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GERSGORIN VARIATIONS II: ON THEMES OF FAN AND GUDKOV

ALAN J. HOFFMAN ∗

Dedicated to Charles A. Micchelli, in celebration of his 60th birthday

and our 30 years of friendship

Abstract. Assume F = {f1, · · · , fn} is a family of nonnegative functions of n− 1 nonnegative

variables such that, for every matrix A of order n, |aii| > fi (moduli of off-diagonal entries in row i

of A) for all i implies A nonsingular. We show that there is a positive vector x, depending only on

F , such that for all A = (aij), and all i, fi =
∑

j

|aij |
xj

xi
. This improves a theorem of Ky Fan [F],

and yields a generalization of a non-singularity criterion of Gudkov [Gu].

1. Introduction. If a complex matrix A = (aij) satisfies

(1.1) |aii| >
∑

j 6=i

|aij | for all i,

then A is nonsingular. This famous Levy-Desplanques sufficient condition for nonsin-

gularity [L] is equivalent to the more famous Gersgorin theorem [Ge]: every eigenvalue

of A lies in

(1.2)
⋃

i

{
z

∣∣∣ |aii − z| 5
∑

j

|aij |
}

.

There are many many generalizations and adumbrations of (1.1) and (1.2), and we

have decided to call them Gersgorin Variations [Ho4]. In this paper, we recall a

variation due to Gudkov [Gu], another variation due to Ostrowski [O], and combine

them.
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Gudkov defines inductively

(1.3)





R1(A) =
∑

j>1

|aij |,

Rk(A) =
∑

j<k

|akj |Rj(A)
ajj

+
∑

j>k

|akj |, k = 2, · · · , n.

His theorem states: if

(1.4) |aii| > Ri(A) for i = 2, · · · , n,

then A is nonsingular. Since (1.1) implies (1.4), Gudkov’s theorem implies Levy-

Desplanques.

Ostrowski proved many generalizations of Levy-Desplanques, among them [O]: if

(1.5)





p > 0, q > 0,
1
p

+
1
q

= 1,
∑ 1

1 + αq
i

5 1, and

|aii| > αi

( ∑

j 6=i

|aij |p
) 1

p

for all i,

then A is nonsingular.

Our aim is to prove a theorem which extends (1.5)-indeed a considerable general-

ization of (1.5)-in the same way that (1.4) extends (1.1). Before stating this extension,

we need a definition.

A family F = {f1, · · · , fn} of nonnegative functions of the moduli of the off-

diagonal entries of a complex matrix of order n is a “G-function” (G for Gersgorin)

if for every matrix A, |aii| > fi(A) for all i implies A nonsingular (the concept was

introduced in [N] and named in [Ho1]. See also [NT, Ho2, Ho3, CV], and [HV]). F

is a “row G-function” if, for all i, fi depends only on the moduli of the off-diagonal

entries in Ai (the ith row of A).

Theorem 1.1. Let F = {fi, · · · , fn} be a row G-function, A a matrix of order
2



n. Define

(1.6)





F1(A) = f1

(|a12|, · · · , |a1n|
)

Fk(A) = fk

(|ak1|F1(A)
|a11| , · · · , |ak,k−1| Fk−1(A)

|ak−1,k−1| ;

|ak,k+1|, · · · , |akn|
)
, k = 2, · · · , n,

If

(1.7) |aii| > Fi(A) for i = 2, · · · , n,

then A is nonsingular.

Theorem 1.1 is a consequence of theorem 1.2, which is an improvement of a

theorem of Ky Fan 1 [F].

Ky Fan proved (see also [CH]) that if F = {f1, · · · , fn} is a G-function, then for

every matrix A, there exists a positive vector x such that

(1.8) fi(A) =
∑

j 6=i

|aij |xj

xi
, i = 1, · · · , n.

We shall show that if F is a row G-function (so that we may write fi(Ai) instead of

fi(A) ), then the order of the quantifiers preceding (1.8) can be interchanged.

Theorem 1.2. If F is a row G-function, then there is positive vector x such that

(1.9) for every A, fi(Ai) =
∑

j 6=i

|aij |xj

xi
, i = 1, · · · , n.

2. Proof of Theorem 1.2. We shall call a function f monotone if f(x) 5 f(y)

wherever x 5 y.

Lemma 2.1. Let F = {f1, · · · , fn} be a row G-function, and let

(2.1) f i(Ai) = inf fi(Bi) : |bij | = |aij |, i 6= j; i, j = 1, · · · , n,

1I would like this paper, whose appearance will approximate the 90th birthday of Ky Fan, to

signify my admiration for this intellectual giant, who is also a very nice man.
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then

(2.2a) F = {f1, · · · , fn} is a row G-function;

(2.2b) f i is monotone, i = 1, · · · , n,

(2.2c) fi = f i, i = 1, · · · , n.

Since (2.2b) and (2.2c) are immediate from (2.1), all we need prove is (2.2a). Let

ε > 0 be given. Then f i(Ai) > fi(Bi) − ε
2 for some Bi with bij = |aij |, i 6= j, i, j =

1, · · · , n from (2.1). So f i(Ai) + ε > fi(Bi) + ε
2 , i = 1, · · · , n. Let B be the matrix

with off-diagonal rows B1, · · · , Bn. By (1.8), there is a positive vector x( ε
2 ) such that,

for all i,

(2.3) f i(Ai) + ε > fi(Bi) +
ε

2
>

∑

j 6=i

|bij |xj

xi
=

∑

j 6=i

|aij |xj

xi
.

Rewrite (2.3) as

(2.3a) xi

(
f i(Ai) + ε

)
=

∑

j 6=i

|aij |xj .

Since (2.3a) is homogeneous, we may assume x ∈ Sn, the simplex of all nonnegative

vectors x = {x1, · · · , xn} with
∑

xj = 1. In (2.3a) the vector x = x( ε
2 ). Choose a

sequence of ε’s tending to 0 such that the corresponding x = x( ε
2 ) converge, say to x.

Then (2.3a) becomes

(2.3b) xif i(Ai) =
∑

j 6=i

|aij |xj

Now each xi is different from 0. If, for example x1 = 0, then some xk > 0, because

x ∈ Sn. Then (2.3b) would assert(if |a1k| 6= 0)

0 =
∑

j 6=i

|aij |xj = |a1k|xk > 0
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a contradiction. Hence (2.3b) holds for all i, and each xi > 0. This prove

(2.3c) f i(Ai) =
∑

j 6=i

|aij |xj

xi
.

Let X be the diagonal matrix whose entries are taken from the vector x. From

(2.3c), we see that

|aii| > f i(Ai) =
∑

j 6=i

|aij |xj

xi
for all i

implies, from (1.1), that X−1AX is nonsingular. Therefore, F = {f1, · · · , fn} is a

row G-function, since X−1AX nonsingular means A is nonsingular. So lemma 2.1 is

true.

We prove Theorem 1.2 by induction on n. The theorem is trivially true if n = 1.

Further, reasoning as in the proof of Lemma 2.1, all we need prove is that there exists

x ∈ Sn such that, for all i and Ai,

(2.4) f i(Ai)xi −
∑

j 6=i

|aij |xj = 0,

since fi = f i by (2.2c).

Now, for each i, (2.4) asserts that x lies in the intersection of an infinite set of

closed half-spaces; and, considering all i, we must show x is in the intersection of

n infinite sets of closed half-spaces. These half-spaces are closed convex sets, and

we will invoke Helly’s theorem( [He], see [DGK] for a wonderful discussion). One

form of Helly’s theorem asserts that if {Kα} is a(possibly infinite) family of closed

convex sets of a compact region of Euclidean m-space, then
⋂
α

Kα 6= ∅ if, for every

α1, α2, · · · , αm+1,
m+1⋂

1

Kαi 6= ∅. Since Sn is a compact region of Euclidean n − 1

space, all we need prove is that, given any n inequalities of (2.4), they are satisfied

by some x ∈ Sn.
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Suppose that the row indices of the n inequalities are all distinct. Then (2.4)

holds because of Ky Fan’s theorem, (1.8).

Suppose that the row indices are a proper subset T = {1, 2, · · · , n}. For ease of

notation, assume T = {1, 2, · · · ,m}, m < n. Let B be a matrix of order n which is

the leading principal submatrix of a matrix A of order n, and where every diagonal

entry of A is nonzero and every off-diagonal entry of A not in B is 0. Define, for

i = 1, 2, · · · , m, f i,m(Bi) to be f i(Ai) of the aforementioned A. Since A is nonsingular

if and only if B is nonsingular, if follows that {f1,m, · · · , fm,m} is a row G-family of

order m. Using the induction hypotheses and (2.2b), the n inequalities in this case of

(2.4) are also consistent. This completes the proof of Theorem 1.2.

3. Proof of Theorem 1.1. Let x be the positive vector (from Theorem 1.2)

satisfying (1.9) and (2.4), and let X be the diagonal matrix whose diagonal entries

come from X. We shall show that, for each k,

(3.1) Fk(A) = Rk(X−1AX),

from which Theorem 1.1 follows at once. We prove (3.1) by induction on k.

If k = 1, (3.1) is (1.9) for i = 1. Assume (3.1) has been shown for 1, 2, · · · , k − 1.

Then

F k(A) = fk

(
|ak1|F1(A)

|a11| , · · · , |ak,k−1| Fk−1(A)
|ak−1,k−1| ; |ak,k+1|, · · · , |ak,n|

)

= fk

(
|ak1|F1(A)

|a11| , · · · , |ak,k−1| Fk−1(A)
|ak−1,k−1| ; |ak,k+1|, · · · , |ak,n|

)
, by (2.2c)

= fk

(
|ak1|R1(X−1AX)

|a11| , · · · , |ak,k−1|Rk−1(X−1AX)
|ak−1,k−1| ; |ak,k+1|, · · · , |ak,n|

)
,

by induction and (2.2b)

= Rk(X−1AX), by (2.4) .

I thank Yi Wang of Fairmont State College for his help in the preparation of this
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paper.

REFERENCES

[CH] P. Camion and A. Hoffman, On the nonsingularity of complex matrices, Pac. J. Math. 17,

211-214, 1956

[CV] D. Carlson and R. Varga, Minimal G-functions I, II Linear Algebra and Appls. 6, 97-117,

1973 and 7, 233-242, 1973

[DGK] L. Danzer, B. Grunbaum and V. Klee, Helly’s theorem and its relatives, in Convexity (edited

by V. Klee), Proc. Symposia in Pure Math., Amer. Math. Soc., 1963

[F] K. Fan, Note on circular disks containing the eigenvalues of a matrix, Duke Math J. 25,

441-445, 1958

[Ge] S. Gersgorin, Uber die Abgrenzung der Eigenwerte einer Matrix Izv. Akad. Nauk SSSR, Ser.

Fiz.-Mat. 6, 749-754, l931

[Gu] V. Gudkov, On a certain test for nonsingularity of matrices (Russian) Latvian Math. Year-

book 1965, 385-390 Izdat. ”Zinatne” , 1966

[He] E. Helly, Uber Mengen konvexer Korper mit gemeinschaftlichen Punkten, Jber. Deutsch.

Math. Verein 32, 175-176, 1923

[Ho1] A. Hoffman Generalizations of Gerschgorin’s theorem: G-generating families, lecture notes,

University of California at Santa Barbara, 1969.

[Ho2] A. Hoffman, Linear G-functions, Linear and Multilinear Algebra 3, 45-52, 1975

[Ho3] A. Hoffman, Combinatorial aspects of Gerschgorin’s theorem, Recent Trends in Graph The-

ory, M. Capobianco, J. Frechen and M. Krolik (editors), Lecture Notes in Mathematics

186, Springer-Verlag, 173-179, 1970

[Ho4] A. Hoffman, Gersgorin Variations I; On a theme of Pupkov and Solov’ev, Linear Algebra

Appls. 304, 173-177, 2000

[HV] A. Hoffman and R. Varga, Patterns of dependence in generalizations of Gerschgorin’s theo-

rem, SIAM J. Numer. Anal. 7, 571-574, 1970

[L] L. Levy, Sur la possibilite du l’equilibre electrique, C. R. Aad. Si. Paris 93, 706-708, 1881

[N] P. Nowosad, On the functional ( 1/x, Ax) and some of its applications, Ann. Acad. Brasil

Ci. 37, 163-165, 1965

[NT] P, Nowosad and R. Tovar, Spectral inequalities and G-functions, Linear Algebra Appls. 31,

7



179-197, 1980

[O] A. Ostrowski, Uber das Nichtverschwinden einer Klasse von Determinanten und die

Lokalisierung der charakteristichen Wurzeln von Matrizen, Compositio Math. 9, 209-

226, 1951

[T] O. Taussky, A recurring theorem on determinants, Amer. Math. Monthly 56, 672-676, 1949

8


