
RC22890 (W0309-010) September 3, 2003
Mathematics

IBM Research Report

Branch and Bound, Integer and Non-Integer Programming

J. J. H. Forrest
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

J. A. Tomlin
IBM Research Division

Almaden Research Center
650 Harry Road

San Jose, CA 95120-6099

Research Division
Almaden - Austin - Beijing - Delhi - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research
Center , P. O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Branch and Bound, Integer, and Non-Integer Programming

J.J.H. Forrest
IBM Watson Research Center, Yorktown Heights, NY 10598

J. A. Tomlin
IBM Almaden Research Center, San Jose, CA 95120
{forrest@watson.ibm.com,tomlin@almaden.ibm.com}

Abstract

In this note we review the development of the first commercial branch and bound codes at CEIR/Scicon,
with particular emphasis on those features not commonly emphasized today—that is the use of branch
and bound to handle discrete constructs, which, while often formally representable in terms of zero-one
integer variables, can be handled more elegantly and effectively by applying branch and bound to the
actual dichotomies in the model.

keywords: Branch and bound, Special Ordered Sets, Integer Programming

1 Introduction

The purpose of this note is threefold:

1. To give a brief survey of the early development of branch and bound codes at CEIR, which subse-
quently became Scicon, Ltd.

2. To celebrate the seminal contributions of our mentor E.M.L. (Martin) Beale to these developments.

3. To emphasize the importance and flexibility of the branch and bound framework for models and
algorithms not requiring explicit integer variables.

The potential power of an ability to solve mixed integer linear (MIP) problems had been known since
the mid 50’s (see Markowitz and Manne (1957) and Dantzig (1963)), but remained unrealized, when
Martin Beale, then visiting Princeton University in 1957/8, encountered R.E. Gomory and explained to
him that solving integer programming problems was “impossible” (Gomory (1991)). As Gomory was to
show, solution of integer programs in a finite number of iterations was possible, but as he was also heard
to remark, finite numbers can be very large indeed. Thus, although Gomory’s method of integer forms
(Gomory (1963)), and later Glenn Martin’s Accelerated Euclidean Algorithm (Martin (1963)), were able
to solve some significant IP problems, they were unsatisfactory in general practice.

It was the seemingly pedestrian approach of Branch and Bound, based on the work of Land and Doig
(1960), which proved successful in practice, and was implemented in the CEIR LP/90/94 system, then
the most powerful of its day, by E.M.L. Beale and his colleagues (see Beale and Small (1965), Beale
(1968)) . Experience with this code is also reported by Shaw (1969), and the present authors had some
experience with the system before it was superseded by UMPIRE. Some familiarity with the concepts of
linear programming and branch and bound will be assumed for the remainder of this paper.

There were some notable variations of the original branch and bound ideas in the CEIR LP/90/94
implementation. Firstly, the tree search was depth-first (or last in first out—LIFO), dictated by the need

to save postponed branches sequentially on tape. Second, Driebeck penalties (Driebeck (1966)) were used
to guide the tree search, and thirdly, even at this early stage it was realized that multiple choice zero-one
variables (then called “covering variables”) could benefit from special treatment. The difficulty is that
when there are, say, p zero-one variables constrained to sum to 1, and some are fractional, the branch
which sets one of them to 0 is very “weak”—that is unlikely to bring us closer to an integer solution—while
setting it to 1 forces the remaining p− 1 variables to 0. The C-E-I-R LP/90/94 system (see Beale (1968))
attempted to finesse this by always postponing the branch associated with the weaker choice and pursuing
the stronger one. The danger is that it may be too strong, as we discuss below.

2 Special Ordered Sets and UMPIRE

It is often thought that Special Ordered Sets (SOS) were primarily designed to handle multiple choice
integer variables, but this is not the case. They were inspired by a model involving piecewise-linear
non-convex (actually concave) costs, described in a paper modestly titled “Two Transportation Problems”
(Beale (1963)). The hand guided procedure used (described in Beale (1963) and reviewed in Tomlin (1988))
laid the groundwork for the more general special ordered set concept. Thus what came to known as SOS of
type 2 (or S2 sets) actually preceded what came to be known as S1 sets, when they were implemented for
the first time in Scicon’s UMPIRE system. It should also be noted the idea of “ordered sets” of variables
was very appealing, because Generalized Upper Bounds (GUB) were important in the design of UMPIRE
(Beale (1970)), and thus the variables were already divided into sets—a convenient feature for SOS, which
we now describe.

Let us consider any application which embeds a piecewise-linear non-convex (usually, but not always
concave) cost function, with breakpoints (ai, bi) defined for (z, f(z)). Attaching variables λ0, λ1, . . . , λN to
the origin and endpoints of the segments, we express the function algebraically as:

f(z)−
N∑

j=0

bjλj = 0 (1)

z −
N∑

j=0

ajλj = 0 (2)

N∑
j=0

λj = 1 (3)

where at most two of the variables may be nonzero, and these must be adjacent, in standard separable
programming fashion (Beale (1968)).

When the LP relaxation of such a model is solved we normally obtain an inadmissible solution which
interpolates a cost below the actual piecewise-linear curve. Typically (but not necessarily) this involves
the first and last variable. Let the current solution values be λ∗j and compute the weighted sum of the aj :

w =
∑
j

ajλ
∗
j . (4)

Let us suppose this value satisfies
ar ≤ w < ar+1, (5)

then (ar, ar+1) is called the current interval. We may now say that any solution which satisfies the
requirements on the λ-variables must be on either the (r + 1)th through last segments of the curve or on
the first through rth segments. This is equivalent to saying that:

Either λ0 = λ1 = . . . = λr−1 = 0 or λr+1 = λr+2 = . . . = λN = 0. (6)

2

One can make a similar statement centered around the right end of the interval:

Either λ0 = λ1 = . . . = λr = 0 or λr+2 = λr+2 = . . . = λN = 0. (7)

These dichotomies may be used as a basis for branching in a branch and bound scheme in the same way
that an integer variable with current value x = n + f , where f is fractional, is used to create a dichotomy:
either x ≤ n or x ≥ n + 1.

It is important to note that there are two dichotomies defined above. We would normally choose the
one which gives the “strongest” branch consistent with the overall branch and bound scheme, but it is
possible that there is no choice. This is because the right end point of the current interval (ar+1) may be
the only break point to the right of w with a nonzero weight attached. In that case, the second alternative
of the second dichotomy does not exclude the current solution, and therefore does not create a valid branch.
Similarly, if ar is the only break point to the left of w with a nonzero weight attached, the first alternative
in the first dichotomy does not exclude the current solution. We therefore need the option of making either
pair of branches.

The analogy of the above procedure with branch and bound on general integer variables is striking,
and is one of the reasons it proved easy to integrate in mathematical programming systems. One is thus
tempted to ask whether the same thing could not be equally well accomplished using integer variables.
The answer is that it could be accomplished, but not as well. For example one can force the λ-variables
above to have the correct properties by introducing new zero–one variables δj , and (using 3 segments for
illustrative purposes) the constraints:

λ0 ≤ δ1

λ1 ≤ δ1 + δ2

λ2 ≤ δ2 + δ3

λ3 ≤ δ3

δ1+ δ2 +δ3 = 1

(see Dantzig (1963) and Beale (1968)). This not only increases the model size, but leaves us with the
problem of deciding on a branching strategy for the δ-variables.

A set of zero–one variables summing to one (such as we see above) is a multiple–choice set, which have
remarked on before, and which occur frequently in many contexts. A good example is a choice of plant size
to build — none, small, medium, and large — when there are economies of scale. If we represent the (size,
cost) alternatives by (aj , bj) we obtain a representation exactly as in (1)–(3), except that now the rule is
that at most one of the λ-variables may be nonzero. We shall call this an example of a special ordered set
of type 1 (or S1 set). For obvious reasons, when two adjacent members may be nonzero the special ordered
sets are considered of type 2 (or S2 sets).

The process of branching on the members of a multiple–choice set individually can be very inefficient.
Once again the LP relaxation of the model is likely to produce a solution with two nonzero members (often
the first and the last). If we choose to branch on one of these (say λ0), we are faced with a rather weak
choice. The two branches correspond to the decisions to build no plant (λ0 = 1) or to build “something”
(λ0 = 0). Similarly, with λN we have the choice of building the maximum size plant or some indeterminate
smaller size (if any). Neither of these branches may take us much closer to a valid solution.

If we compute the weighted solution (4) the LP is really telling us that it wants a plant with capacity
in the current interval (ar, ar+1), though not necessarily at the full price. We may therefore consider the
more useful alternatives of building a plant of size at least ar+1, or at most ar. This is expressed by the
dichotomy:

Either λ0 = λ1 = . . . = λr = 0 or λr+1 = λr+2 = . . . = λN = 0. (8)

3

The branching procedure generated by such a dichotomy is even more obviously analogous to branching
on a general integer variable. Notice that we have not required the variables in an S1 set to be integer.
All that is important is that only one be nonzero. Integrality will naturally occur as a by-product if the
λj and required to sum to one.

It should also be noted that the SOS branching rules specified above say nothing about the sum of the
λj either. In most applications it is natural for them to sum to 1, but there are real applications in which
we may not want the variables in a set to sum to any particular quantity (see Beale (1970)). The general
special ordered set algorithm then computes a true weighted average:

w =
∑

j ajλ
∗
j∑

j λ∗j

before finding the current interval (5). The aj values (where a1 ≤ a2 ≤ . . . ≤ aN) are known as reference
entries and may be explicitly included in a user designated reference row of type (2) or otherwise supplied
or generated. The dichotomy generated by (6) or (7), or (8), is then available as one of the choices in the
branch and bound algorithm. The actual branches take the form of adjusting the first and last members
of the set permitted to be nonzero, in the same way that lower and upper bounds of integer variables are
modified.

The initial branching strategies implemented in UMPIRE, for both ordinary integer variables and SOS,
were essentially the same as those implemented in LP/90/94— depth first (LIFO) search coupled with use
of penalties to choose branching variable and branch. These were initially successful, but as problems grew
larger and more complex, the limitations of these strategies became apparent. Even though the original
penalties(see Beale (1968), Driebeck (1966)) could be slightly strengthened (Tomlin (1970)), they were
often not even of the same order of magnitude as the actual degradation in the objective function when
a branch was made on the variable. J.P.H Hirst of British Petroleum (which at that time owned Scicon)
suggested new branching strategies (Forrest et al (1974)). These included abandonment of the LIFO
strategy (since random access store could now be used to store the tree), and use of the “Best Projection
(BP)” criterion, for evaluating nodes, later generalized to “pseudocosts” (Benichou et al (1977)). These
techniques considerably extended the problem solving power of UMPIRE and it became dominant in the
UK service bureau environment of its day. A version was also developed for use by Computer Science
Corporation (CSC) for use with their time-sharing system in the US.

3 SCICONIC and Global Optimization

UMPIRE had been written for the Univac 1108 computer system. As this became obsolescent, Scicon
developed a new Mathematical Programming System, SCICONIC, again under direction of Martin Beale,
the bulk of the actual implementation being carried out by J.J.H. Forrest, and subsequently R.C. Daniel.

SCICONIC omitted GUB, which had heavily influenced the design of UMPIRE, but introduced a num-
ber of new discrete features, including semi–continuous variables (variables required to be either zero or in
some positive interval), several new bound types in the input, and a much more elaborate treatment of SOS
intended to enable the global optimization of separable functions. This work was described in two papers
by Beale and Forrest(1976, 1978), and carries through the early work done on separable programming,
with automatic refinement (Beale (1968, 1970)) to the non-convex case.

In addition to new methods for interpolating non-convex functions (so that S2 sets could be refined),
this work introduced a new idea which seems to have virtually disappeared. This was the idea of “pseudo
shadow prices”, for branch choice with SOS. Essentially this idea generalized pseudo-costs, which are very
effective for ordinary integer variables, but not so obviously applicable to SOS (Forrest et al (1974)).
Pseudo-costs were developed because the penalties previously used for branching seriously underestimated

4

the cost of removing integer infeasibilities. Now in principle, if an SOS (say of type S2) is unsatisfied, the
LP relaxation will have constructed a convex combination of members of the set, aU (wk),which we can
think of as the contribution of the kth set for the interpolated value wk defined by the reference row. If
we evaluate the set correctly (without linear interpolation) at wk we would obtain a representative column
aC(wk). If the shadow prices of the LP relaxation are πi, then we might estimate the change in objective
when the set is satisfied to be:

n∑
i=1

(aU
i (wk)− aC

i (wk))πi

This idea is attractive in the same way as penalties are attractive—it uses data (the πi) which fall out of
the LP relaxation—but suffers from a similar weakness. The πi give only the cost of infinitesimal changes,
which may be small or even zero, when the cost of a significant change is required. Beale therefore
proposed using “pseudo shadow prices” p+

i and p−i to estimate the cost per unit change (up or down)
of each (aU

i (wk) − aC
i (wk)). We shall not go into further detail here (see Beale and Forrest (1976)) and

Beale (1985)), but point out that the new S2 set facilities enabled SCICONIC to effectively solve some
challenging global optimization problems arising in the oil industry (Beale and Forrest (1978)).

4 Further development of Special Ordered Sets

The SOS set concept has proved remarkably amenable to extensions. The developers of MPSX/370 (see
Benichou et al (1977)) generalized the zero—one multiple—choice concept to cover variables satisfying∑

j∈J

δj −
∑
h∈H

δh = 1− |H|

and called them “special ordered set”, though they really have a rather tenuous connection. These are
now sometimes known as Special Ordered Sets of type 3 (S3 sets). Several practitioners also realized that
additional branching power could by gained by allowing SOS to overlap.

Extension of the SOS concept beyond separable nonlinearities was to prove a major theme in Beale’s
work in his later years. Working with R.C. Daniel and J.J.H. Forrest, Beale proposed “Linked Ordered
Sets” as a means of globally optimizing problems containing product terms xufu(yj) (see Beale (1979, 1980),
Beale and Daniel (1979)). Even more general application of the SOS concept proved possible. Extension
to non-separable non-convex functions via simplicial sub-division is proposed in Tomlin (1981). In his
last published paper on integer programming, Beale (1985) described an alternative approach—“Chains of
Linked Ordered Sets”—actually implemented in SCICONIC/VM. Again we shall not go into more detail
here, but observe that these further developments of SOS were inspired, as was so much of Beale’s work,
by the desire to solve real world customer problems more effectively.

5 Conclusion

E.M.L. Beale made many seminal contributions to Mathematical Programming, but one of his most im-
portant must surely be the early practical implementation of integer programming by branch and bound,
and the subsequent development of so many powerful extensions of the branch and bound concept to other
discrete and non-convex domains. These ideas were also notable for their real-world implementation in
commercial mathematical programming systems and their application to customer problems. We are proud
to have been his colleagues in some of these endevours.

5

References

[1] Beale, E.M.L. (1963). ”Two transportation problems”, in Proceedings of the Third International Confer-
ence on Operational Research, (G. Kreweras and G. Morlat, eds.), Dunod, Paris and English Universities
Press, London, 780–788.

[2] Beale, E.M.L. (1968). Mathematical Programming in Practice, Pitman’s, London, and Wiley, New
York.

[3] Beale, E.M.L. (1970). “Advanced algorithmic features for general mathematical programming systems”,
in Integer and Nonlinear Programming, (J. Abadie, ed.), North Holland, Amsterdam, 119–137.

[4] Beale, E.M.L. (1979). “Branch and bound methods for mathematical programming systems”, Annals
of Discrete Mathematics 5, 201–219.

[5] Beale, E.M.L. (1980). “Branch and bound methods for numerical optimization of non-convex functions”,
COMPSTAT 80 Proceedings in Computational Statistics, (M.M. Barritt and D. Wishart, Eds.), 11–20.

[6] Beale, E.M.L. (1985). “Integer programming”, in Computational Mathematical Programming, (K.
Schittkowski, ed.), NATO ASI Series F: Computer and System Sciences, Vol. 15, Springer-Verlag, Berlin,
1–24.

[7] Beale, E.M.L. and R.C. Daniel (1979). “ Chains of linked ordered sets: A new formulation for product
terms”, Presented at the 10th International Symposium on Mathematical Programming, Montreal.

[8] Beale, E.M.L. and J.J.H. Forrest (1976). “ Global optimization using special ordered sets”, Math. Prog.
10, 52–69.

[9] Beale, E.M.L. and J.J.H. Forrest (1978). “ Global optimization as an extension of integer programming”,
in Towards Global Optimization 2, (L.C.W. Dixon and G.P. Szego, Eds.), 131–149, North Holland,
Amsterdam.

[10] Beale, E.M.L. and R.E. Small (1965). “Mixed integer programming by a branch and bound technique”,
Proc. of the IFIP Congress 1965, (W.A. Kalenich, Ed.), 450–451, MacMillan, London and Spartan Press,
Washington, DC.

[11] Beale, E.M.L., and J.A. Tomlin (1970). “ Special facilities in a general mathematical programming
system for non-convex problems using ordered sets of variables”, in Proceedings of the Fifth International
Conference on Operational Research, (J. Lawrence, ed.), Tavistock Publications, London, 447-454.

[12] Benichou, M., J.M. Gauthier, G. Hentges, and G. Ribière (1977). “The efficient solution of large-scale
linear programming problems — some algorithmic techniques and computational results”, Math. Prog.
13, 280–322.

[13] Dantzig, G.B. (1963). Linear Programming and Extensions, Princeton University Press, Princeton,
NJ.

[14] Driebeck, N.J. (1966). “An algorithm for the solution of mixed integer programming problems”, Man-
agement Sci. 12, 576–587.

[15] Forrest, J.J.H., J.P.H. Hirst and J.A. Tomlin (1974). “Practical solution of large mixed integer pro-
gramming problems with UMPIRE”, Management Sci. 20, 736–773.

6

[16] Gomory, R.E. (1963). “An algorithm for integer solutions to linear programs”, in Recent Advances in
Mathematical Programming (R.L. Graves and P. Wolfe, Eds.), McGraw-Hill, NY, 269–302.

[17] Gomory, R.E. (1991). “Early integer programming”, in History of Mathematical Programming (J.K.
Lenstra et al., Eds.), North Holland, Amsterdam, 55–61.

[18] Land, A.H. and A.G. Doig (1960). “An automatic method for solving discrete programming problems”,
Econometrica 28, 497–520.

[19] Markowitz, H.M. and A.S. Manne (1957). “On the solution of discrete programming problems”, Econo-
metrica 25, 84–110.

[20] Martin, G.T. (1963). “An accelerated Euclidean algorithm for integer linear programming”, in Recent
Advances in Mathematical Programming (R.L. Graves and P. Wolfe, Eds.), McGraw-Hill, NY, 311–317.

[21] Shaw, M. (1969). “Review of computational experience in solving large mixed integer programming
problems”, in Applications of Mathematical Programming Techniques (E.M.L. Beale, Ed.), English
Universities Press, London, 406–412.

[22] Tomlin, J.A. (1970). “Branch and bound methods for integer and non-convex programming”, in Integer
and Nonlinear Programming, (J. Abadie, ed.), North Holland, Amsterdam, 437–450.

[23] Tomlin, J.A. (1981). “A suggested extension of special ordered sets to non-separable non-convex
programming problems”, in Studies on Graphs and Discrete Programming, (P. Hansen, ed.), North
Holland, Amsterdam, 359–370.

[24] Tomlin, J.A. (1988). “Special ordered sets and an application to gas supply operations planning”,
Mathematical Programming 42, 69–84.

7

