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Abstract 
Gang scheduling paradigm allows timesharing of computing 
nodes by multiple parallel applications and supports the 
coordinated context switches of these applications. It can 
improve system responsiveness and resource utilization.  
However, the memory paging overhead incurred during 
context switches can be expensive and may diminish the 
positive effects of gang scheduling.  This paper investigates 
the reduction of paging overhead in gang scheduling envi-
ronments by applying a set of adaptive paging techniques: 
selective page-out, aggressive page-out, adaptive page-in 
and background writing. Our experiments with NAS NPB2 
benchmark programs show that these new adaptive paging 
mechanisms can reduce the job switching time significantly 
(up to 90%). 
 
Index Terms – virtual memory, adaptive operating 
system, gang scheduling, parallel computing 

 

1 Introduction 
Gang scheduling is a parallel job-scheduling para-
digm, which allows timesharing of computing nodes 
by multiple parallel jobs, and supports the coordinated 
context switch of scheduled jobs across many comput-
ing nodes. Among the prominent advantages of gang 
scheduling are an improved system response under 
mixed workloads, and better system utilization.  

Many system implementations attempt to exploit the 
applicability of gang scheduling to avail of the afore-
mentioned advantages [1,2,3]. A number of gang 
scheduling studies explored the performance charac-
teristics of various scheduling structures and algo-
rithms [2,4,5]. Invariably, the context switch overhead 
due to paging for over-committed memory is cited as a 
major performance consideration of gang scheduling 
[2,3,5]. For example, Moreira, et al reported the pag-
ing overhead results after running three instances of a 
job with a 45MB footprint on AIX systems with 
128MB and 256MB memory [3]. The average execu-
tion time on the 128MB system for the three jobs was 
3.5 times greater than the 256MB system.  

In this paper, we present the design and development of 
an adaptive-paging prototype used to explore the possi-
ble reduction of paging overhead in gang scheduling 
environment. Block paging, also known as swap paging 
or pre-paging, is a set of techniques that can group to-
gether a working set of a user or a job into a block of 
pages. Such a block can then be transferred in and out 
of the paging device in a single I/O transaction. Ideally, 
a block of pages can be written out to contiguous sec-
tors on paging devices. For non-parallel commercial 
systems with mixed interactive and batch workloads, 
block paging has been shown to improve the system 
response time and throughput due to a reduction in the 
number of I/O requests. Latency of the disk arm move-
ment is the largest component of the time required to 
transfer data to and from the disk during paging. 
Grouping of many I/O requests in form of a single 
block reduces the total seek time of the disk [6]. How-
ever, there is no previous work that examines the effect 
of such techniques on scientific parallel environments. 

Our adaptive paging, in contrast to block paging, is a 
set of mechanisms that adapt the memory paging in a 
system to minimize the I/O for gang scheduled applica-
tions. These mechanisms exploit the knowledge of  
gang schedules of the jobs and their observed behaviors 
to decide when, and which pages to swap in or out of 
memory. Adaptive paging can potentially be a very 
effective technique for improving the performance of 
gang scheduled parallel applications. It could both re-
duce the time for paging, and help aggregate all the 
paging required for a job switch at the beginning of the 
time quantum. This makes paging occur simultaneously 
over all nodes and facilitates the synchronization of 
computation among parallel nodes. 

Even if the cost of memory is dropping and available 
physical memory size is increasing rapidly, memory is 
still a scarce resource because the size of applications is 
also growing at an even faster pace. Addressing this 
issue in the context of high performance parallel appli-
cations is more critical especially when interactive re-
sponse time is desired and more than one jobs have to 
be admitted by over-committing the available memory. 
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Paging large jobs in and out of memory causes large 
delays in job execution time because the disk I/O 
speed is slower by over an order of a magnitude than 
the CPU speed. Our prototype was designed to reduce 
the paging overhead by exploiting both the efficiency 
of adaptive paging techniques and the characteristic 
memory usage pattern of gang scheduled parallel ap-
plications. We built the prototype on a Linux kernel, 
and performed a set of experiments to quantify the 
reduction of paging overhead in gang scheduling envi-
ronments.  

The rest of this paper is organized as follows. Section 
2 describes the memory paging model and its effect on 
gang scheduling. Section 3 describes the design and 
implementation of a set of adaptive paging mecha-
nisms. Section 4 reports on the results of the experi-
ments with gang scheduled NAS NPB2 benchmark 
programs. Section 5 reviews related work and Section 
6 concludes with a summary and future work. 

2 Memory Paging and Gang Scheduling 
Modern operating systems can run multiple processes 
with large memory requirements concurrently, using 
virtual memory. Memory pages are placed in physical 
memory only when they are demanded (demand pag-
ing).  When the available free memory is below a cer-
tain threshold, kernel must swap some in-memory 
pages out to the secondary storage. Such victim pages 
are selected using the Least Recently Used (LRU) 
algorithm or one of its approximations. 

For page replacement, many operating systems includ-
ing Linux adopt the clock algorithm – an approxima-
tion of LRU– where, instead of keeping track of the 
age of every page, a binary reference bit is used [21]. 
Swap-out operations start when free memory goes 
below a certain threshold – freepages.min. In Linux, 
the kernel examines the process that has the largest 
memory size and sweeps through it to select a group 
of non-referenced pages for eviction1. This action con-
tinues until the free memory in the system reaches the 

                                                           
1 The Linux kernel version 2.2 

predefined upper limit – freepages.high. This water-
mark style page-out model is common for most of the 
Unix systems.  

One key issue concerning paging is that frequent page 
faults have a negative impact on the system perform-
ance. The frequent disk I/O causes the process to re-
main idle for a considerable amount of time. This proc-
ess is more efficient when done in blocks of multiple 
pages. Bundling multiple consecutive pages from disk 
for page swapping can amortize the seek time. 

Though LRU is a widely accepted page replacement 
policy for general-purpose operating systems, it can be 
ineffective when multiple processes are gang scheduled 
for time-sharing of parallel machines. In the following 
paragraph, we describe the properties of gang schedul-
ing of parallel applications, and the incompatible attrib-
utes with the current implementations of demand pag-
ing.  

• Large time quantum: the time quantum for such 
applications is much larger than usual – in terms of 
minutes rather than tens of milliseconds. Due to a 
fair time-sharing based upon round robin schedul-
ing, the process whose time quantum has just ex-
pired will not be scheduled for one or more time 
quanta.  

• Large working set: the working set size of parallel 
applications is typically very large. When the time 
quantum of an application expires, its pages will 
not be evicted since they have been recently refer-
enced. 

• Useful residual pages: when a process is re-
scheduled, it is possible to discover that some of its 
pages have remained in memory since its last turn. 
However, when the process starts faulting for its 
evicted pages, The LRU policy often throws those 
residual pages out and brings them back again. 
This false eviction loses the opportunity to reuse 
the residual memory pages.  

The above observations indicate that some additional 
scheduling information from the user-level gang sched-

P a g e  in P a g e  o u tC o n te x t  S w itc h

g a n g  s c h e d u lin g  t im e  q u a n tu m

 

Figure 1: Memory paging compaction with adaptive paging 

Demand Paging 
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Block Paging 
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uler can be very useful for more suitable memory pag-
ing in the kernel.  

Figure 1 illustrates the behavior of memory paging in 
gang scheduling. When a job is awakened for its turn, 
after a context switch, it starts faulting for the pages 
that have been swapped out to disk by the previous 
job. However, the page faults (black bursts in the fig-
ure) are scattered over the scheduling quanta because 
pages are brought in only when the process attempts to 
access them. Moreover, page-out activities (gray 
bursts) further interleaves the page-ins. Therefore, 
many short computation bursts (white spaces) are in-
terspersed with disk I/O. As shown in the second dia-
gram in Figure 1, compaction of the frequent paging 
I/Os can reduce the job switching time.  

To implement this idea, we will propose a set of adap-
tive paging mechanisms in the next section. We be-
lieve, however, that intra-job paging activities, which 
are not related to gang scheduled job switching, 
should be handled by the original paging policy. Thus, 
we try to keep the changes to the operating system 
kernel minimal and make them effective only in the 
job switching phase of gang scheduling; the details of 
implementation strategies are described in Section 3.5. 

3 Adaptive Paging Mechanisms 
In gang scheduling, unlike time-sharing of interactive 
serial applications, the scheduling of processes is usu-
ally controlled by an external user-level scheduler. 
The following information, supplied by a gang sched-
uler, can be very useful for memory page replacement 

1. Which process is scheduled and which proc-
ess is de-scheduled? 

2. How large is the working set of the process 
being scheduled? 

This information can signal the kernel as to which 
pages will be used soon and which pages will not be 
accessed for a long time. It is due to the fact that the 
memory pages of the process currently being de-

scheduled – this process will be referred to as the out-
going process – will not be accessed until the next gang 
scheduling turn and the working set of the process be-
ing currently scheduled – this process will be referred 
to as the incoming process – will be accessed in a short 
time. 

Therefore, instantly swapping out all the pages of the 
outgoing process in blocks and swapping in the whole 
working set of the incoming process in blocks will 
speed up the disk accesses and page handling. The 
working set sizes of the two processes would determine 
the number of blocks in the swapping action. To sup-
port effective adaptive paging for gang scheduling, we 
propose four paging mechanisms, selective paging out, 
aggressive paging out, adaptive paging in and back-
ground writing. 

3.1 Selective Paging Out 
From the experiments with gang scheduled parallel 
applications, we observed that LRU sometimes evicts 
memory pages that are soon to be accessed. This false 
eviction occurs as follows. Consider two gang sched-
uled parallel jobs, A and B, whose processes at each 
node have a large memory footprint. The processes of 
A will execute at all the nodes in gang for its time 
quantum; the quantum length is selected long enough to 
amortize the delay for fetching the typically large work-
ing set of the process into memory. When B is gang 
scheduled, each node causes a sequence of page faults 
and brings B’s working set into memory. Due to mem-
ory shortage, A’s pages in memory are swapped out to 
make room for B’s working set. Nonetheless, some of 
A’s pages may remain in memory since the working set 
of an individual process is typically smaller than physi-
cal memory. In its next turn, A is rescheduled and starts 
generating page faults. This time, A’s lingering pages 
from the last turn will be swapped out first, because 
they are older than B’s pages. However, the lingering 
pages – though not recently used – will soon be brought 
back in since they were a part of the working set of A. 

 
try_to_free_pages(out_pid) 

while(free_pages < freepages.high) 
       p = (process with out_pid); 
       if(resident memory size of p > 0)  
           select oldest page of p and reclaim its page frame; 
          add the frame to freepages; 
       else 
          use default page replacement technique (LRU); 
       end if 
    end while 
end 

Figure 2: Selective page-out algorithm 
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Our proposed selective page-out algorithm is to pre-
vent the false eviction. The kernel paging module is 
now supplied with the outgoing process’s ID. When-
ever it selects victim pages for swap out, it first exam-
ines the pages of an outgoing process in the order of 
decreasing age. It considers the pages of other proc-
esses only when all the pages of the outgoing process 
are swapped out. The algorithm is summarized in 
Figure 2. 

In most cases with gang scheduled applications, physi-
cal memory is larger than the working set size of any 
of the gang scheduled processes but it is not large 
enough to keep the working sets of all the processes. 
The selective page-out algorithm avails of this oppor-
tunity to reduce the paging overhead.  

3.2 Aggressive Paging Out 
Another inefficiency of memory paging under gang 
scheduling comes from the granularity of page mem-
ory swapping. Page replacement modules in most 
Unix-based operating systems swap out memory pages 
when a requested page is not found in the physical 
memory and there is not enough free memory. Thus, 
each page fault to bring in the working set will be 
slowed by the scattered page-out activities to make 
room in the physical memory.  

Instantaneously making enough room for the working 
set of the incoming process will eliminate the interrup-
tive scattered paging-out activities (previously illus-
trated in Figure 1). At the job switch in gang schedul-
ing, our aggressive page-out module obtains the work-
ing set size of the incoming process and aggressively 
pages out the outgoing process until there are enough 
free pages available for the working set. The subse-
quent page faults will not cause any page-outs and the 
resulting disk I/O will be handled more efficiently. 
The kernel obtains the working set size using the page 

references during the incoming process’ previous time 
quanta. Figure 3 summarizes this algorithm.  

3.3 Adaptive Paging In 
Swapping in memory pages one by one at each page 
fault is very expensive. Performing disk I/O in blocks is 
usually better since it reduces the effect of disk latency. 
Thus, at each page fault the original Linux page re-
placement reads ahead a group of subsequent pages. 
The default group size in the Linux kernel version 2.2 
is 16. For the default page size of 4 Kbytes, it is only 64 
Kbytes. This small group size originated from the fact 
that it is usually undesirable to swap out too many 
pages to bring in pages that may not be useful at all. 
Also, disk I/O for read-ahead of too many pages will 
delay the time that the faulted page gets available. 

However, a larger read-ahead size can be a benefit at 
job switches in gang scheduling. It will not page out 
any useful pages because only the pages of the outgo-
ing process will be swapped out. Furthermore, the 
number of page faults will dramatically decrease due to 
a larger read-ahead. It will also make the disk I/O more 
efficient by minimizing the disk arm movement. Fur-
ther, since the extra pages brought in might not be used 
at all, boosting the read-ahead size might actually de-
grade the performance. 

Instead, we have devised a mechanism that records the 
process id and the pages of that process as they are 
flushed out from the memory at a job switch. Later, 
when the same process is scheduled again, page faults 
are induced artificially to bring these recorded pages 
into memory. This approach proves to be an effective 
and low-overhead mechanism to make the entire work-
ing set of the process available at the start of the sched-
uling quantum.   

 

aggressive_page_out(out_pid, in_pid) 
pin = (process with in_pid); 

    pout = (process with out_pid); 
    target_free = VM size of pin (from last quantum); 
    while(free_pages < freepages.high + target_free) 
       page out a page belonging to pout; 
    end while 
end 

Figure 3: Aggressive page-out algorithm 
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Since many of the pages referred to by a process are 
contiguous, our page recording module records just 
the offset as the number of contiguous pages from a 
given page address, thereby saving substantial amount 
of kernel memory needed for storing the recorded 
information. The algorithm is shown in Figure 4. 

3.4 Background Writing of Dirty Pages 
The paging performance at job switches can be further 
improved if less time is spent for paging dirty pages 
out. This can be achieved by writing dirty pages to 
disk prior to actual job switches. To this end, we de-
veloped another adaptive mechanism that writes dirty 
pages in background at a lower priority while the job 
is running.  It can reduce the number of pages written 
to the disk during the job switch.  

The duration of background writing must be adjusted 
carefully to avoid writing of same pages repeatedly. 
This duration depends on memory access pattern, and 
working set size of the application, and amount of 
memory swapped during the switch. It is difficult to 
formalize the optimum amount of time for background 
writing. With some experimentation we have found 
that background writing for last 10% of the time quan-
tum minimizes the repeated writing of pages and im-
proves the performance of co-scheduling further by 
about 10%.  

For our experimentation set up, we have extended the 
memory management module of Linux kernel. When a 
switch in the kernel is activated, the page swap dae-
mon is woken up and assigned a lower priority. The 
special code inserted in the swap out routines of the 
kernel flushes dirty pages of the running job to disk. 

The background writing is switched off when the actual 
job switch begins.  

3.5 Mechanisms and Interfaces 
We chose the Linux kernel to implement our adaptive 
paging mechanisms for several reasons. Firstly, it is 
widely adopted for high performance parallel comput-
ing, partly due to the success of Beowulf clusters [7]. 
Secondly, the source code is open and widely available 
to develop the necessary modifications. Since many 
active Linux users build customized kernels, our 
mechanisms could easily be patched into existing in-
stallations. Thirdly, the virtual memory management in 
Linux is an exemplary implementation of most UNIX 
systems. Although we implemented the proposed algo-
rithms in Linux, the techniques are general enough to 
be ported to other Unix-based operating systems that 
uses demand paging and read-ahead for virtual memory 
management. 

Figure 5 illustrates our implementation architecture. 
The gang scheduler is a user-level process that stops 
and resumes application processes. At each context 
switch time in the scheduling table, the scheduler sends 
SIGSTOP signals to all the processes constituting the 
current job and SIGCONT signals to the processes of 
the job to be scheduled. The adaptive paging algorithms 
are implemented and incorporated in the Linux kernel. 
The API of our adaptive paging consists of two func-
tions, adaptive_page_in(),and adap-
tive_page_out(), each with three arguments: in-
coming process ID, outgoing process ID, and working 
set size. The working set size also can be estimated by 
the kernel using the incoming process’ run during the 
previous time quantum.  In addition to these, there are 

 
// During Page-out 
 pout = (process with out pid); 
 pg_rec = (base address of page list for pout); 
 addr = (base address of page being flushed out); 
 append the addr to the list;   
 
// During page-in 

pin = (process with in_pid); 
    pg_rec = (base address of page list for process pin); 
 while(pg_rec.next != null) 
  fault for page with base = pg_rec.addr; 
  while(pg_rec.offset > 0) 
   fault for page with base = pg_rec.addr++; 
   pg_rec->offset --; 
  end while 
  pg_rec = pg_rec.next; 
  delete old pg_rec; 
 end while 

Figure 4: Adaptive page-in algorithm 
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two more functions: start_bgwrite(inpid) 
and stop_bgwrite() for activating and deactivat-
ing background writing. The communication between 
the user-level API and the kernel uses event notifica-
tion by passing parameters through /dev/kmem. 
Alternatively, it can be achieved by extending the sys-
tem calls. However, we avoided this alternative for a 
better portability to future revisions of the Linux ker-
nel. 

4 Performance Evaluation 
To evaluate our adaptive paging mechanisms, we con-
duct a series of experiments using the NAS NPB2 
benchmark.  The experimental cluster consists of five 
machines at present: one running gang scheduler and 
the other four running parallel jobs. These machines 
are connected through a 100 Mbps Ethernet switch. 
Each machine has 1Gigabytes main memory and runs 
our adaptive-paging capable Linux developed on top 
of the Linux kernel 2.2.19. The degree of parallelism 
is limited to four, at this point, to minimize the net-
work complexity caused by process synchronizations2.  

We select five representative combinations of our 
adaptive paging policies: adaptive page in (ai), selec-
tive page-out (so), selective aggressive page-out 
(so/ao), selective aggressive page out with back-
ground writing (so/ao/bg) and selective aggressive 
page-out with adaptive page-in and background writ-
ing (so/ao/ai/bg). For parallel jobs, we use five NPB2 
benchmark applications: LU, SP, CG, IS and MG 
with the data class A. Five minutes were chosen for 
the time quanta of gang scheduling. Quantum larger 
than this will tend to negate the benefits of improved 
response time due to co-scheduling. 

Figure 6 presents the paging activity traces for the first 
50 minutes during the execution of two gang scheduled 
LU.Cs for different combinations of our adaptive pag-
ing mechanisms on four machines. We reduce the 
available memory to 350 MB by wiring down some 
memory using mlock(). This reduction is necessary 
because the NPB benchmark has only a discrete set of 
data sizes – the data class C of LU uses only 188Mbytes 
when running on 4 machines in parallel –, and we need 
to stress the memory as in a real situation. At each job 
switch, which occurs every 300 seconds in the current 
configuration, a series of paging disk I/Os takes place 
to bring the working set of the incoming process into 
memory. As illustrated in the first graph, with the 
original LRU policy, page-in activities are spread over 
a long period of time. In this graph, the overlapping of 
page-ins and page-outs indicates that they interfere with 
each other and that the disk I/O efficiency decreases. 
The trace depicts that the paging occurs at a lower rate 
for a longer duration and hence delays the computation. 

The second graph in Figure 6 demonstrates that the 
selective paging policy (so) decreases both amount and 
duration of paging by preventing the incoming process’ 
old working set from getting swapped out. The ex-
tended paging period seen in both these graphs is es-
sentially due to the thrashing caused by page-ins and 
page-outs happening at the same time. With the selec-
tive aggressive page-out (so/ao), as illustrated in the 
third graph, the paging overhead is further reduced due 
to the increased intensity of page-outs. When all three 
adaptive paging policies are applied, both page-in and 
page-out activities are intensified and compacted result-

AP-Out

Job 2
Gang Scheduler

Adaptive Paging Interface

Physical M emory
AP-Out AP-In

Job 1

Swap Device

Linux Kernel

Virtual M emory M anager (VM )

 

Figure 5: Implementation architecture for adaptive paging 

2 We are currently experimenting with 8, and 16 machines 
each having 1GB memory and 2GHz Intel Pentium 4 CPU. 
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ing in a more efficient memory paging. It is indicated 
by the sharp and high peaks in the fourth graph. Initial 
periods of page-in can be observed at some job 
switches because the background writing mechanism 
is active. Due to background writing, the page-out 
peaks during the switch have become shorter. Notice 
that the results follow closely the performance projec-
tion we illustrated in Figure 1. It verifies that our a-
daptive paging mechanisms effectively make memory 
paging in gang scheduling more compact and effi-
cient. More experiments to quantify the benefits of 
adaptive paging are presented below. 

4.1 Serial Jobs 
To isolate the memory paging overhead from the net-
work delay for parallel job synchronizations, we first 
run a serial version of NPB2 applications. Thus, the 
results demonstrate the effect of the efficient adaptive 
paging between two large memory applications run-
ning on a single machine. We use LU, SP, CG, 
IS, and MG with the data class B3. Two instances of 
each application run on a single machine using a gang 
scheduler with a five-minute time quanta.  

Figure 7 summarizes the results of this experiment. 
Graph (a) plots the job completion time for the original 
LRU and the combination of all our adaptive paging 
policies (so/ao/ai/bg). The last set of bars, denoted by 
batch, is for the case when two applications run one 
after the other. The results show that the improvements 
vary depending on applications. The significance of the 
reduction in the completion time is in the order of MG, 
LU, SP, CG, and IS.  

Using the batch completion time as a base, we com-
puted the overhead imposed by job switches in gang 
scheduling, which is shown in Graph (b). This over-
head indicates how much fraction of the time is spent 
on paging for job switching. For SP, CG, IS, and 
MG, the graph shows that the switching overhead is 
more than or close to 50% with the original paging al-
gorithm, which means that more time has been spent 
for memory paging than the computation. To amortize 
this overhead, the time quanta should be increased sig-
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Figure 6: Paging activity traces of LU running on four machines for various adaptive paging policies. 

3 With this data class, the selected benchmark programs 
require 188MB to 400MB of memory which are suitable 
for our  experimental setup. 
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nificantly. However, an even larger time quanta would 
decrease the benefits of a better response and fairness 
in gang scheduling. The graph demonstrates that our 
adaptive paging policies reduce these overheads to 
between 5% and 37%. In case of LU, the overhead 
reduces from 26% to  5%.  

Graph (c) presents the bars for the paging reduction 
over the original paging algorithm. For MG, the com-
bination of all policies shows the biggest reduction, 
93%. For LU, SP, and CG, the resulting reductions 
are 84%, 78% and 68%, respectively. The paging re-

duction of IS, is relatively small, 19%. This is due to 
its relatively small memory requirement. Overall, for 
the serial benchmark programs whose working size is 
large, our adaptive paging mechanisms were able to 
reduce the paging overhead by more than 65%. 

4.2 Gang Scheduled Parallel Jobs 
Now, we extend the experiments to the parallel ver-
sions of the NPB2 benchmark with the MPI communi-
cation library. Our adaptive paging mechanisms force 
the paging activities to occur simultaneously at all the 
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Figure 8: Job completion time, switching overhead, and reduction for parallel benchmarks  
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nodes at the beginning of the context switch. We pre-
sent the benefit of adaptive paging for the cluster-level 
gang scheduling. 

In Figure 8, Graphs (a) and (d) demonstrates the job 
completion time for the four parallel benchmark appli-
cations running on two and four machines. Note that 
SP is included only for 4 machines since it does not 
compile for 2 machines, and MG is included only for 
2 machines as its memory size is not suitable for our 
setup. Batch represents the base case for comparison 
when the two instances of each application run se-
quentially, one after the other incurring no paging for 
job switching. All the applications consistently im-
prove the completion time with so/ao/ai/bg. CG typi-
cally has a small working set size and does not induce 
as much paging. It shows some improvement when 
run on 2 machines, but on 4 machines, its memory size 
and working set size reduce to such an extent that 
even with memory locking paging does not occur. 
Graph (d) shows that the reduction in completion time 
is minimum. SP, because of its large memory size, 
needs a longer quantum of 7 minutes to avoid con-
tinuous memory thrashing when run on 4 machines.  

Graphs (c) and (f) illustrate the reduction in paging 
overhead over the original paging algorithm. CG man-
ages a small reduction by 38% and 7% with 
so/ao/ai/bg policy when run on 2 and 4 machines, 
respectively. LU and IS reduce the job switching time 
by 61% and 72% for two machines, and 43% and 57% 
for four machines respectively when all three adaptive 
paging policies are used with background writing. SP 
shows significant reduction to 70% for four machines. 
This shows that our policies work even better when 
greater memory stress exists. The experiments with 
the parallel benchmark post a significant overall im-
provement in performance due to our adaptive paging 
algorithms. 

In this section, we presented the results of the experi-

ments with both the serial benchmark on a single node 
and the parallel benchmark with synchronization com-
munications. We demonstrated that the memory paging 
time is a dominant factor for job switching and the use 
of our adaptive paging mechanisms can reduce it sig-
nificantly. This reduction will enable the gang sched-
uler to use a smaller time quantum and hence to im-
prove the responsiveness of parallel jobs. 

4.3 Effects of Adaptive Paging Mechanisms 
To better understand the effectiveness of each adaptive 
paging mechanism we developed, the detailed results of 
experiments are discussed in this section. Due to space 
limitation, only the results for LU are presented. 

The graphs in Figure 9 show the results of serial and 
parallel runs (with both 2 and 4 machines). We have 
selected six representative combinations of our four 
mechanisms – ai, so, so/ao, so/ao/bg, and so/ao/ai/bg. 
Graph (a) shows the effect of various combinations of 
our paging policies on the completion time of the appli-
cation. Note that measuring speedup from these results 
is not relevant since different input data sizes and mem-
ory locking sizes were used to emulate tight and over-
committed memory by the gang scheduler. For both 
serial and parallel executions, adaptive page-in and 
selective page-out policies show the biggest reduction 
in completion time. Introduction of aggressive page-out 
reduces the benefit by a small amount in case of serial 
run because both the page-out policies together tend to 
cause too many page-outs. This negative effect is 
alleviated by background writing which disperses the 
page-outs over a slightly longer duration. For both 
psarallel runs, aggressive page-out actually helps selec-
tive page-out further by reducing the finish time by a 
small amount. Lastly, for all the runs, adaptive page-in 
reduces the completion time by reading in only the re-
quired pages.  

For parallel runs, the original algorithm shows 55% to 
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Figure 9. Detailed experimental results for LU 



 10

75% paging overhead as demonstrated in graph (b). 
The maximum reduction is achieved when all the poli-
cies work in cooperation. For parallel executions, the 
paging overhead is reduced to around 35% to 45% and 
with serial execution it is reduced to one-sixth of 
original algorithm.  
 
Graph (c) shows the reduction in paging overhead 
achieved by using various combinations of mecha-
nisms over the original algorithm. Adaptive page-in 
and selective page-out again prove to be the most ef-
fective strategies with more than 65% reduction in 
both cases. Aggressive page-out and background writ-
ing further help to reduce the overhead by 83%, 61% 
and 71% for serial, 2- and 4-machine executions, re-
spectively.  
 
5 Related Work 
Many variations of gang scheduling systems for paral-
lel applications have been proposed and experimented 
on [1,3,4,8,9,10]. Previous work exploring the context 
switch overhead for gang scheduling was limited to 
either reporting the observed performance impact of 
memory paging [3,4], or analyzing the possible impact 
on performance [5]. Wang, et al studied the relation-
ship between the context switch overhead and the time 
quantum [11]. They suggested that it is better to use a 
longer time quantum for the systems with higher job 
switching overhead so that the overhead can be amor-
tized over a longer execution time. However, the 
choice of longer time quantum would decrease the 
responsiveness of the system. This contrasts with the 
goal of gang scheduling to get good response time 
even for applications with higher memory demands.  

A number of researches have been conducted on 
scheduling paradigms, in which memory is one of the 
resources to be scheduled in addition to the processing 
resources (processor cycles) [12,13,14]. Batat, et al 
found that exercising the admission control that allows 
only those jobs that fit into the available memory 
gives overall improvement in performance while suf-
fering from delayed job execution [15]. Various algo-
rithms aiming at advanced reservation of resources 
have been proposed and evaluated for computational 
grid environments [16].   However, the advantages of 
both of these approaches can only be realized if there 
is accurate a priori information on the memory utiliza-
tion of jobs.  

Zhang, et al analyzed the variations of page replace-
ment implementations in recent Linux kernels (version 
2.0, 2.2, and 2.4) to compare their abilities to deal with 
system thrashing [17]. They found that even though 
version 2.2 has relatively more effective protection 

against thrashing, none of these kernels have the ability 
to dynamically adapt to changes in memory demands; 
and, thus the protection that they provide is limited. 
This observation has a bearing on our choice of Linux 
kernel version 2.2 for implementing our modifications.  

The dynamic resource allocation system, which is 
aimed at reducing the memory resource contention 
caused by page faults and I/O activity, was proposed by 
Xiao, et al [18]. In a cluster system with dynamic load 
sharing support, a small number of running jobs with 
unexpectedly large memory requirements may signifi-
cantly increase the queuing delay times of the rest of 
the jobs with normal memory requirements. Chen, et al 
proposed a software method to deal with this problem 
of job blocking using virtual cluster reconfiguration 
mechanism [19].  

Block paging is popular among many virtual memory 
systems [6,20]. However, none of them examines the 
effect of adaptive paging techniques on scientific envi-
ronments. Wang, et al speculated that the block paging 
techniques used in non-parallel and timesharing sys-
tems may bring forth similar advantages to parallel 
applications [5]. 

6 Conclusion and Future Work 
In this paper, we observed that the widely accepted 
demand paging model with the LRU page replacement 
algorithm does not exploit the characteristics of gang 
scheduled processes.  We presented the adaptive paging 
mechanisms that were built on top of the Linux kernel 
and its performance impact on the gang scheduled 
applications.  

Our design included the ideas of selective page-out, 
aggressive page-out, adaptive page-in, and background 
writing. Under this new adaptive paging scheme, the 
overall result showed a remarkable reduction of the 
paging cost in job switch for gang scheduling. Our 
experiments with NAS NPB2 benchmark programs 
showed that the job switching time can be reduced by 
up to 90%. 

We are currently conducting experiments with a larger 
cluster with the NAS NPB2 benchmark and applica-
tions of various working set sizes. We are extending 
our performance study to parallel applications running 
on 8 and 16 nodes.  
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