 6, 6 → 7, 7 → 8,
7 → 9, 7 → 10, 7 → 11, 8 → 12, 9 → 12, 10 → 12, 11 → 12

3 12 1 → 2, 2 → 3, 3 → 4, 4 → 12, 5 → 6, 6 → 7, 7 → 8,
7 → 9, 7 → 10, 7 → 11, 8 → 12, 9 → 12, 10 → 12, 11 → 12

4 4 1 → 2, 2 → 3, 3 → 4

5 4 1 → 2, 2 → 3, 3 → 4

6 4 1 → 2, 2 → 3, 3 → 4

7 6 6 → 2, 1 → 5, 4 → 5, 2 → 3, 5 → 3

Figure 4 shows the task to server assignments and schedules generated by the
CHAMPS P&S for the 7 jobs in Table 1. The x-axis represents time during a 6 hour
change window, divided into 12 half hour intervals. All of the jobs are performed, and all
of the constraints are met. For example, for Job 1, tasks 1, 2, 3, 4 and 19 are assigned to
server 1, tasks 12, 13, 14, 15, 16, 17 and 18 are assigned to server 4, and tasks 5, 6, 7, 8,
9, 10 and 11 are assigned to server 5. These assignments meet the location-specific con-

Figure 4: A Task Assignment Example

13



straints. Notice that task 19 on server 1 does not start until task 8 on server 5 finishes, as
dictated by the temporal constraints. A heavy retangular (possibly discontiguous) “box” is
used to bound all the tasks belonging to the same job. This is due to the decoupled nature
of the CHAMPS P&S solution: The relevant servers are “reserved” for one job during the
entire execution of that job, and thus blocked from any other assignments for the entire
period inside the box.

5. Conclusions and Outlook

This paper describes the architecture and core concepts of the CHAMPS system, a proto-
type under development at IBM Research for CHAnge Management with Planning and
Scheduling. The CHAMPS system consists of a Task Graph Builder and a Planner &
Scheduler. By decoupling Task Graph Building from Planning & Scheduling, and there-
fore binding Task Graphs to target systems at a fairly late stage in the process, we achieve
a high degree of reusability for the information dealing with the software artifacts sub-
ject to a change. The optimization techniques we employ allow us to come up with a
very hiqh quality solution for a mathematically intractable problem in a time which scales
nicely with the problem size. In particular, the CHAMPS system is able to achieve a very
high degree of parallelism for a set of tasks by exploiting factual knowledge about the
structure of a distributed system from artifact dependency information at runtime. We
have implemented the CHAMPS system and have applied it in a TPC-W environment
that implements an on-line book store application.

While our initial results are encouraging, much work remains. We are currently work-
ing on scaling our approach to more complex multi-tiered application systems. On-line
change plan adjustment, needed in case the roll-out of changes runs behind schedule, is
being addressed by introducing a feedback mechanism from the deployment system into
the Planner & Scheduler.

References
[1] Business Process Execution Language for Web Services Version 1.1. Second Public Draft

Release, BEA Systems, International Business Machines Corp., Microsoft Corp., SAP AG,
Siebel Systems, May 2003. http://www-106.ibm.com/developerworks/library/ws-bpel/.

[2] A. Brown, G. Kar, and A. Keller. An Active Approach to Characterizing Dynamic Dependen-
cies for Problem Determination in a Distributed Application Environment. In N. Anerousis,
G. Pavlou, and A. Liotta, editors, Proceedings of the 7th IFIP/IEEE International Symposium
on Integrated Network Management, Seattle, WA, USA, May 2001. IEEE Publishing.

[3] M. Buco, R. Chang, L. Luan, C. Ward, J. Wolf, and P. Yu. Managing eBusiness on Demand
SLA Contracts in Business Terms. In Proceedings of the 6th IFIP/IEEE International Sym-
posium on Autonomous Decentralized Systems (ISADS 2003), Pisa, Italy, April 2003.

[4] M. Burgess. Cfengine: A site configuration engine. Computing Systems, 8(3), 1995. USENIX
Association, see also: http://www.cfengine.org.

[5] Cisco Systems, Inc. Change Management: Best Practices White Paper, 2002.
[6] C. Ensel and A. Keller. An Approach for Managing Service Dependencies with XML and

the Resource Description Framework. Journal of Network and Systems Management, Special
Issue: IM’2001 Selected Papers, 10(2):147 – 170, June 2002.

14



[7] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, San Francisco, CA, USA, 1979.

[8] IBM Corporation, International Technical Support Organization. All about IBM Tivoli Con-
figuration Manager Version 4.2, December 2002. IBM Redbook, Order Number: SG24-6612-
00. see also: http://www.redbooks.ibm.com.

[9] Project Management Institute. Guide to the Project Management Body of Knowledge, 2000.
see also: http://www.pmi.org.

[10] IT Infrastructure Library. ITIL Service Support, June 2000.
[11] F. Maurer and B. Dellen. Merging Project Planning and Web-Enabled Dynamic Workflow

Technologies. IEEE Internet Computing, May 2000.
[12] Microsoft Windows Update. http://windowsupdate.microsoft.com.
[13] J.A. Nilsson and A.U. Ranerup. Elaborate change management: Improvisational introduc-

tion of groupware in public sector. In Proceedings of the 34th Annual Hawaii International
Conference on System Sciences, 2001.

[14] D. Oppenheimer, A. Ganapathi, and D.A. Patterson. Why do internet services fail, and what
can be done about it? In Proceedings of the 4th Usenix Symposium on Internet Technologies
and Systems, Seattle, WA, USA, March 2003. USENIX Association.

[15] D. Patterson. A Simple Way to Estimate the Cost of Downtime. In Proceedings of the Six-
teenth Systems Administration Conference (LISA 2002), Philadelphia, PA, USA, November
2002. USENIX Association.

[16] D. Ressman and J. Valdes. Use of Cfengine for Automated, Multi-Platform Software and
Patch Distribution. In Proceedings of the Fourteenth Systems Administration Conference
(LISA 2000), New Orleans, LA, USA, December 2000. USENIX Association.

[17] Transaction Processing Performance Council. TPC Benchmark W Specification (Web Com-
merce) v1.8, February 2002. http://www.tpc.org/tpcw.

[18] S. Traugott and J. Huddleston. Bootstrapping an Infrastructure. In Proceedings of the Twelfth
Systems Administration Conference (LISA 98), Boston, MA, USA, December 1998. USENIX
Association. see also http://www.infrastructures.org/.

[19] A. van Hoff, H. Partovi, and T. Thai. The Open Software Description Format (OSD). August
1997. http://www.w3.org/TR/NOTE-OSD.html/.

15



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


