IBM Research Report

Gersgorin Variations II: On Themes of Fan and Gudkov

Alan J. Hoffman
IBM Research Division
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

GERSGORIN VARIATIONS II: ON THEMES OF FAN AND GUDKOV

ALAN J. HOFFMAN *

Dedicated to Charles A. Micchelli, in celebration of his 60th birthday
and our 30 years of friendship

Abstract

Assume $F=\left\{f_{1}, \cdots, f_{n}\right\}$ is a family of nonnegative functions of $n-1$ nonnegative variables such that, for every matrix A of order $n,\left|a_{i i}\right|>f_{i}$ (moduli of off-diagonal entries in row i of A) for all i implies A nonsingular. We show that there is a positive vector x, depending only on F, such that for all $A=\left(a_{i j}\right)$, and all $i, f_{i} \geqq \sum_{j}\left|a_{i j}\right| \frac{x_{j}}{x_{i}}$. This improves a theorem of Ky Fan $[\mathrm{F}]$, and yields a generalization of a non-singularity criterion of Gudkov [Gu].

1. Introduction. If a complex matrix $A=\left(a_{i j}\right)$ satisfies

$$
\begin{equation*}
\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right| \text { for all } i \tag{1.1}
\end{equation*}
$$

then A is nonsingular. This famous Levy-Desplanques sufficient condition for nonsingularity $[\mathrm{L}]$ is equivalent to the more famous Gersgorin theorem [Ge]: every eigenvalue of A lies in

$$
\begin{equation*}
\bigcup_{i}\left\{z| | a_{i i}-z\left|\leqq \sum_{j}\right| a_{i j} \mid\right\} . \tag{1.2}
\end{equation*}
$$

There are many many generalizations and adumbrations of (1.1) and (1.2), and we have decided to call them Gersgorin Variations [Ho4]. In this paper, we recall a variation due to Gudkov [Gu], another variation due to Ostrowski [O], and combine them.

[^0]Gudkov defines inductively

$$
\left\{\begin{align*}
R_{1}(A) & =\sum_{j>1}\left|a_{i j}\right| \tag{1.3}\\
R_{k}(A) & =\sum_{j<k}\left|a_{k j}\right| \frac{R_{j}(A)}{a_{j j}}+\sum_{j>k}\left|a_{k j}\right|, \quad k=2, \cdots, n
\end{align*}\right.
$$

His theorem states: if

$$
\begin{equation*}
\left|a_{i i}\right|>R_{i}(A) \text { for } i=2, \cdots, n \tag{1.4}
\end{equation*}
$$

then A is nonsingular. Since (1.1) implies (1.4), Gudkov's theorem implies LevyDesplanques.

Ostrowski proved many generalizations of Levy-Desplanques, among them [O]: if

$$
\left\{\begin{array}{l}
p>0, q>0, \frac{1}{p}+\frac{1}{q}=1, \sum \frac{1}{1+\alpha_{i}^{q}} \leqq 1, \text { and } \tag{1.5}\\
\left|a_{i i}\right|>\alpha_{i}\left(\sum_{j \neq i}\left|a_{i j}\right|^{p}\right)^{\frac{1}{p}} \text { for all } i,
\end{array}\right.
$$

then A is nonsingular.

Our aim is to prove a theorem which extends (1.5)-indeed a considerable generalization of (1.5)-in the same way that (1.4) extends (1.1). Before stating this extension, we need a definition.

A family $F=\left\{f_{1}, \cdots, f_{n}\right\}$ of nonnegative functions of the moduli of the offdiagonal entries of a complex matrix of order n is a "G-function" (G for Gersgorin) if for every matrix $A,\left|a_{i i}\right|>f_{i}(A)$ for all i implies A nonsingular (the concept was introduced in [N] and named in [Ho1]. See also [NT, Ho2, Ho3, CV], and [HV]). F is a "row G-function" if, for all i, f_{i} depends only on the moduli of the off-diagonal entries in A_{i} (the i th row of A).

Theorem 1.1. Let $F=\left\{f_{i}, \cdots, f_{n}\right\}$ be a row G-function, A a matrix of order 2
n. Define

$$
\left\{\begin{align*}
F_{1}(A)= & f_{1}\left(\left|a_{12}\right|, \cdots,\left|a_{1 n}\right|\right) \tag{1.6}\\
F_{k}(A)= & f_{k}\left(\left|a_{k 1}\right| \frac{F_{1}(A)}{\left|a_{11}\right|}, \cdots,\left|a_{k, k-1}\right| \frac{F_{k-1}(A)}{\left|a_{k-1, k-1}\right|}\right. \\
& \left.\left|a_{k, k+1}\right|, \cdots,\left|a_{k n}\right|\right), k=2, \cdots, n
\end{align*}\right.
$$

If

$$
\begin{equation*}
\left|a_{i i}\right|>F_{i}(A) \text { for } i=2, \cdots, n \tag{1.7}
\end{equation*}
$$

then A is nonsingular.
Theorem 1.1 is a consequence of theorem 1.2, which is an improvement of a theorem of Ky Fan ${ }^{1}[\mathrm{~F}]$.

Ky Fan proved (see also $[\mathrm{CH}]$) that if $F=\left\{f_{1}, \cdots, f_{n}\right\}$ is a G-function, then for every matrix A, there exists a positive vector x such that

$$
\begin{equation*}
f_{i}(A) \geqq \sum_{j \neq i}\left|a_{i j}\right| \frac{x_{j}}{x_{i}}, \quad i=1, \cdots, n \tag{1.8}
\end{equation*}
$$

We shall show that if F is a row G-function (so that we may write $f_{i}\left(A_{i}\right)$ instead of $\left.f_{i}(A)\right)$, then the order of the quantifiers preceding (1.8) can be interchanged.

Theorem 1.2. If F is a row G-function, then there is positive vector x such that

$$
\begin{equation*}
\text { for every } A, f_{i}\left(A_{i}\right) \geqq \sum_{j \neq i}\left|a_{i j}\right| \frac{x_{j}}{x_{i}}, \quad i=1, \cdots, n \tag{1.9}
\end{equation*}
$$

2. Proof of Theorem 1.2. We shall call a function f monotone if $f(x) \leqq f(y)$ wherever $x \leqq y$.

Lemma 2.1. Let $F=\left\{f_{1}, \cdots, f_{n}\right\}$ be a row G-function, and let

$$
\begin{equation*}
\bar{f}_{i}\left(A_{i}\right)=\inf f_{i}\left(B_{i}\right):\left|b_{i j}\right| \geqq\left|a_{i j}\right|, i \neq j ; i, j=1, \cdots, n, \tag{2.1}
\end{equation*}
$$

[^1]then
\[

$$
\begin{equation*}
\bar{F}=\left\{\bar{f}_{1}, \cdots, \bar{f}_{n}\right\} \text { is a row G-function; } \tag{2.2a}
\end{equation*}
$$

\]

$$
\begin{gather*}
\bar{f}_{i} \text { is monotone, } i=1, \cdots, n, \tag{2.2b}\\
f_{i} \geqq \bar{f}_{i}, i=1, \cdots, n
\end{gather*}
$$

Since (2.2b) and (2.2c) are immediate from (2.1), all we need prove is (2.2a). Let $\epsilon>0$ be given. Then $\bar{f}_{i}\left(A_{i}\right)>f_{i}\left(B_{i}\right)-\frac{\epsilon}{2}$ for some B_{i} with $b_{i j} \geqq\left|a_{i j}\right|, i \neq j, i, j=$ $1, \cdots, n$ from (2.1). So $\bar{f}_{i}\left(A_{i}\right)+\epsilon>f_{i}\left(B_{i}\right)+\frac{\epsilon}{2}, i=1, \cdots, n$. Let B be the matrix with off-diagonal rows B_{1}, \cdots, B_{n}. By (1.8), there is a positive vector $x\left(\frac{\epsilon}{2}\right)$ such that, for all i,

$$
\begin{equation*}
\bar{f}_{i}\left(A_{i}\right)+\epsilon>f_{i}\left(B_{i}\right)+\frac{\epsilon}{2}>\sum_{j \neq i}\left|b_{i j}\right| \frac{x_{j}}{x_{i}} \geqq \sum_{j \neq i}\left|a_{i j}\right| \frac{x_{j}}{x_{i}} \tag{2.3}
\end{equation*}
$$

Rewrite (2.3) as

$$
\begin{equation*}
x_{i}\left(\bar{f}_{i}\left(A_{i}\right)+\epsilon\right) \geqq \sum_{j \neq i}\left|a_{i j}\right| x_{j} . \tag{2.3a}
\end{equation*}
$$

Since (2.3a) is homogeneous, we may assume $x \in S_{n}$, the simplex of all nonnegative vectors $x=\left\{x_{1}, \cdots, x_{n}\right\}$ with $\sum x_{j}=1$. In (2.3a) the vector $x=x\left(\frac{\epsilon}{2}\right)$. Choose a sequence of ϵ 's tending to 0 such that the corresponding $x=x\left(\frac{\epsilon}{2}\right)$ converge, say to \bar{x}. Then (2.3a) becomes

$$
\begin{equation*}
\bar{x}_{i} \bar{f}_{i}\left(A_{i}\right) \geqq \sum_{j \neq i}\left|a_{i j}\right| \bar{x}_{j} \tag{2.3b}
\end{equation*}
$$

Now each \bar{x}_{i} is different from 0 . If, for example $\bar{x}_{1}=0$, then some $\bar{x}_{k}>0$, because $\bar{x} \in S_{n}$. Then (2.3b) would assert(if $\left.\left|a_{1 k}\right| \neq 0\right)$

$$
0 \geqq \sum_{j \neq i}\left|a_{i j}\right| \bar{x}_{j} \geqq\left|a_{1 k}\right| \bar{x}_{k}>0
$$

a contradiction. Hence (2.3b) holds for all i, and each $\bar{x}_{i}>0$. This prove

$$
\begin{equation*}
\bar{f}_{i}\left(A_{i}\right) \geqq \sum_{j \neq i}\left|a_{i j}\right| \frac{\bar{x}_{j}}{\bar{x}_{i}} \tag{2.3c}
\end{equation*}
$$

Let X be the diagonal matrix whose entries are taken from the vector x. From (2.3c), we see that

$$
\left|a_{i i}\right|>\bar{f}_{i}\left(A_{i}\right) \geqq \sum_{j \neq i}\left|a_{i j}\right| \frac{\bar{x}_{j}}{\bar{x}_{i}} \quad \text { for all } i
$$

implies, from (1.1), that $X^{-1} A X$ is nonsingular. Therefore, $\bar{F}=\left\{\bar{f}_{1}, \cdots, \bar{f}_{n}\right\}$ is a row G-function, since $X^{-1} A X$ nonsingular means A is nonsingular. So lemma 2.1 is true.

We prove Theorem 1.2 by induction on n. The theorem is trivially true if $n=1$. Further, reasoning as in the proof of Lemma 2.1, all we need prove is that there exists $x \in S_{n}$ such that, for all i and A_{i},

$$
\begin{equation*}
\bar{f}_{i}\left(A_{i}\right) x_{i}-\sum_{j \neq i}\left|a_{i j}\right| x_{j} \geqq 0, \tag{2.4}
\end{equation*}
$$

since $f_{i} \geqq \bar{f}_{i}$ by (2.2c).
Now, for each $i,(2.4)$ asserts that x lies in the intersection of an infinite set of closed half-spaces; and, considering all i, we must show x is in the intersection of n infinite sets of closed half-spaces. These half-spaces are closed convex sets, and we will invoke Helly's theorem([He], see [DGK] for a wonderful discussion). One form of Helly's theorem asserts that if $\left\{K_{\alpha}\right\}$ is a(possibly infinite) family of closed convex sets of a compact region of Euclidean m-space, then $\bigcap_{\alpha} K_{\alpha} \neq \emptyset$ if, for every $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m+1}, \bigcap_{1}^{m+1} K_{\alpha_{i}} \neq \emptyset$. Since S_{n} is a compact region of Euclidean $n-1$ space, all we need prove is that, given any n inequalities of (2.4), they are satisfied by some $x \in S_{n}$.

Suppose that the row indices of the n inequalities are all distinct. Then (2.4) holds because of Ky Fan's theorem, (1.8).

Suppose that the row indices are a proper subset $T=\{1,2, \cdots, n\}$. For ease of notation, assume $T=\{1,2, \cdots, m\}, m<n$. Let B be a matrix of order n which is the leading principal submatrix of a matrix A of order n, and where every diagonal entry of A is nonzero and every off-diagonal entry of A not in B is 0 . Define, for $i=1,2, \cdots, m, \bar{f}_{i, m}\left(B_{i}\right)$ to be $\bar{f}_{i}\left(A_{i}\right)$ of the aforementioned A. Since A is nonsingular if and only if B is nonsingular, if follows that $\left\{\bar{f}_{1, m}, \cdots, \bar{f}_{m, m}\right\}$ is a row G-family of order m. Using the induction hypotheses and (2.2b), the n inequalities in this case of (2.4) are also consistent. This completes the proof of Theorem 1.2.
3. Proof of Theorem 1.1. Let x be the positive vector (from Theorem 1.2) satisfying (1.9) and (2.4), and let X be the diagonal matrix whose diagonal entries come from X. We shall show that, for each k,

$$
\begin{equation*}
F_{k}(A) \geqq R_{k}\left(X^{-1} A X\right) \tag{3.1}
\end{equation*}
$$

from which Theorem 1.1 follows at once. We prove (3.1) by induction on k.
If $k=1,(3.1)$ is (1.9) for $i=1$. Assume (3.1) has been shown for $1,2, \cdots, k-1$. Then

$$
\begin{aligned}
\bar{F}_{k}(A) & =f_{k}\left(\left|a_{k 1}\right| \frac{F_{1}(A)}{\left|a_{11}\right|}, \cdots,\left|a_{k, k-1}\right| \frac{F_{k-1}(A)}{\left|a_{k-1, k-1}\right|} ;\left|a_{k, k+1}\right|, \cdots,\left|a_{k, n}\right|\right) \\
& \geqq \bar{f}_{k}\left(\left|a_{k 1}\right| \frac{F_{1}(A)}{\left|a_{11}\right|}, \cdots,\left|a_{k, k-1}\right| \frac{F_{k-1}(A)}{\left|a_{k-1, k-1}\right|} ;\left|a_{k, k+1}\right|, \cdots,\left|a_{k, n}\right|\right), \quad \text { by }(2.2 \mathrm{c}) \\
& \geqq \bar{f}_{k}\left(\left|a_{k 1}\right| \frac{R_{1}\left(X^{-1} A X\right)}{\left|a_{11}\right|}, \cdots,\left|a_{k, k-1}\right| \frac{R_{k-1}\left(X^{-1} A X\right)}{\left|a_{k-1, k-1}\right|} ;\left|a_{k, k+1}\right|, \cdots,\left|a_{k, n}\right|\right),
\end{aligned}
$$

by induction and (2.2b)

$$
\geqq R_{k}\left(X^{-1} A X\right), \quad \text { by }(2.4)
$$

I thank Yi Wang of Fairmont State College for his help in the preparation of this
paper.

REFERENCES

$[\mathrm{CH}] \quad$ P. Camion and A. Hoffman, On the nonsingularity of complex matrices, Pac. J. Math. 17, 211-214, 1956
[CV] D. Carlson and R. Varga, Minimal G-functions I, II Linear Algebra and Appls. 6, 97-117, 1973 and 7, 233-242, 1973
[DGK] L. Danzer, B. Grunbaum and V. Klee, Helly's theorem and its relatives, in Convexity (edited by V. Klee), Proc. Symposia in Pure Math., Amer. Math. Soc., 1963
[F] K. Fan, Note on circular disks containing the eigenvalues of a matrix, Duke Math J. 25, 441-445, 1958
[Ge] S. Gersgorin, Uber die Abgrenzung der Eigenwerte einer Matrix Izv. Akad. Nauk SSSR, Ser. Fiz.-Mat. 6, 749-754, 1931
[Gu] V. Gudkov, On a certain test for nonsingularity of matrices (Russian) Latvian Math. Yearbook 1965, 385-390 Izdat. "Zinatne", 1966
[He] E. Helly, Uber Mengen konvexer Korper mit gemeinschaftlichen Punkten, Jber. Deutsch. Math. Verein 32, 175-176, 1923
[Ho1] A. Hoffman Generalizations of Gerschgorin's theorem: G-generating families, lecture notes, University of California at Santa Barbara, 1969.
[Ho2] A. Hoffman, Linear G-functions, Linear and Multilinear Algebra 3, 45-52, 1975
[Ho3] A. Hoffman, Combinatorial aspects of Gerschgorin's theorem, Recent Trends in Graph Theory, M. Capobianco, J. Frechen and M. Krolik (editors), Lecture Notes in Mathematics 186, Springer-Verlag, 173-179, 1970
[Ho4] A. Hoffman, Gersgorin Variations I; On a theme of Pupkov and Solov'ev, Linear Algebra Appls. 304, 173-177, 2000
[HV] A. Hoffman and R. Varga, Patterns of dependence in generalizations of Gerschgorin's theorem, SIAM J. Numer. Anal. 7, 571-574, 1970
[L] L. Levy, Sur la possibilite du l'equilibre electrique, C. R. Aad. Si. Paris 93, 706-708, 1881
[N] P. Nowosad, On the functional ($1 / \mathrm{x}, \mathrm{Ax}$) and some of its applications, Ann. Acad. Brasil Ci. 37, 163-165, 1965
[NT] P, Nowosad and R. Tovar, Spectral inequalities and G-functions, Linear Algebra Appls. 31,

179-197, 1980
[O] A. Ostrowski, Uber das Nichtverschwinden einer Klasse von Determinanten und die Lokalisierung der charakteristichen Wurzeln von Matrizen, Compositio Math. 9, 209226, 1951
[T] O. Taussky, A recurring theorem on determinants, Amer. Math. Monthly 56, 672-676, 1949

[^0]: *Department of Mathematical Sciences, IBM Research Division, T. J. Watson Research Center, P.O.Box 218, Yorktown Heights, N. Y. 10598

[^1]: ${ }^{1}$ I would like this paper, whose appearance will approximate the 90 th birthday of Ky Fan, to signify my admiration for this intellectual giant, who is also a very nice man.

