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Resource Optimization in QoS Multicast Routing

of Real-Time Multimedia

Moses Charikar and Joseph (SeÆ) Naor and Baruch Schieber

Abstract|We consider a network design problem, where
applications require various levels of Quality-of-Service (QoS)
while connections have limited performance. Suppose that
a source needs to send a message to a heterogeneous set
of receivers. The objective is to design a low cost multicast
tree from the source that would provide the QoS levels (e.g.,
bandwidth) requested by the receivers. We assume that the
QoS level required on a link is the maximum among the
QoS levels of the receivers that are connected to the source
through the link. In accordance, we de�ne the cost of a link
to be a function of the QoS level that it provides. This de�-
nition of cost makes this optimization problem more general
than the classical Steiner tree problem. We consider several
variants of this problem all of which are proved to be NP-
Hard. For the variant where QoS levels of a link can vary
arbitrarily and the cost function is linear in its QoS level, we
give a heuristic that achieves a multicast tree with cost at
most a constant times the cost of an optimal multicast tree.
The constant depends on the best constant approximation
ratio of the classical Steiner tree problem. For the more
general variant, where each link has a given QoS level and
cost we present a heuristic that generates a multicast tree
with cost O(minflog r; kg) times the cost of an optimal tree,
where r denotes the number of receivers, and k denotes the
number of di�erent levels of QoS required. We generalize
this result to hold for the case of many multicast groups.

1 Introduction

The provision of Quality-of-Service (QoS) guarantees is of
utmost importance for the development of future networks.
Recent advances in switching and transmission technolo-
gies allow the implementation of very high speed networks
that carry vast amounts of traÆc which is generated by ap-
plications that are more sensitive to data quality (such as
video or audio), and at the same time less predictable than
current �xed rate sources. In the next telecommunication
age it will be possible to support new multimedia applica-
tions in a global environment and design new services on
exible platforms without upgrading the physical infras-
tructure. This requires new network architectures capable
of o�ering transport and computation services to commu-
nication applications with stringent QoS requirements. A
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key issue is the provision of network resources so as to meet
these requirements.
The multicast backbone of the internet (Mbone) is in-

creasingly used for broadcasting live audio and video in
digital form all over the world. However, heterogeneity is
an enduring characteristic of the Internet creating diÆcul-
ties in the transmission of real-time multimedia data across
groups. Heterogeneity originates, e.g., from the wide range
of network transmission rates, varying across many orders
of magnitude, and from the vast di�erences in computing
power. Members of a group (receivers) may vary signi�-
cantly in their characteristics, e.g., bandwidth availability
or computing power. This means that a source would be
required to transmit in a way that matches the most con-
strained receiver. Instead, it would be advantageous to
send data to multiple receivers at heterogeneous rates and
in a way that matches the capability of each individual
receiver. These diÆculties are treated in depth by [3, 19]
Bandwidth heterogeneity can be dealt with by adjusting

the video and audio stream in a controlled manner that
meets the capacity of each link. A source transmits only
one signal that is suÆcient for the highest bandwidth re-
ceiver. The bandwidth of the signal is reduced as it passes
through the network. Maxemchuk [19] discusses mecha-
nisms for doing that, either by using a progressive coder
[15, 18], or by converting between format encoders such as
video gateways [5, 24]. This is also similar to receiver ini-
tiated reservations and packet �ltering used in the RSVP
protocol [26]. Further work in this direction was done by
Amir, McCanne and Katz [4] in the development of the
SCUBA protocol, and by Amir, McCanne and Zhang [5]
through the Active Service framework. Fukuda et al. [13]
consider multicast video transport to heterogeneous re-
ceivers and propose algorithms that are based on aggre-
gating ow corresponding to receivers having similar QoS
requirements.
We model multicasting in a heterogeneous environment

as a network design problem, where applications require
various levels of QoS while connections have limited per-
formance. The objective is to design a low cost multicast
tree that would provide the QoS level requested by the re-
ceivers. We assume that the QoS level required on a link is
the maximum among the QoS levels of the receivers that
are connected to the source through the link. In accor-
dance, we de�ne the cost of a link to be a function of the
QoS level that it provides. However, we note that the cost
is independent of the utilization of the link. This is a com-
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mon assumption as indicated in [19].
The multicast tree is essentially a Steiner tree in the

network, where the terminals are the receivers. However,
the cost function makes the problem more general than the
classical Steiner tree problem, where the cost of a link is
�xed and does not depend on its location in the tree. Here,
in contrast, the cost of a link is determined by the set of
terminals that are connected to the source through it. This
means that \local" heuristics for computing a Steiner tree
by connecting the terminals to the source one-by-one will
not necessarily yield a low cost solution in this case.

1.1 The network model

We model the network as an undirected graph G(V;E).
The graph G may be a multigraph, i.e., it may contain
parallel links having di�erent QoS capabilities. Let s 2 V
denote the source and letX � V denote the set of terminals
or receivers that need to be spanned.
We �rst de�ne our general model which we call the pri-

ority model. Our network has k priorities (or QoS levels)
which are denoted by f1 : : : kg, where 1 is the highest pri-
ority and k is the lowest priority. We associate a priority
with each link e 2 E, denoted by p(e). The priority of a
link denotes its QoS capability, e.g., its bandwidth. We
associate a priority with each terminal t 2 X , denoted by
p(t). The priority of a terminal denotes the QoS level that
it requires. For a link e 2 E, denote by c(e) the cost as-
sociated with e. A feasible Steiner tree (multicast tree) T
in this model is a tree rooted at the source s spanning all
the terminals in X , such that the path in T from s to each
t 2 X contains only links which have priority at least as
high as p(t), i.e., for each link e in the path to t, p(e) � p(t).
The cost of T , denoted by c(T ), is de�ned to be the sum
of the costs of the links in T .
Note that we assume in this model that the cost of a link

is �xed. This assumption is valid since the network is mod-
eled by a multigraph, and we can assume that parallel links
have di�erent priorities. For a given tree, the appropriate
link (among a set of parallel links) is chosen depending on
the set of terminals that connect to the source through it.
The objective is to �nd a minimum cost tree among all
feasible Steiner trees.
We consider a special case of the priority model which

we call the rate model. In this model, we associate a rate
with each terminal t 2 X , denoted by r(t). Let q denote
the number of distinct rates. We assume that each link
can support all possible rates. There is a basic cost ce
associated with each link e 2 E. The cost of an edge e
that supports rate r is de�ned to be r �ce. Let T be a given
Steiner tree that spans all the terminals in X . For a link
e 2 T , let re denote the maximum rate among all terminals
connecting to s through e in T . The cost of T is de�ned to
be
P

e2T re � ce.
It is not hard to see that the rate model is a special case

of the priority model. De�ne a priority for each rate value.
For each link e, replace it by parallel copies, one for each
rate value. The cost of the copy corresponding to rate r is

de�ned to be r � ce.
Both the priority model and the rate model have been

addressed previously by several works under various names,
e.g., multi-level network design, hierarchical network de-
sign, and multi-weighted Steiner tree problem [6, 7, 11, 12,
20, 22]. We note that in the networking context, Maxem-
chuk [19] also considered the rate model. However, none of
these works seem to have considered the priority model in
its full generality.
We refer to the classical Steiner tree problem as the stan-

dard Steiner tree problem. Our algorithms use a heuristic
for computing a low cost standard Steiner tree. We denote
by �ST the approximation factor of the heuristic chosen.
The simple Steiner tree heuristics (see, e.g., [25]) achieve
an approximation factor of 2. Alternatively, the current
best value known for �ST is by Robins and Zelikovsky
[23] (following a long line of work) who suggested a heuris-
tic with approximation factor of 1 + ln 3

2 � 1:55. We use
STEINER(n) to denote the time complexity of the Steiner
tree heuristic used. The running times of our algorithms
will be expressed in terms of STEINER(n). If we use the
simple heuristics for Steiner tree which are based on span-
ning trees and achieve a 2-approximation factor, then the
running time is O(m + n logn), where n is the number of
nodes and m is the number of links in the graph. We note
that the heuristic achieving the currently best known ap-
proximation factor has a very high running time. The algo-
rithm uses a parameter � and the running time is O(nf(�))
for some increasing function f(�). The algorithm achieves
its stated approximation guarantee in the limit as � !1.

1.2 Our results

We present eÆcient polynomial-time approximation algo-
rithms for the minimum cost Steiner tree problem in several
models. For a given optimization problem (say minimiza-
tion), an algorithm is said to achieve an approximation
factor of r, if for every instance of the problem, the algo-
rithm is guaranteed to produce a solution with cost which
is no more than r times the cost of an optimal solution.
We �rst consider the minimum cost Steiner tree problem

in the rate model. For the case of three rates, Mirchandani
[20] gave a 1:52241-approximation algorithm. Maxemchuk
[19] presented a heuristic for arbitary number of rates, but
provided only experimental evidence for its performance.
We present a heuristic for computing a Steiner tree in the
rate model and show that the cost of the tree that it gen-
erates is no more than e ��ST times the cost of an optimal
tree, where e is the basis of the natural log (e � 2:7182).
Plugging in �ST = 1:55 [23], we get that the cost of the
multicast tree generated by our algorithm is no more than
4:214 times the cost of an optimal multicast tree.
We then turn our attention to the priority model. We

present a heuristic for the minimum cost Steiner tree prob-
lem in this model and show that the cost of the tree gen-
erated is no more than minf2 ln jX j+2; k ��ST g times the
cost of an optimal tree. Plugging in �ST = 1:55 [23], we
get that the cost of the multicast tree generated by our
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algorithm is no more than minf2 ln jX j+ 2; 1:55 � kg times
the cost of an optimal multicast tree.
We note that the algorithms we present are centralized

and assume that the source node computes the multicast
tree. The tree can be implemented using source routing
and that requires con�guring the routers so that each one
knows where to forward (or how to split) the ow it re-
ceives. This can be done using an appropriate signaling
mechanism.
We generalize our results for the case of many multi-

cast groups, known in the network design literature as the
generalized Steiner problem. The input to this problem
is a set of groups f(s1; X1); : : : ; (s`; X`)g, where group i,
1 � i � `, is characterized by a source si and a set of re-
ceivers Xi. The output is a forest F � G such that each
group is contained in a connected component of F . The
cost of F is de�ned to be the sum of the links in it. This
means that if a link is used by more than one group, we still
pay for it only once. This scenario is applicable to the case
where the same links are used repeatedly for several mul-
ticast groups, each with possibly a di�erent source. This
may occur, for example, when a company leases links and
once a link is leased, it can be used by several channels be-
longing to di�erent multicast groups. Indeed, Maxemchuk
[19] indicates that Mbone video is a candidate for a pay-
per-view service in which an entrepreneur leases facilities
to provide coverage of a news or sports event. We present
a heuristic for this case that generates a forest with cost no
more than minf1+ log2(`+

P`

i=1 jXij); 2kg times the cost
of an optimal forest. (Recall that k denotes the number of
priorities.)
We conclude with a proof that our problem is NP-Hard

in the rate model even in the special case of a spanning tree,
i.e., where all the nodes in the network (but the source) are
terminals. Observe that in the case of a standard Steiner
tree problem this case can be solved eÆciently in polyno-
mial time (as it specializes to the standard minimum cost
spanning tree problem). This means that the minimum
cost spanning tree problem is also intractable in the prior-
ity model.

2 The rate model

In this section we show how to design a multicast tree in
the rate model of cost no more than e � �ST times the cost
of an optimal tree. We start with a simpler algorithm that
achieves a 4��ST performance ratio, then we apply the ran-
domized doubling technique to get a randomized algorithm
that achieves an e��ST ratio. Finally, we de-randomize this
algorithm to obtain a deterministic algorithm that achieves
the same approximation ratio. A similar randomized dou-
bling idea has been used earlier by several authors in dif-
ferent contexts (cf. [8, 14, 21, 16, 10]).

2.1 The simpler algorithm

Given an instance of the multicast problem in the rate
model, de�ne the rounded up instance to be the instance

given by rounding up all rates to the nearest power of 2.
The algorithm is based on two observations.

Lemma 1 The cost of an optimal solution to the rounded

up instance is no more than twice the cost of an optimal

solution to the original instance.

Lemma 2 Given a rounded up instance, consider the net-

work given by the union of the Steiner trees computed for

the terminals of each rate independently. The cost of this

network is at most twice the cost of an optimal solution to

the rounded up instance.

Corollary 3 Consider an instance of the multicast prob-

lem in the rate model. Then, the cost of the network, given

by the union of the Steiner trees computed for the terminals

of each rounded up rate independently is at most 4 times

the cost of the optimal solution to the original instance.

Before proving the above lemmas, we show how they can
be used by our algorithm. Given an instance of the prob-
lem, we �rst construct the rounded up instance. Then, we
solve the (standard) Steiner tree problem for the terminals
of each rate separately by applying any of the well known
heuristics. Finally, we do a \clean up" process that trans-
forms the network given by the union of these Steiner trees
into a tree. We view each Steiner tree as being directed
from the source towards the terminals. The clean up is
done by simply keeping for each node only the incoming
link of maximum rate and deleting the rest of the incom-
ing links. It is not diÆcult to see that the resulting tree is
indeed a valid multicast tree. Lemmas 1 and 2 guarantee
that its cost is no more than 4 � �ST times the cost of an
optimal multicast tree.
It is not diÆcult to see that the time complexity of our

algorithm is O(q � STEINER(n)), where q is the number of
distinct (rounded) rate requirements of the terminals.
We now turn to the proofs of Lemmas 1 and 2.

Proof of Lemma 1: Consider any solution to the original
instance and round up the rate of each link in this solution
to the nearest power of 2. It is easy to see that the rounded
up solution is a solution to the rounded up instance and
that the cost of the rounded solution is at most twice the
cost of the original solution. 2

Proof of Lemma 2: Consider an optimal solution to a
rounded up instance with the rounded rates 2`; : : : ; 20 = 1.
Clearly, in this solution the rates of all links are also 2i, for
i 2 f0; : : : ; `g. Construct a network by replacing each link
of rate 2i by i+ 1 links of rate 2i; : : : ; 20. Observe that in
this network all the links of a speci�c rate form a Steiner
tree that spans all the terminals of this rate. Also, the cost
of this network is no more than twice the optimal cost of
the rounded up instance. It follows that the cost of the
network given by the union of the Steiner trees computed
separately for the terminals of each rate is no more than
twice the optimal cost of the rounded up solution. 2

2.2 Randomized doubling

We now show how to reduce the factor 4 � �ST to e � �ST .
Instead of rounding up to the nearest powers of 2 we choose
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the basis of these powers di�erently. Fix a basis a (to be
determined later) and randomly choose a \starting point"
ay, where y is chosen uniformly at random in the range
[0; 1].
Consider an instance of the multicast tree problem in the

rate model. Similarly to the previous algorithm, we de�ne
a rounded up instance where each rate is rounded up to
the nearest power of the form ay+i, where i is an integer.

Lemma 4 The expected cost of the network given by the

union of the Steiner trees computed for the terminals of

each rounded up rate separately is at most a
lna times the

optimal cost of the original instance. This factor is mini-

mized for a = e.

Proof: Consider an optimal solution to the original in-
stance. Similar to the construction above, we can construct
from it a union of Steiner trees, one for each rounded up
rate, by replacing each link of rate re by links of rates
ay+i = p; p=a; : : : ; p=ai = ay, where ay+i is the nearest
rounded up rate greater than re. To estimate the expected
cost of this network we need to �nd the expected costs of
the new links. By linearity of expectation this expected
cost is no more than the expected cost of the rounded up
rate times

P1
i=0 1=a

i = a=(a�1). Suppose that re = ax+j ,
where j is an integer and x 2 [0; 1]. If x � y, then the
rounded up cost is ay�x times the original cost. Other-
wise, it is ay+1�x times the original cost. Since y is chosen
uniformly in the range [0; 1], we get that the expected cost
is rece times

Z x

0

ay+1�xdy +

Z 1

x

ay�xdy =
a� a1�x

ln a
+
a1�x � 1

ln a

=
a� 1

ln a
:

We get that the expected costs of the replaced links is no
more than rece �

a
a�1 �

a�1
ln a = rece �

a
ln a . We set a = e to

minimize this expected cost and get that the expected cost
is rece � e, where e is the basis of the natural log. This
implies that the expected cost of the network given by the
union of the Steiner trees computed for the terminals of
each rounded up rate separately is at most e times the
optimal cost of the original instance. 2

This algorithm can be derandomized by replacing the
random selection of start point ey, for y uniformly in the
range [0; 1], by a small number of choices for y, one for
each distinct rate requirement of the terminals. For each
distinct rate r, we run the algorithm for y = ln r � bln rc.
Let the set of such y values be y1 < y2 : : : < yq. We claim
that the cost of a solution produced for any y 2 [yi; yi+1) is
at least the cost of the solution for y = yi. To see this, note
that each link in the optimal solution has rate eyj+�, for
some j 2 f1; : : : ; qg and integer �. It follows that for every
link rate eyj+�, where j � i, ey�yj � eyi�yj , and for every
link rate eyj+�, where j > i, e1+y�yj � e1+yi�yj . (Also,
the cost of the solution for y 2 [0; y1) is at least the cost of
the solution for y = yq.) This implies that for some i, the
solution for y = yi has cost which is at most the expected
cost of the solution for a randomly chosen y.

The time complexity of the randomized algorithm is the
same as the time complexity of the simple deterministic
algorithm given above; that is, O(q � STEINER(n)). The
derandomized algorithm replaces the randomized selection
by q trials for the value of y, and thus its time complexity
is O(q2 � STEINER(n)).

3 The priority model

We now present approximation algorithms for the Steiner
tree problem and the generalized Steiner tree problem in
the priority model. The latter problem is a generalization
of the former, yet we present separate algorithms for both,
as the algorithm and analysis for the Steiner tree problem
is considerably simpler. Our approach for both problems
is similar. We consider on-line algorithms for the Steiner
tree [2, 17] and generalized Steiner tree problem [9]. The
on-line algorithm for the Steiner tree problem takes a se-
quence of terminals and builds a tree spanning these termi-
nals in an incremental fashion, such that each new terminal
is connected to the existing tree by the addition of links.
Once added, a link cannot be deleted. In the case of gener-
alized Steiner tree, the input consists of a sequence of pairs
and the algorithm incrementally builds a collection of trees
such that each pair is connected. In both cases, we sort the
terminals (or pairs) in order of priority, from the highest
to the lowest, and feed this sorted sequence as input to the
on-line algorithm. The on-line algorithms for Steiner tree
and generalized Steiner tree were not designed to handle
links with di�erent priorities as in the priority model. Yet,
we are able to adapt the analysis of the on-line algorithms
to give an approximation guarantee in the priority model.
The approximation guarantee we obtain is the competitive
ratio of the corresponding on-line algorithms.

3.1 Steiner trees

Our heuristic for the Steiner tree problem in the priority
model is based on the on-line Steiner tree algorithm. This
algorithm was �rst analyzed by Imaze and Waxman [17]
who proved a log2 jX j competitive ratio. Here, we build
on the simpler analysis of Alon and Azar [2] who proved a
(slightly inferior) 2 ln jX j+ 2 competitive ratio.
We consider the terminals ordered by priority from high-

est to lowest. Let the ordered sequence be t1; : : : ; tjXj. We
build the tree incrementally. Terminal ti is connected to
the tree constructed for the �rst i � 1 terminals by the
cheapest path connecting ti to the tree. In computing the
costs of shortest paths from ti to nodes in the tree, we use
all links of priority at least as high as p(ti). We obtain the
initial tree by connecting t1 to the source s by the cheapest
path from t1 to s that uses links of priority at least as high
as p(t1).
It is easy to see that the algorithm returns a feasible

solution. In other words, the tree constructed by the al-
gorithm has the property that terminal ti is connected to
the source s by a path that uses links of priority at least
as high as p(ti). We now proceed to bound the cost of the
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tree constructed by the algorithm in terms of OPT, the cost
of the optimal tree.
Associate with each terminal ti, the cost of connecting

ti to the tree in the construction above. We call this cost
the connection cost of ti.

Lemma 5 For 1 � m � jX j, the mth largest connection

cost is at most 2OPT=m.

Proof: The proof is by contradiction. To obtain a con-
tradiction assume the contrary; that is, there exists an
m 2 f1; : : : ; jX jg for which the mth largest connection
cost is more than 2OPT=m. This implies that each of
the m largest connection costs is more than 2OPT=m. Let
X 0 = fx1; : : : xmg be the set of the m terminals with the
highest connection costs. For convenience, assume that
terminals x1; : : : xm are ordered by priority from highest to
lowest. We de�ne a distance function on the set X 0 as fol-
lows: The distance d(xi; xj) between xi and xj is the cost
of the shortest path from xi to xj that uses links of pri-
ority at least as high as maxfp(xi); p(xj)g. Note that this
distance function does not obey the triangle inequality and
thus is not a metric. For i < j, since xj was connected to
the tree after xi was connected, the connection cost of xj
is bounded above by d(xi; xj). (This is because we connect
xj to the existing tree by the cheapest connection using
links of priority at least as high as p(xj).) As all con-
nection costs are greater than 2OPT=m, it follows that all
distances d(xi; xj) are at least 2OPT=m.
Let T be the optimal tree for the instance. Consider

the minimal subtree T 0 of T spanning X 0 (and including
the source s). T 0 consists of the unions of the paths from
xi to s in T . Note that the cost of T 0 is at most OPT.
Now, we construct a tour of X 0 by performing a depth-�rst
traversal of the tree T 0 beginning at s and returning to s.
Since each link is used twice, the cost of the tour is at most
2OPT. Suppose xi and xj are consecutive terminals visited
by this tour, we claim that the links used in the path from
xi to xj have priority at least maxfp(xi); p(xj)g.

1 To prove
this, observe that the path from xi to xj can be broken into
two parts: a path from xi to a common ancestor y of xi and
xj and a path from y to xj . (One of the two parts may
be missing if xi is an ancestor of xj or vice versa.) The
�rst part consists of links of priority at least p(xi) while
the second part consists of links of priority at least p(xj).
Thus the links in the path from xi to xj have priority at
least maxfp(xi); p(xj)g. Recall the distance function d(�; �)
de�ned earlier. It follows that the cost of the path from
xi to xj is at least d(xi; xj) > 2OPT=m. Note that this
argument also holds for the path between the last terminal
and the �rst terminal visited in the depth-�rst traversal.
Thus, in the tour constructed, the distance between any
two consecutive terminals is greater than 2OPT=m . This
means that the cost of the tour is greater than 2OPT, which
is a contradiction. 2

Theorem 6 The cost of the tree produced is at most

1Note that since the priorities are ordered so that 1 is the highest
priority and k is the lowest priority, maxfp(xi); p(xj)g actually refers to
the lower of the two priorities p(xi) and p(xj).

2H(jX j)OPT, where H(m) = 1 + 1
2 + : : :+ 1

m
� 1 + lnm.

Proof: Since the mth largest connection cost is at most
2OPT=m, the cost of the tree is at most

2OPT

�
1 +

1

2
+ : : :+

1

jX j

�
= 2H(jX j)OPT:

2

The algorithm can be implemented by running Dijkstra's
algorithm from each terminal, giving a running time of
O(nm+ n2 logn).
If the number of priorities k is small, we can get a better

approximation guarantee than the above, by computing a
Steiner tree for the terminals of each priority separately.
When computing the Steiner tree for the terminals of a
speci�c priority we consider only links of priority at least
as high as this priority. The �nal solution is given by the
union of the trees constructed. To ensure that the solution
produced is indeed a tree, we eliminate cycles in a \clean
up" process as described before. The running time of this
algorithm is O(k � STEINER(n)).
Let OPT be the cost of an optimal tree for the priority

problem. Suppose �ST is the approximation ratio of the
Steiner tree algorithm we use. The cost of each Steiner tree
constructed is at most �ST � OPT. Hence, the cost of the
�nal solution is at most the sum of the costs of the these
trees which is bounded by k � �ST � OPT.
Taking the better of the two algorithms presented in this

section, we obtain the following theorem.

Theorem 7 A multicast tree can be computed in the pri-

ority model with cost at most minfk��ST ; 2 ln jX j+2g times
the optimal cost.

3.2 Generalized Steiner Trees

Our heuristic for the generalized Steiner tree problem in the
priority model is based on the on-line generalized Steiner
tree algorithm of Berman and Coulston [9]. To use their
algorithm we �rst observe that without loss of generality
we may assume that the input is a collection of node pairs
(a; b) with a priority associated with each pair, and that
the goal is to connect each pair by a path with priority at
least as high as its associated priority. This is true since
each group (si; Xi) in the original formulation can be re-
placed by jXij pairs (si; a), for every a 2 Xi. The priority
associated with this pair is p(a).
We now describe the algorithm of [9] adapted for the

priority model. The algorithm adds the pairs one at a
time and maintains the connected components of the forest
F created at each stage. We begin with a description of
the data structures maintained by the algorithm and some
de�nitions. Each node u received as part of an input pair
is associated with an integer class(u). For a component
Y of F , de�ne class(Y ) = maxu2Y class(u). For two
nodes u and v, de�ne pathp(u; v) to be the cheapest path
from u to v using links of priority at least as high as p, and
distp(u; v) to be the cost of pathp(u; v).
Initially, the connected components of F are singletons,

and F contains no links. For each node u we initialize
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class(u) = �1. We consider the input node pairs (a; b)
in order of priority from highest to lowest. When a new
pair (a; b) of priority p is considered, we �rst place a and
b in singleton components. Note that in case a belongs to
a larger component Y of F when the pair (a; b) is consid-
ered, we can create a copy of a and place it in a singleton
component. The copy of a is connected to a with a link
of priority 1 and cost 0. For every link e from a to some
other node, we place a link from the copy of a to the same
node. This new link has priority p(e) and cost c(e). Sim-
ilarly, we create a copy of b if required. We proceed with
the following algorithm.

class(a) = class(b) = blog2 distp(a; b)c.
For every component Y =2 ffag; fbgg of F do

1. let u be a node of Y that is closest to a according
to distance function distp.

2. let m = minfclass(a); class(Y )g.
3. if distp(a; u) < 2m+1

then insert pathp(a; u) to F .

For every component Y 6= fbg of F do

1. let u be a node of Y that is closest to b according
to distance function distp.

2. let m = minfclass(b); class(Y )g.
3. if distp(b; u) < 2m+1

then insert pathp(b; u) to F .

Theorem 8 The algorithm produces a solution with cost

at most log2(`+
P`

i=1 jXij)+2 times the cost of the optimal
solution.

Proof: The proof of the above theorem is very similar to
the proof of the competitive ratio of the on-line algorithm
in [9]. However, we cannot use their result as a \black
box" to prove our approximation guarantee. We describe
the proof in detail, indicating the modi�cations required to
handle di�erent priorities.
First, we prove that the solution is valid, i.e., each in-

put node pair is connected by a path with the required
priority. Consider an input pair (a; b) with priority p.
In the �rst loop of the algorithm we may connect a to
other components (except for the component fbg). As a
result, when this loop terminates a may belong to a non-
singleton component. Since the pairs are added in order
of priority there is a path of priority at least as high as
p from a to any other node in its component. In the sec-
ond loop of the algorithm, node b is connected to all com-
ponents Y of F for which there exists u 2 Y such that
dist(b; u) < 2m+1, where m = minfclass(b); class(Y )g.
Note that since class(a) = blog2 distp(a; b)c, the class
of the component Y that contains a at the time the sec-
ond loop is executed is at least blog2 distp(a; b)c. Since
class(b) = blog2 distp(a; b)c, it follows that b is connected
to Y by a path of priority at least as high as p and thus is
also connected to a by such a path.
We now prove the bound on the cost of the solution.

De�ne Bp(u; r) to be a sphere, or ball, of radius r around

u. The ball Bp(u; r) contains the set of nodes v such that
distp(u; v) < r, where distp(u; v) is the cost of the cheap-
est path between u and v that uses links of priority at least
as high as p. Note that Bp(u; r) may contain some links
(of priority at least as high as p) completely and other such
links (belonging to the \periphery") only partially.
Suppose that the input pair (a; b) is associated with pri-

ority p, such that distp(a; b) > r. Then, for every solution
T to this instance, the cost of T \Bp(a; r) is at least r. We
refer to Bp(a; r) as a lower bound ball.
Suppose there exists a collection C of pairwise disjoint

lower bound balls with sum of radii s, then any solution to
this instance must have cost at least s. We call C a lower

bound collection.
To prove our approximation ratio, we run a shadow al-

gorithm which �nds a lower bound collection of suÆcient
size. For every integer j, the shadow algorithm constructs a
lower bound collection C(j), consisting of balls with radius
at most 2j . We denote the sum of radii of C(j) by S(j).
Let S =

P
j S(j). We ensure the following properties:

S � cost(F ) (1)

max
j

S(j) �
1

log2(`+
P`

i=1 jXij) + 2
S (2)

Here, cost(F ) denotes the cost of the solution produced
by our algorithm. The above two inequalities imply that
cost(F ) is within a factor log2(` +

P`
i=1 jXij) + 2 of the

optimal cost.
To show that (1) holds we perform amortized analysis.

For every pair (A; j), where A is a component of F and j
is an integer such that j � class(A), we create an account
that holds 2j . (Note that the number of accounts is in�-
nite.) The amortized cost at any point of time is cost(F )
plus the sum of the existing accounts. We start with both
S and the amortized cost being 0. In each step we ensure
that the change (increase) of S is at least as large as the
change in the amortized cost. Note that a change in the
amortized cost involves the cost of the new edges added to
F plus the contents of the new accounts created minus the
content of any accounts being liquidated.
To simplify the accounting, we divide the actions per-

formed by the real algorithm and the shadow algorithm
into a number of steps. For each step, we verify that the
change in S is at least as much as the change in the amor-
tized cost.
The shadow algorithm starts with all C(j)'s empty. For

each pair (a; b) of priority p processed by the algorithm, we
have two steps.

Step 1: The real algorithm �nds the shortest path
pathp(a; b) from a to b of cost dp = distp(a; b). Then,

it assigns j to both class(a) and class(b), where 2j �
dp < 2j+1. The shadow algorithm performs the following
for each i � j. First, it creates lower bound balls Bp(a; 2

i)
and Bp(b; 2

i) and inserts them into C(i). Next, it provides
components fag and fbg with accounts holding 2i. The
amortized cost is increased during this step. The increase
amount �cost is the total holdings in the accounts of fag
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and fbg. Thus,

�cost = 2(2j + 2j�1 + � � �) = 2j+2:

On the other hand S is increased by the sum of the radii
of the new balls created, which is also 2j+2. Note that at
the end of this step, some of the new balls created might
intersect existing balls in the lower bound collections. This
will be �xed in the next step.

Step 2: Suppose that in some collection C(i), we in-
serted a ball Bp(a; 2

i) that intersects an existing ball, say
Bp0(u; r), for some r � 2i and p0 � p. We call this a con-

ict between a and the component of F that contains u.
We de�ne a conict between b and a component of F sim-
ilarly. The shadow algorithm removes such conicts while
the real algorithm processes the connected components of
F in the �rst and second loops.
Now, consider a component Y which was processed in

the �rst loop. Let d = minu2Y distp(a; u), and m =
minfclass(a); class(Y )g. We distinguish between two
cases.

Case 1: d � 2m+1.
In this case we claim that there is no conict between a and
Y . To obtain a contradiction suppose there is a conict.
Then, some lower bound collection C(i) must contain two
intersecting balls, Bp(a; ra) and Bp0(v; rv) for some v 2 Y .
Note that p0 � p (i.e., v has priority at least as high as
a) because of the order in which the pairs are processed.
Also, the radii ra; rv are both at most 2

i. This implies that
d0 = distp(a; v) < ra + rv � 2i+1. But i � class(Y ) and
also i � class(a), so i � m. This gives a contradiction, as
d � d0 < 2i+1 � 2m+1. In this case the real algorithm does
not do anything and since there is no conict, the shadow
algorithm does not have to do anything either.

Case 2: d < 2m+1.
In this case, the real algorithm merges Y with the compo-
nent of a, while the shadow algorithm shrinks (in a mini-
mal fashion) the balls centered at a so that all conicts are
eliminated between a and Y . Also, the shadow algorithm
removes the accounts that become redundant as a result of
the merger of components.
The change in the amortized cost is the cost of the new

connection, i.e., d minus the amount in the accounts that
are liquidated. Suppose A is the component that contains
a at the beginning of this step. For each i � m, we replace
accounts (A; i) and (Y; i) with a single account (A [ Y; i).
Thus,

�cost = d� (2m + 2m�1 + � � �) = d� 2m+1:

The sum of the radii in the lower bound collections also
changes, because we shrink the balls centered at a if they
intersect balls from the same collection with centers in Y .
For i > m, the collection C(i) either contains no ball cen-
tered at a or it contains no ball with a center in Y . For
i � m, there may be conicts. The decrease in the sum of
the radii is largest if for every i � m, the collection C(i)
contains both Bp(a; 2

i) and the largest possible conicting
ball Bp0(u; 2i), for some u 2 Y that is closest to a amongst

nodes in Y , and p0 � p. (Note that since u is processed
before a, the priority p0 of u is at least as high as the pri-
ority p of a.) From now on we assume that this is indeed
the situation. Let j = blog2 dc and f = d � 2j < 2j . It
is not diÆcult to see that to remove the conicts, for all
j < i � m, the balls Bp(a; 2

i) need to be shrunk to de-
generate balls Bp(a; 0), while the ball Bp(a; 2

j) needs to be
shrunk to Bp(a; f). The balls in collections C(i) for i < j
do not cause any conicts. It follows that the decrease in
the sum of the radii in this case is

mX
i=j+1

2i + (2j � f) = (2m+1 � 2j+1) + (2j � f)

= 2m+1 � (2j + f) = 2m+1 � d :

This implies that the change in S is always at least as large
as �cost.
The above analysis of cases 1 and 2 holds also for the

case of components processed in the second loop. Note that
since component fbg is not processed in the �rst loop, every
conict between b and a component before the execution
of the �rst loop remains a conict between fbg and either
the original component or some superset of this original
component after the execution of the �rst loop.
Observe that if we rescale all the distances by multiply-

ing them by a power of 2, the algorithm still behaves the
same, and the same lower bound collections are generated
by the shadow algorithm (with rescaled balls). Therefore,
we may assume without loss of generality that the C(0) col-
lection contains the largest lower bound balls. Then, when
all the pairs are added there must exist a component Y of
F with class(Y ) = 0. This component has accounts hold-
ing 20; 2�1; 2�2; : : : summing to 2. This implies that the
shadow algorithm may do some additional operations, as
long as they are amortized by this amount. This amount
would be used to liquidate some accounts and remove lower
bound collections, so that the number of non-empty lower
bound collections is minimized.
Recall that the maximum number of nodes in the in-

put pairs to the problem is ng = ` +
P`

i=1 jXij. Let � =
dlog2 nge. Each lower bound collection consists of at most
ng balls. For i � 0, The radius of each ball in the lower
bound collection C(�� � i) is at most 2���i � 1=(ng2

i).
It follows that sum of the radii of all lower bounds balls in
these collections is at most

P1
i=0 2

�i = 2. Hence, we can
remove all these collections amortizing it with the existing
account holdings after all node pairs are connected.
After this \clean up" phase the only non-empty lower

bound collections are C(��+1); C(��+2); : : :C(0) a total

of at most log2 ng+1 = log2(`+
P`

i=1 jXij)+1 collections.
This implies Eq. (2), and the theorem follows. 2

The running time of the algorithm is dominated by the
complexity of computing arrays dist(:). This can be done
in O(n2m) by adding the links one by one in order of pri-
orities when computing the arrays.
Another heuristic for the generalized Steiner tree prob-

lem in the priority model is to generate k generalized Steiner
trees separately, one for each priority p and then perform
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a \clean up" step similar to the Steiner tree algorithm
in the rate model. We use the 2-approximation heuris-
tic of Agrawal, Klein and Ravi [1] to generate the gen-
eralized Steiner trees for each priority. The cost of the
forest generated by this heuristic is at most 2k times the
optimal cost and the running time is O(km log n). We
conclude that the cost of our heuristic is no more than
minflog2(`+

P`
i=1 jXij) + 1; 2kg times the cost of an opti-

mal forest.

4 The NP-Hardness proof

In this section we consider the case where the Steiner tree
needs to span all the nodes in the graph, i.e., the set of
terminals is X = V n fsg. Recall that in the case where
all rates are equal, �nding an optimal spanning tree can be
done in polynomial time, while �nding an optimal Steiner
tree is NP-Hard. We prove that �nding a spanning tree
in the rate model is NP-Hard. Since the rate model is
a special case of the priority model this also proves the
hardness for �nding a spanning tree in the priority model.
The NP-Hardness is proved by a reduction from the

3SAT problem to the decision problem corresponding to
the problem of �nding a minimum spanning tree in the
rate model. In this decision problem we are given a graph
G(V;E), a source node s 2 V , a rate r(v) associated with
every node v 2 V n fsg, a basic cost ce associated with
every link e 2 E, and a parameter w. We need to deter-
mine whether there exists a feasible tree of cost at most
w. From now on, we call this decision problem the RATE-
MST problem.
Recall that in the 3SAT problem we are given n logical

variables (x1; : : : ; xn) and m clauses each consists of three
literals (i.e., a variable or its complement). We have to
decide whether there exists a valid 0-1 assignment to the
variables so that each of the clauses has at least one literal
that is assigned 1. (In a valid 0-1 assignment the value
of the complement of a variable is the complement of its
value.) The 3SAT problem is well known to be NP-Hard.

Theorem 9 The RATE-MST problem is NP-Hard.

Proof: To show the reduction from 3SAT to the RATE-
MST problem we consider an input instance to the 3SAT
problem and show how to construct a respective instance to
the RATE-MST problem such that the answer to the 3SAT
instance is \yes" if and only if this is also the answer for
the corresponding RATE-MST instance. Suppose that the
3SAT instance consists of the clauses C1; : : : ; Cm, where
Cj consists of three literals. We denote the literals of Cj

by yt
j(1); y

t
j(2) and yt

j(3), where t 2 f0; 1g, j(1); j(2); j(3) 2

f1; : : : ; ng, and y0i (y1i ) denotes �xi (xi).
The corresponding instance of the RATE-MST problem

consists of a graph with 1+3n+m nodes and 4n+3m links.
The nodes consist of the source node s, 2n \literal" nodes
y0i and y1i with rate 1, for i = 1 : : : ; n, n \variable" nodes
x1; : : : ; xn with rate 2, and m \clause" nodes C1; : : : ; Cm

with rate 2. We now de�ne the links.

1. Each of the literal nodes yti is connected to the source
s by a link of basic cost 1.

2. Each variable node xi is connected to both its corre-
sponding literal nodes y0i and y

1
i by a link of basic cost

1.
3. Each clause node Cj = fyt

j(1); y
t
j(2); y

t
j(3)g is connected

to the literal nodes ytj(1); y
t
j(2) and ytj(3) by a link of

basic cost 3.

We set the cost bound w to be 5n+ 6m.
Suppose that the answer to the instance of the 3SAT

problem is \yes". We show how to �nd a valid spanning
tree of cost 5n+ 6m.

1. For each variable xi, the tree has a link from the source
s to y1i if the value of xi in the 3SAT instance is 1 and
to y0i otherwise. The rate of this link is 2. The tree
has a link from the source to the other literal with a
link of rate 1. The total cost of these 2n links is 3n.

2. For each variable xi, the tree has a link of rate 2 con-
necting the variable node xi to y

1
i if the value of xi in

the 3SAT instance is 1 and to y0i otherwise. The rate
of this link is 2. The total cost of these n links is 2n.

3. For each clause Cj , the tree has a link of rate 2 con-
necting the clause node Cj to one of the literal nodes
that corresponds to a literal in this clause with the
value 1 in the 3SAT instance. We are guaranteed to
have at least one such literal since the answer to the
3SAT instance is \yes". The total cost of thesem links
is 6m.

Note that the total weight of the tree is 5n+6m as required.
We still need to show that each node is connected to

the source via a path consisting of links with the correct
rate. This is clearly the case for the literal nodes each of
which require rate 1. Observe that each clause node and
each variable node are connected to the source via a literal
node corresponding to a literal which is assigned the value
1 in the corresponding 3SAT instance, and that both links
along this path have rate 2 as required.
We now show the other direction. Suppose that there

exists a valid spanning tree of cost at most 5n+ 6m to an
instance of the RATE-MST problem. We show that in this
case the answer to the corresponding instance of the 3SAT
problem is \yes". In the spanning tree each variable node
xi must be connected to either the literal node y0i or to y

1
i

by a link of rate 2. This literal node must be connected to
the source node by a path (or a link) of rate 2. Call this
literal the \selected" literal of xi. The links touching the
variable nodes contribute 2n to the cost of the tree. Each
clause node must be connected to a literal node by a link
of rate 2. Again, this literal node must be connected to
the source node by a path (or a link) of rate 2. The links
touching the clause nodes contribute 6m to the cost of the
tree. The literal nodes have to be connected to the source
without exceeding the remaining cost 3n. Consider a pair
of literal nodes with minimal connection cost. Since there
are n literal node pairs the cost of connecting this pair
cannot exceed 3. Note that at least one literal in this pair
must be a selected literal and thus it must be connected to
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the source by a path of rate 2. The only way to achieve
such a connection within cost 3 is by connecting this literal
to the source by the link of basic cost 1 and rate 2. We are
left with unit cost and the only way to use this unit cost to
connect the other literal is by connecting it to the source
by the link of basic cost 1 and rate 1. It follows that the
cost of connecting the literal pair is 3. Since the total cost
of connecting the literal nodes is at most 3n, each literal
pair has to be connected the same way. We conclude that
exactly one literal node out of each pair is connected to
the source by a link of rate 2, and that each clause node
is connected to one such literal. In the respective 3SAT
instance we assign the value 1 to each such literal. Clearly,
this is a valid assignment and each clause contains a literal
of value 1. Hence, the answer to this 3SAT instance is
\yes". 2

5 Conclusion

We presented heuristics with provable performance guar-
antees for the Steiner tree problem in the rate model and
the priority model. An interesting open problem is to de-
velop a heuristic with constant approximation ratio for the
Steiner tree problem in the priority model. Currently, we
also do not have any hardness of approximation results for
this problem, as well as for the problem in the rate model.
We remark that the Steiner tree problem in the priority
model can be formulated in a natural way as a linear in-
teger program; for example, by requiring that every cut
separating the root from a subset of the terminals is cov-
ered by at least one edge of priority at least as high as the
highest priority among the separated terminals. Yet, we
are not aware of any example in which the gap between the
integral and rational optima in this formulation is greater
than two. Note that this is also the integrality gap for the
classical Steiner tree problem in this formulation.
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