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1.1 Introduction 
 
Performance of magnetic disks has not increased as rapidly as other elements of a 
computer system such as processor, memory, and network speed. However, it remains 
difficult to identify when and how storage performance is affecting application 
performance. The low cost of memory and attention to caching strategies has helped 
compensate for the speed of the raw storage device. Applications are seldom 
instrumented to monitor the I/O or processor component of their work. Operating system 
instrumentation often provides data on other aspects of application progress such as user 
and kernel space CPU consumption and page faults. But it is difficult to isolate the 
contribution of storage to application performance using statistics reported by the 
operating system. We attempt to improve this situation by combining metrics taken at 
several layers of the operating system to quantify how storage performance is degrading 
an application. A central goal is to develop relations that quantify the impact of a storage 
device on applications and on the operating system. These relations should produce 
figures of merit that can be used to identify and predict performance bottlenecks. Ideally 
these are dimensionless and scalable so that they can be easily applied across 
heterogeneous systems. Additionally we would like to predict whether an increase in disk 
performance or change in configuration such as raid level would improve application 
response.  
 
The types of data collected and analysis developed for this problem can also be applied to 
problems such as detecting storage contention by unrelated applications inadvertently 
sharing a common disk or data path such as fiber link to a storage area networked (SAN) 
device. A related problem is to define the baseline storage workload. Workload intensity 
and distribution among parameters such a reads, writes, sizes, sequential fraction, varies 
with time of day, week or month. Application related storage problems should be 
diagnosed within the context of the acceptable workload. For example, some applications 
have periods of operation during which extensive database updates occur. The 
performance of this I/O bound workload component is largely limited by storage. 
However, this does not necessarily mean it is worth a major investment in new storage. 
This decision is based on a combination of policy, economics and technical factors.  The 
results here should help forecast the outcome of upgrading a storage device. 
 
Our initial focus is to understand how storage performance is manifest at several layers of 
the operating system and application. There are two broad areas of this work. 1) Find the 
dependencies between system, application, and storage layers. 2) Develop techniques and 
figures of merit to quantify the performance related aspects of the dependencies. We want 
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to do this in a minimally intrusive way, relying on existing or near horizon operating 
system instrumentation. 
 
 

1.2 Scope of applicability 
The study is relevant to applications and operating systems containing the common 
architectural layers outlined in Figure 1. These include the physical device, logical 
volume, logical file system, and application layers. The physical device layer refers to the 
performance by the software driver associated with a host bus adapter (HBA). The HBA 
may be accessing direct attached storage or a remote device such as a logical disk 
exported on a storage area network. The logical volume is a software element that 
represents block storage. The logical volume is mapped onto one or more physical disk 
partitions. The mapping may specify an access strategy such as stripping or a RAID level. 
The logical volume may also queue I/O requests and perform some optimization such as 
splitting or coalescing sequential requests. The file system is installed on a logical 
volume to impose directory and file structure on the block device. The file system 
typically provides or manages services such as a cache and read ahead strategy. 
Applications access storage through either the file system or the logical volume. 
Historically, databases have accessed the logical volume and provide their own cache and 
read-ahead strategies.  Alternatively, operating systems such as AIX and Windows 
provide modes of file system access that bypass the file system cache. Thus, it is 
becoming more common for databases to use the file system thus simplifying 
management issues. 
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Figure 1 Layout of managed system with direct attached storage and storage area network volumes. 
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Applications can be distributed; SAN and NAS storage resources can be shared with 
many operating system images. We would like to extend the analysis to find bottlenecks 
and contention for storage resources across physical system boundaries.  
 
 
 

1.3 Prior Work 
Studies of hard disk performance measure properties of physical storage devices such as 
seek and transfer time. System oriented benchmarks report performance of a benchmark 
program executing at the logical file system level. Throughput and latency are typically 
measured while the benchmark varies parameters such as I/O size, concurrency, or 
fraction of sequential requests. This study extends this work by collecting data from 
mulitple levels of the system.   
 

1.4 Experimental Setup 
 
A key factor of the design of the experimental setup was flexibility.   That is, not all was 
known up front (as is always the case) and therefore such design components such as the 
data collection methods and database schema needed to be extensible without requiring a 
major development effort to add new types of metrics and properties to the data gathered.   
 

1.4.1 Design Overview 
 

Configuration, dependency, and performance data from different levels of the system 
indicated below are stored in a central repository.  
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Figure 2 Overview of Data Collection 

 
Performance data is collected from each managed object using a sensor. The relation 
between managed objects is discovered using a configuration sensor. Some detail of the 
sensor software we have for AIX is provided in Figure 2 
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Figure 3 Pub/Sub Model for Data Collection 
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Data flow in the system from the sensors to the central data repository is implemented on 
a pub/sub infrastructure using IBM’s Gryphon implementation of Java Messaging 
Services (see Figure 3).   The sensors publish on topics to which the repository 
subscribes. This provides content based rather than location based information flow. This 
feature facilitates the introduction of new high- level modules that selectively monitor 
data and makes a very modular communications architecture. 

Figure 4 Data collection flow using Pub/Sub 

1.4.2 Operational Database Schema 
 
The database schema is also designed to be general, supporting flexibility in extensions.  
It is intended to be used as an operational database for real-time problem determination 
and additionally to serve as input to the Tivoli Enterprise Data Warehouse for storage of 
historical data for trends analysis.    
 
The database schema is general, supporting the notion of  ‘managed systems’, each of 
which contains a set of ‘managed elements’ and their relationships. A managed object has 
two types of attributes, properties and metrics. The former are string values and the latter 
numeric values.  The actual type of any object is a property attribute, and the space of 
attributes is not restricted by the type attributes. Thus, managed objects are treated 
uniformly in the schema, i.e. not distinguished by their instance type. This schema 
permits new managed objects and object properties to be added at any time. 
 
The database schema is also designed to handle a large number of performance 
observations acquired by periodic updates by the performance sensors. This detailed 
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observation data is aggregated into summary database tables that store in condensed form 
the long-term history of the sensor metrics. 
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Figure 5. Database Schema 

1.4.3 Test SAN Environment 
We presently have a SAN environment to evaluate performance models. Figure The AIX 
host is a dual processor PowerPC3 architecture operating at 375MHz. There are two 
direct attached SCSI drives and several remote volumes mounted from a SAN. The SAN 
consists of a fiber channel switch and an Enterprise Storage Server (ESS). The ESS is 
fully configured with 96 disks and 32GB of nonvolatile cache. The lodestone storage 
consists of Fast-T disks. All devices are connected to a McData FICON switch through a 
single 1Gb fiber channel.  
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Figure 6. Present SAN configuration.  

 

1.4.4 DBench 
We use the DBench benchmark to apply load to the I/O system. DBench is the disk 
component of the NetBench performance suite. It is distributed as source code and 
compiled for AIX. A DBench process creates a directory sub tree populated with a large 
number of files. A script file defines a large number of file system operations that are 
executed against the directory and files. The profile of operations is provided in table 
Table 1. Execution is synchronous within a process, each I/O completes prior to reading 
and executing the subsequent line of the script. To increase load and generate concurrent 
operations DBench can create multiple processes using fork. The number of processes is 
specified on the command line.  
 

Table 1. Profile of DBench file operations to c library 

operation Count Time(s) 
unlink 2095 1.413 
rmdir 11 0.008 
create 10999 2.067 
read (total) 17881 7.200 
   read(<4KB) 14423 3.775 
   read(> 4KB) 3458 3.424 
write 7475 9.450 
    write(<4KB) 4756 3.819 
    write(>4KB) 2719 5.630 
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close 8356 0.136 
rename 435 0.287 
qpathinfo 7372 0.197 
qfileinfo 1849 0.028 
findfirst 3573 0.264 
 
 
We modified the DBench code to add a direct I/O option and improve the recording of 
performance data. The direct I/O option bypasses the cache in the logical file system 
(LFS) so that all reads and writes go to the disk. This makes the benchmark apply 
completely to the I/O system. We also improved the recording of performance 
information. DBench only provides a read and write throughput at the end of execution. 
Monitors of read and write times for small (<4K) and large (>4K) accesses were added to 
the base code.  Reporting was also expanded to include summary statistics on all file 
activity listed in Table 1. 
 

1.5 Results 
This report discusses our observations and conclusions based on data from a single server 
ATango.  The ATango machine has two PowerPC3 processing units operating at 
375MHz. There are two direct attached SCSI drives and several remote volumes mounted 
from a SAN. The SAN consists of a fiber channel switch and an Enterprise Storage 
Server (ESS). The ESS and host each have a single connection to the switch. Remote 
volumes are created from a RAID 5 disk group on the ESS. The ESS has 32GB of 
nonvolatile cache. Since DBench accesses about 363MB of data it is assumed that all 
accesses are through the cache (We hope to verify this using StorWatch Expert). 
 

1.5.1 Storage Response Time Analysis 
Storage performance tests are conducted by executing DBench on ATANGO using direct 
I/O (bypassing the file system cache). Raw data for several of the collected statistics is 
indicated in Figure 7. The horizontal axis is time of day. The number of concurrent 
DBench processes was incremented with time and the arrows mark the start of execution 
for the given number of concurrent processes. Each data point represents data collected in 
a 10 second interval. 
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Figure 7. Raw data from a direct attached SCSI disk. The arrows indicate the number of concurrent 
DBench processes. 

The data of Figure 7 are obtained with DBench using a direct attached SCSI disk. Figure 
8 shows the comparable data for the ESS disk.  
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Figure 8. Raw data on an ESS volume. The arrows indicate the number of concurrent DBench 
processes. 
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In each figure the top three data sets are the read time average, number of reads, and 
utilization in each 10s sample for the physical disk. (For the ESS data this means the data 
acquired by the device driver in the operating system. See Figure 1 for further 
explanation.) The subsequent 3 plots show the corresponding data for the logical volume. 
The bottom chart is the percent of I/O wait reported by the vmstat call on AIX. Wait CPU 
is the fraction of time the processor is idle but there are outstanding I/O requests. For a 
multiprocessor system the reported wait CPU is normalized by the number of processors.  
 
Some interesting features are apparent in the raw data. For both direct attached and ESS 
disks the reported hard disk utilization increases dramatically (to over 95%) prior to 
appreciable degradation in throughput for the entire test. This is not to say that utilization 
is unrelated to response. The dependence of response time on utilization is characteristic 
of a simple queuing model. However there is considerable scatter in the data. This is 
discussed below in the context of Figure 9. Furthermore, it is difficult to obtain a 
sufficiently accurate measure of utilization to use a threshold without many false 
positives.  It is a universal property of queuing models that latency is a more sensitive 
function of load than utilization. Utilization is proportional to load, while latency is 
inversely related to 1-u.  
 
The response time reported by the disk driver is provided by the upper trace in each 
figure. For direct attached storage it degrades quickly with load, by about a factor of 
three. This degradation factor coincides with the maximum queue length of three reported 
by the AIX ‘lsattr’ command. This is a fixed length queue that cannot be increased. 
The ESS performance scales much better with load.  A queue length of 32 is reported for 
this device driver. Using a single machine to drive load we were not able to significantly 
load this queue. The response times of the top trace in Figure 8 suggests a peak 
slowdown of only about two to three. However, there are difficulties in using physical 
disk driver response times as an indicator of performance. A dimensionless number is 
preferred to an absolute criterion such as a certain number of milliseconds. This issue is 
resolved by normalizing response time to the best-observed historical performance 
interval having some minimum number of disk I/O events. This is the definition of 
expansion factor for a performance measurement. The second problem is that hard disk 
response time does not clearly reflect application performance. This is clear in the data 
for the direct attached device of Figure 7. The hard disk response time reaches a 
maximum at a lower load than the response time at the logical volume. This behavior is 
apparent by comparing the first and fourth trace from the top of the figure.  
 
The logical volume layer provides a closer approximation to the response time an 
application would see. The read response at the LV plateaus with about 8 driver 
processes. We are investigating whether this result is caused by a limit on the number of 
I/O’s queued, or the number of physical buffers available for the device driver. The 
application response time continues to increase linearly with load. As at the physical 
device layer, utilization does not appear to by a reliable metric for generating alerts on 
poor I/O response. The expansion factor at the logical volume can be used as a metric for 
detecting a poor performing disk. Relying on the analogy with a simple queue one might 
expect an expansion factor of three or four is reasonably near the ‘knee’ of the M/M/1 
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queue approximation to be a good indication. In fact, where reported by the operating 
system, the current queue length should be used. 
 

 
Figure 9. Expansion factor at the logical volume as a function of the prediction of the M/M/1 queue. 
U is the utilization, and the 0.1 is an empirical factor to account for the fact that we don’t hit 100% 
utilization 

 
To extend this investigation, Figure 9 compares the expansion factor (queue wait time) at 
the logical volume with the prediction of the M/M/1 model. The horizontal axis is the 
queue length that M/M/a predicts based on the utilization of the logical volume. The 
assumption is that the average queue wait time is proportional to u/(1 – u + overhead). 
The overhead is an empirical number because we know the queue is not infinite when 
AIX reports 100% utilization. The vertical axis is the normalized read times. From 
properly analyzed historical data in our operational database it may be possible to apply a 
heuristic model and deduce a target expansion factor (or internal queue length) at which 
to report application performance on this logical volume may be degrading. That is, 
provide a more erudite threshold for basing alerts than can be achieved from the 
utilization. 
 

1.5.2 Multi-Level Response Analysis 
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It is more interesting to explore how the data from multiple levels can be combined to 
improve the analysis. The expansion factor for the hard disk and logical volumes is 
broken out in upper two traces of Figure 10. The bottom trace shows the ratio of the 
expansion factor at the logical volume to the physical disk. When this ratio exceeds unity, 
delay at the physical disk driver is causing a backup to the logical volume. It is 
suggestive that when this ratio exceeds five, utilization and processor wait time are nearly 
100%. 
 

 
Figure 10. Expansion factors for direct attached storage and logical volume corresponding to Figure 
7. The lower trace is the ratio of the expansion factors at the logical volume to the physical driver. 
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Figure 11. Expansion factors for direct attached storage and logical volume corresponding to Figure 
8. The lower trace is the ratio of the expansion factors at the logical volume to the physical driver. 

 
The comparable ESS data is presented in Figure 11.The ESS results are interesting 
because of the effect the improved physical disk speed and scalability has at the logical 
volume and, by inference, application layer. ESS improves the minimum read time at the 
physical layer by slightly more than three. Maximum throughput increases by about the 
same ratio. As with a direct attached disk, the physical layer performance degrades until 
reaching a slowdown of about three. The limiting response time occurs around 16 
concurrent processes rather than 4. However, the expansion factor at the logical volume 
is much lower for the ESS than for the direct attached disks. Although the physical disk 
driver reports saturation, the expansion factor at the logical volume is about three. An 
important observation is that a modest improvement in response at the physical disk 
reduced the expansion factor at the logical volume by about an order of magnitude at 
high load. We believe much of the improvement is attributable to the parallelism in the 
SAN ficon channel. For direct attached storage, all requests are queued at the disk. The 
SAN ficon connection allows up to 8 requests in parallel. At the ESS the requests are 
serviced from the cache. Thus most of the SAN response time is in the fiber connection. 
Therefore, the ability to issue parallel requests greatly increases the throughput while the 
latency is essentially constant. This hypothesis is being further investigated by adding 
StorWatch expert to the ESS.  A further goal is to define a set of archetype classes of 
storage workload. For each class we can model the potential benefit of a given 
improvement in storage level performance. Based on the workload profile of an 
application the benefit of an improvement in storage can be determined. Related 
discussion is included in sections 1.5.4 and 1.5.5. 
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1.5.3 Contention and Hotspot Detection 
These data suggest some approaches to disk contention and hotspot detection between 
applications running on different hosts that share common storage through a storage 
network. Contention can apply to any resource in the SAN, such as interconnects, 
switches, caching devices, or read disks. Contention is characterized by increased latency 
at low throughput. By this we mean that the latency exceeds that expected based on 
historical data relating throughput and latency. The key challenge is to how to aggregate 
and categorize historical performance data to quickly detect anomalous performance 
degradation. 

1.5.4 Effect on Application and Processor Utilization 
A decrease in storage performance as seen by the logical volume I/O performance does 
not mean that application is affected proportionally. Applications that have child 
processes or are multi- threaded may do asynchronous I/O or processor intensive work in 
parallel with I/O. They or the file system may do read-ahead to reduce the impact of 
storage performance. Operating systems do not measure I/O wait cycles on a per process 
basis. Some insight can be gained from the aggregate values reported for the system as a 
whole. It is difficult to assess the storage impact on an application that is storage 
intensive, but not I/O bound. And a figure of merit for storage should be combined with 
the wait I/O time data to provide an enhanced threshold to signal an alert. Figure 12shows 
the measures of processor utilization for the DBench data with ESS of Figure 8.  
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Figure 12. OS processor state for the ESS storage 

To understand the wait CPU trace (Bottom trace in the figure) the first activity at about 
11:20 is a single DBench process. The wait CPU is about 30%. Since this is a dual 
processor machine that suggests that on average a DBench processes is about 60% I/O 
and 40% processor on this machine. Two concurrent processes cause the wait I/O to go to 
60% as each CPU is executing a DBench process. As additional processes are added, 
parallel CPU and I/O activity occur and CPU wait begins to decrease.  User and kernel 
CPU activity increase, indicating significant processor work executing in parallel with the 
I/O. In fact, the system becomes processor bound at about 16 processes. The reason for 
this change compared to same process using direct attached storage is that the proportion 
of processor to I/O time is increased and storage is no longer a bottleneck. Furthermore, 
the system is better optimized since both I/O and processor subsystems are fully utilized. 
It would clearly be useful to identify systems and classes of application workload that 
would benefit from faster storage.  

1.5.5 Workload Profiling 
To quantify the va lue of improved storage on systems and applications it is important to 
identify the I/O and system state. I/O state is parameterized by many variables such as 
I/O rate, write/read ratio, request size, and sequential fraction. System state is concerned 
with the processor utilization on both an application and aggregate scale. The time 
dimension is also important. If a system is I/O bound for a short period during the day the 
value in upgrading the storage system may be minimal. Also, if I/O bound intervals 
overlap consistently by time of day for several applications it is may be possible to 
improve performance by rescheduling rather than hardware upgrades. To identify these 
states we can plot the performance data in the multidimensional workload space and 
attempt to find patterns of activity where storage is a factor. A simple example from the 
data collected in this paper is shown in Figure 13. 
 



 17 

 

Figure 13. The workload profiles for the direct and ESS storage systems over a short period of the 
day are displayed in the scatter plot. The largest percentage of ESS accesses did not cause significant 
wait CPU time. 

 
Each point is a sample of the workload space of the system. The data collection duration 
represents two periods of several hours. One sample period DBench was executed against 
direct attached storage (‘x’ markers), and the other against ESS (‘diamond’ markers). The 
density of data points shows a clear distinction in profile between the two periods of the 
day. The idea is to extend the analysis to include 24 hours of data and use analytic 
methods such as cluster detection to identify workload patterns by time of day or day of 
week. These patterns are combined with simple models and system data to quantify the 
potential benefit at the application or system level of improving storage performance. 
Such analysis may also be used to identify storage contention, or anomalous utilization of 
the system. Historical trending of the pattern data may also be useful in capacity planning 
or reconfiguration to optimize resource utilization. 
 

1.6 Dependency 
 
System dependency relations are important for identifying storage bottlenecks. Some of 
our conceptual work is outlined here. We have implemented system configuration 
mapping on Unix for the archetype operating and storage system layers discussed in this 
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paper. When storage is network attached it is important to extend this map into the 
network. 
 
We consider dependency relations between nodes in a graph as shown below. The nodes 
in the graph are classified into logical levels of an operating system and the dependencies 
are between elements at different levels. There are two perspectives for dependence 
relations between elements of a software or storage system. Structural dependency is how 
elements are interconnected in a static sense. The structural dependency graph is obtained 
from knowledge of system components. The dependencies are linear and the weights 
connecting nodes for the structural dependency graph are restricted to the binary set [0,1]. 
Dynamic or quantitative dependency is how data or control flows between elements as 
they are used. There are separate dynamic dependency graphs corresponding to each 
metrics accumulated at a node. For example, read counts, write counts, and read times 
produce different dependency strengths. Furthermore, the relations may not be linear, and 
we may be interested in relations between different metrics at each level such as response 
time at the LV as a function of read rates at the PV. The direction of flow (e.g. LV to PV 
or PV to LV) also produces different dependency relations.  
 

Dependency Graphs
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Figure 14. Example of a dependency graph for storage. 

1.7 Conclusion 
? It is erroneous to rely on disk utilization to indicate storage bottlenecks. 
? The LV layer response combined with system wait I/O time may give a better 

figure of merit for determining application sensitivity to storage 
? Standard deviation of response is useful measure of response bottlenecks. We 

observe good correlation at LV and PV layers between std and avg response time 
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