
RC22899 (W0309-067) September 12, 2003
Computer Science

IBM Research Report

Adaptive Memory Paging for Efficient Gang Scheduling
of Parallel Applications

Kyung Dong Ryu, Nimish Pachapurkar
Arizona State University

Tempe, AZ 85287

Liana L. Fong
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

 1

Adaptive Memory Paging for Efficient Gang Scheduling of Parallel Applications

Kyung Dong Ryu Nimish Pachapurkar Liana Fong

Department of Computer Science & Engineering
Arizona State University

Tempe, AZ 85287

IBM T.J. Watson Research Center
P O Box 704

Yorktown Heights NY 10533

{kdryu, nimishp}@asu.edu llfong@us.ibm.com

Abstract
Gang scheduling paradigm allows timesharing of computing
nodes by multiple parallel applications and supports the
coordinated context switches of these applications. It can
improve system responsiveness and resource utilization.
However, the memory paging overhead incurred during
context switches can be expensive and may diminish the
positive effects of gang scheduling. This paper investigates
the reduction of paging overhead in gang scheduling envi-
ronments by applying a set of adaptive paging techniques:
selective page-out, aggressive page-out, adaptive page-in
and background writing. Our experiments with NAS NPB2
benchmark programs show that these new adaptive paging
mechanisms can reduce the job switching time significantly
(up to 90%).

Index Terms – virtual memory, adaptive operating
system, gang scheduling, parallel computing

1 Introduction
Gang scheduling is a parallel job-scheduling para-
digm, which allows timesharing of computing nodes
by multiple parallel jobs, and supports the coordinated
context switch of scheduled jobs across many comput-
ing nodes. Among the prominent advantages of gang
scheduling are an improved system response under
mixed workloads, and better system utilization.

Many system implementations attempt to exploit the
applicability of gang scheduling to avail of the afore-
mentioned advantages [1,2,3]. A number of gang
scheduling studies explored the performance charac-
teristics of various scheduling structures and algo-
rithms [2,4,5]. Invariably, the context switch overhead
due to paging for over-committed memory is cited as a
major performance consideration of gang scheduling
[2,3,5]. For example, Moreira, et al reported the pag-
ing overhead results after running three instances of a
job with a 45MB footprint on AIX systems with
128MB and 256MB memory [3]. The average execu-
tion time on the 128MB system for the three jobs was
3.5 times greater than the 256MB system.

In this paper, we present the design and development of
an adaptive-paging prototype used to explore the possi-
ble reduction of paging overhead in gang scheduling
environment. Block paging, also known as swap paging
or pre-paging, is a set of techniques that can group to-
gether a working set of a user or a job into a block of
pages. Such a block can then be transferred in and out
of the paging device in a single I/O transaction. Ideally,
a block of pages can be written out to contiguous sec-
tors on paging devices. For non-parallel commercial
systems with mixed interactive and batch workloads,
block paging has been shown to improve the system
response time and throughput due to a reduction in the
number of I/O requests. Latency of the disk arm move-
ment is the largest component of the time required to
transfer data to and from the disk during paging.
Grouping of many I/O requests in form of a single
block reduces the total seek time of the disk [6]. How-
ever, there is no previous work that examines the effect
of such techniques on scientific parallel environments.

Our adaptive paging, in contrast to block paging, is a
set of mechanisms that adapt the memory paging in a
system to minimize the I/O for gang scheduled applica-
tions. These mechanisms exploit the knowledge of
gang schedules of the jobs and their observed behaviors
to decide when, and which pages to swap in or out of
memory. Adaptive paging can potentially be a very
effective technique for improving the performance of
gang scheduled parallel applications. It could both re-
duce the time for paging, and help aggregate all the
paging required for a job switch at the beginning of the
time quantum. This makes paging occur simultaneously
over all nodes and facilitates the synchronization of
computation among parallel nodes.

Even if the cost of memory is dropping and available
physical memory size is increasing rapidly, memory is
still a scarce resource because the size of applications is
also growing at an even faster pace. Addressing this
issue in the context of high performance parallel appli-
cations is more critical especially when interactive re-
sponse time is desired and more than one jobs have to
be admitted by over-committing the available memory.

 2

Paging large jobs in and out of memory causes large
delays in job execution time because the disk I/O
speed is slower by over an order of a magnitude than
the CPU speed. Our prototype was designed to reduce
the paging overhead by exploiting both the efficiency
of adaptive paging techniques and the characteristic
memory usage pattern of gang scheduled parallel ap-
plications. We built the prototype on a Linux kernel,
and performed a set of experiments to quantify the
reduction of paging overhead in gang scheduling envi-
ronments.

The rest of this paper is organized as follows. Section
2 describes the memory paging model and its effect on
gang scheduling. Section 3 describes the design and
implementation of a set of adaptive paging mecha-
nisms. Section 4 reports on the results of the experi-
ments with gang scheduled NAS NPB2 benchmark
programs. Section 5 reviews related work and Section
6 concludes with a summary and future work.

2 Memory Paging and Gang Scheduling
Modern operating systems can run multiple processes
with large memory requirements concurrently, using
virtual memory. Memory pages are placed in physical
memory only when they are demanded (demand pag-
ing). When the available free memory is below a cer-
tain threshold, kernel must swap some in-memory
pages out to the secondary storage. Such victim pages
are selected using the Least Recently Used (LRU)
algorithm or one of its approximations.

For page replacement, many operating systems includ-
ing Linux adopt the clock algorithm – an approxima-
tion of LRU– where, instead of keeping track of the
age of every page, a binary reference bit is used [21].
Swap-out operations start when free memory goes
below a certain threshold – freepages.min. In Linux,
the kernel examines the process that has the largest
memory size and sweeps through it to select a group
of non-referenced pages for eviction1. This action con-
tinues until the free memory in the system reaches the

1 The Linux kernel version 2.2

predefined upper limit – freepages.high. This water-
mark style page-out model is common for most of the
Unix systems.

One key issue concerning paging is that frequent page
faults have a negative impact on the system perform-
ance. The frequent disk I/O causes the process to re-
main idle for a considerable amount of time. This proc-
ess is more efficient when done in blocks of multiple
pages. Bundling multiple consecutive pages from disk
for page swapping can amortize the seek time.

Though LRU is a widely accepted page replacement
policy for general-purpose operating systems, it can be
ineffective when multiple processes are gang scheduled
for time-sharing of parallel machines. In the following
paragraph, we describe the properties of gang schedul-
ing of parallel applications, and the incompatible attrib-
utes with the current implementations of demand pag-
ing.

• Large time quantum: the time quantum for such
applications is much larger than usual – in terms of
minutes rather than tens of milliseconds. Due to a
fair time-sharing based upon round robin schedul-
ing, the process whose time quantum has just ex-
pired will not be scheduled for one or more time
quanta.

• Large working set: the working set size of parallel
applications is typically very large. When the time
quantum of an application expires, its pages will
not be evicted since they have been recently refer-
enced.

• Useful residual pages: when a process is re-
scheduled, it is possible to discover that some of its
pages have remained in memory since its last turn.
However, when the process starts faulting for its
evicted pages, The LRU policy often throws those
residual pages out and brings them back again.
This false eviction loses the opportunity to reuse
the residual memory pages.

The above observations indicate that some additional
scheduling information from the user-level gang sched-

P a g e in P a g e o u tC o n te x t S w itc h

g a n g s c h e d u lin g t im e q u a n tu m

Figure 1: Memory paging compaction with adaptive paging

Demand Paging
with LRU

Block Paging

 3

uler can be very useful for more suitable memory pag-
ing in the kernel.

Figure 1 illustrates the behavior of memory paging in
gang scheduling. When a job is awakened for its turn,
after a context switch, it starts faulting for the pages
that have been swapped out to disk by the previous
job. However, the page faults (black bursts in the fig-
ure) are scattered over the scheduling quanta because
pages are brought in only when the process attempts to
access them. Moreover, page-out activities (gray
bursts) further interleaves the page-ins. Therefore,
many short computation bursts (white spaces) are in-
terspersed with disk I/O. As shown in the second dia-
gram in Figure 1, compaction of the frequent paging
I/Os can reduce the job switching time.

To implement this idea, we will propose a set of adap-
tive paging mechanisms in the next section. We be-
lieve, however, that intra-job paging activities, which
are not related to gang scheduled job switching,
should be handled by the original paging policy. Thus,
we try to keep the changes to the operating system
kernel minimal and make them effective only in the
job switching phase of gang scheduling; the details of
implementation strategies are described in Section 3.5.

3 Adaptive Paging Mechanisms
In gang scheduling, unlike time-sharing of interactive
serial applications, the scheduling of processes is usu-
ally controlled by an external user-level scheduler.
The following information, supplied by a gang sched-
uler, can be very useful for memory page replacement

1. Which process is scheduled and which proc-
ess is de-scheduled?

2. How large is the working set of the process
being scheduled?

This information can signal the kernel as to which
pages will be used soon and which pages will not be
accessed for a long time. It is due to the fact that the
memory pages of the process currently being de-

scheduled – this process will be referred to as the out-
going process – will not be accessed until the next gang
scheduling turn and the working set of the process be-
ing currently scheduled – this process will be referred
to as the incoming process – will be accessed in a short
time.

Therefore, instantly swapping out all the pages of the
outgoing process in blocks and swapping in the whole
working set of the incoming process in blocks will
speed up the disk accesses and page handling. The
working set sizes of the two processes would determine
the number of blocks in the swapping action. To sup-
port effective adaptive paging for gang scheduling, we
propose four paging mechanisms, selective paging out,
aggressive paging out, adaptive paging in and back-
ground writing.

3.1 Selective Paging Out
From the experiments with gang scheduled parallel
applications, we observed that LRU sometimes evicts
memory pages that are soon to be accessed. This false
eviction occurs as follows. Consider two gang sched-
uled parallel jobs, A and B, whose processes at each
node have a large memory footprint. The processes of
A will execute at all the nodes in gang for its time
quantum; the quantum length is selected long enough to
amortize the delay for fetching the typically large work-
ing set of the process into memory. When B is gang
scheduled, each node causes a sequence of page faults
and brings B’s working set into memory. Due to mem-
ory shortage, A’s pages in memory are swapped out to
make room for B’s working set. Nonetheless, some of
A’s pages may remain in memory since the working set
of an individual process is typically smaller than physi-
cal memory. In its next turn, A is rescheduled and starts
generating page faults. This time, A’s lingering pages
from the last turn will be swapped out first, because
they are older than B’s pages. However, the lingering
pages – though not recently used – will soon be brought
back in since they were a part of the working set of A.

try_to_free_pages(out_pid)

while(free_pages < freepages.high)
 p = (process with out_pid);
 if(resident memory size of p > 0)
 select oldest page of p and reclaim its page frame;
 add the frame to freepages;
 else
 use default page replacement technique (LRU);
 end if
 end while
end

Figure 2: Selective page-out algorithm

 4

Our proposed selective page-out algorithm is to pre-
vent the false eviction. The kernel paging module is
now supplied with the outgoing process’s ID. When-
ever it selects victim pages for swap out, it first exam-
ines the pages of an outgoing process in the order of
decreasing age. It considers the pages of other proc-
esses only when all the pages of the outgoing process
are swapped out. The algorithm is summarized in
Figure 2.

In most cases with gang scheduled applications, physi-
cal memory is larger than the working set size of any
of the gang scheduled processes but it is not large
enough to keep the working sets of all the processes.
The selective page-out algorithm avails of this oppor-
tunity to reduce the paging overhead.

3.2 Aggressive Paging Out
Another inefficiency of memory paging under gang
scheduling comes from the granularity of page mem-
ory swapping. Page replacement modules in most
Unix-based operating systems swap out memory pages
when a requested page is not found in the physical
memory and there is not enough free memory. Thus,
each page fault to bring in the working set will be
slowed by the scattered page-out activities to make
room in the physical memory.

Instantaneously making enough room for the working
set of the incoming process will eliminate the interrup-
tive scattered paging-out activities (previously illus-
trated in Figure 1). At the job switch in gang schedul-
ing, our aggressive page-out module obtains the work-
ing set size of the incoming process and aggressively
pages out the outgoing process until there are enough
free pages available for the working set. The subse-
quent page faults will not cause any page-outs and the
resulting disk I/O will be handled more efficiently.
The kernel obtains the working set size using the page

references during the incoming process’ previous time
quanta. Figure 3 summarizes this algorithm.

3.3 Adaptive Paging In
Swapping in memory pages one by one at each page
fault is very expensive. Performing disk I/O in blocks is
usually better since it reduces the effect of disk latency.
Thus, at each page fault the original Linux page re-
placement reads ahead a group of subsequent pages.
The default group size in the Linux kernel version 2.2
is 16. For the default page size of 4 Kbytes, it is only 64
Kbytes. This small group size originated from the fact
that it is usually undesirable to swap out too many
pages to bring in pages that may not be useful at all.
Also, disk I/O for read-ahead of too many pages will
delay the time that the faulted page gets available.

However, a larger read-ahead size can be a benefit at
job switches in gang scheduling. It will not page out
any useful pages because only the pages of the outgo-
ing process will be swapped out. Furthermore, the
number of page faults will dramatically decrease due to
a larger read-ahead. It will also make the disk I/O more
efficient by minimizing the disk arm movement. Fur-
ther, since the extra pages brought in might not be used
at all, boosting the read-ahead size might actually de-
grade the performance.

Instead, we have devised a mechanism that records the
process id and the pages of that process as they are
flushed out from the memory at a job switch. Later,
when the same process is scheduled again, page faults
are induced artificially to bring these recorded pages
into memory. This approach proves to be an effective
and low-overhead mechanism to make the entire work-
ing set of the process available at the start of the sched-
uling quantum.

aggressive_page_out(out_pid, in_pid)
pin = (process with in_pid);

 pout = (process with out_pid);
 target_free = VM size of pin (from last quantum);
 while(free_pages < freepages.high + target_free)
 page out a page belonging to pout;
 end while
end

Figure 3: Aggressive page-out algorithm

 5

Since many of the pages referred to by a process are
contiguous, our page recording module records just
the offset as the number of contiguous pages from a
given page address, thereby saving substantial amount
of kernel memory needed for storing the recorded
information. The algorithm is shown in Figure 4.

3.4 Background Writing of Dirty Pages
The paging performance at job switches can be further
improved if less time is spent for paging dirty pages
out. This can be achieved by writing dirty pages to
disk prior to actual job switches. To this end, we de-
veloped another adaptive mechanism that writes dirty
pages in background at a lower priority while the job
is running. It can reduce the number of pages written
to the disk during the job switch.

The duration of background writing must be adjusted
carefully to avoid writing of same pages repeatedly.
This duration depends on memory access pattern, and
working set size of the application, and amount of
memory swapped during the switch. It is difficult to
formalize the optimum amount of time for background
writing. With some experimentation we have found
that background writing for last 10% of the time quan-
tum minimizes the repeated writing of pages and im-
proves the performance of co-scheduling further by
about 10%.

For our experimentation set up, we have extended the
memory management module of Linux kernel. When a
switch in the kernel is activated, the page swap dae-
mon is woken up and assigned a lower priority. The
special code inserted in the swap out routines of the
kernel flushes dirty pages of the running job to disk.

The background writing is switched off when the actual
job switch begins.

3.5 Mechanisms and Interfaces
We chose the Linux kernel to implement our adaptive
paging mechanisms for several reasons. Firstly, it is
widely adopted for high performance parallel comput-
ing, partly due to the success of Beowulf clusters [7].
Secondly, the source code is open and widely available
to develop the necessary modifications. Since many
active Linux users build customized kernels, our
mechanisms could easily be patched into existing in-
stallations. Thirdly, the virtual memory management in
Linux is an exemplary implementation of most UNIX
systems. Although we implemented the proposed algo-
rithms in Linux, the techniques are general enough to
be ported to other Unix-based operating systems that
uses demand paging and read-ahead for virtual memory
management.

Figure 5 illustrates our implementation architecture.
The gang scheduler is a user-level process that stops
and resumes application processes. At each context
switch time in the scheduling table, the scheduler sends
SIGSTOP signals to all the processes constituting the
current job and SIGCONT signals to the processes of
the job to be scheduled. The adaptive paging algorithms
are implemented and incorporated in the Linux kernel.
The API of our adaptive paging consists of two func-
tions, adaptive_page_in(),and adap-
tive_page_out(), each with three arguments: in-
coming process ID, outgoing process ID, and working
set size. The working set size also can be estimated by
the kernel using the incoming process’ run during the
previous time quantum. In addition to these, there are

// During Page-out
 pout = (process with out pid);
 pg_rec = (base address of page list for pout);
 addr = (base address of page being flushed out);
 append the addr to the list;

// During page-in

pin = (process with in_pid);
 pg_rec = (base address of page list for process pin);
 while(pg_rec.next != null)
 fault for page with base = pg_rec.addr;
 while(pg_rec.offset > 0)
 fault for page with base = pg_rec.addr++;
 pg_rec->offset --;
 end while
 pg_rec = pg_rec.next;
 delete old pg_rec;
 end while

Figure 4: Adaptive page-in algorithm

 6

two more functions: start_bgwrite(inpid)
and stop_bgwrite() for activating and deactivat-
ing background writing. The communication between
the user-level API and the kernel uses event notifica-
tion by passing parameters through /dev/kmem.
Alternatively, it can be achieved by extending the sys-
tem calls. However, we avoided this alternative for a
better portability to future revisions of the Linux ker-
nel.

4 Performance Evaluation
To evaluate our adaptive paging mechanisms, we con-
duct a series of experiments using the NAS NPB2
benchmark. The experimental cluster consists of five
machines at present: one running gang scheduler and
the other four running parallel jobs. These machines
are connected through a 100 Mbps Ethernet switch.
Each machine has 1Gigabytes main memory and runs
our adaptive-paging capable Linux developed on top
of the Linux kernel 2.2.19. The degree of parallelism
is limited to four, at this point, to minimize the net-
work complexity caused by process synchronizations2.

We select five representative combinations of our
adaptive paging policies: adaptive page in (ai), selec-
tive page-out (so), selective aggressive page-out
(so/ao), selective aggressive page out with back-
ground writing (so/ao/bg) and selective aggressive
page-out with adaptive page-in and background writ-
ing (so/ao/ai/bg). For parallel jobs, we use five NPB2
benchmark applications: LU, SP, CG, IS and MG
with the data class A. Five minutes were chosen for
the time quanta of gang scheduling. Quantum larger
than this will tend to negate the benefits of improved
response time due to co-scheduling.

Figure 6 presents the paging activity traces for the first
50 minutes during the execution of two gang scheduled
LU.Cs for different combinations of our adaptive pag-
ing mechanisms on four machines. We reduce the
available memory to 350 MB by wiring down some
memory using mlock(). This reduction is necessary
because the NPB benchmark has only a discrete set of
data sizes – the data class C of LU uses only 188Mbytes
when running on 4 machines in parallel –, and we need
to stress the memory as in a real situation. At each job
switch, which occurs every 300 seconds in the current
configuration, a series of paging disk I/Os takes place
to bring the working set of the incoming process into
memory. As illustrated in the first graph, with the
original LRU policy, page-in activities are spread over
a long period of time. In this graph, the overlapping of
page-ins and page-outs indicates that they interfere with
each other and that the disk I/O efficiency decreases.
The trace depicts that the paging occurs at a lower rate
for a longer duration and hence delays the computation.

The second graph in Figure 6 demonstrates that the
selective paging policy (so) decreases both amount and
duration of paging by preventing the incoming process’
old working set from getting swapped out. The ex-
tended paging period seen in both these graphs is es-
sentially due to the thrashing caused by page-ins and
page-outs happening at the same time. With the selec-
tive aggressive page-out (so/ao), as illustrated in the
third graph, the paging overhead is further reduced due
to the increased intensity of page-outs. When all three
adaptive paging policies are applied, both page-in and
page-out activities are intensified and compacted result-

AP-Out

Job 2
Gang Scheduler

Adaptive Paging Interface

Physical M emory
AP-Out AP-In

Job 1

Swap Device

Linux Kernel

Virtual M emory M anager (VM)

Figure 5: Implementation architecture for adaptive paging

2 We are currently experimenting with 8, and 16 machines
each having 1GB memory and 2GHz Intel Pentium 4 CPU.

 7

ing in a more efficient memory paging. It is indicated
by the sharp and high peaks in the fourth graph. Initial
periods of page-in can be observed at some job
switches because the background writing mechanism
is active. Due to background writing, the page-out
peaks during the switch have become shorter. Notice
that the results follow closely the performance projec-
tion we illustrated in Figure 1. It verifies that our a-
daptive paging mechanisms effectively make memory
paging in gang scheduling more compact and effi-
cient. More experiments to quantify the benefits of
adaptive paging are presented below.

4.1 Serial Jobs
To isolate the memory paging overhead from the net-
work delay for parallel job synchronizations, we first
run a serial version of NPB2 applications. Thus, the
results demonstrate the effect of the efficient adaptive
paging between two large memory applications run-
ning on a single machine. We use LU, SP, CG,
IS, and MG with the data class B3. Two instances of
each application run on a single machine using a gang
scheduler with a five-minute time quanta.

Figure 7 summarizes the results of this experiment.
Graph (a) plots the job completion time for the original
LRU and the combination of all our adaptive paging
policies (so/ao/ai/bg). The last set of bars, denoted by
batch, is for the case when two applications run one
after the other. The results show that the improvements
vary depending on applications. The significance of the
reduction in the completion time is in the order of MG,
LU, SP, CG, and IS.

Using the batch completion time as a base, we com-
puted the overhead imposed by job switches in gang
scheduling, which is shown in Graph (b). This over-
head indicates how much fraction of the time is spent
on paging for job switching. For SP, CG, IS, and
MG, the graph shows that the switching overhead is
more than or close to 50% with the original paging al-
gorithm, which means that more time has been spent
for memory paging than the computation. To amortize
this overhead, the time quanta should be increased sig-

original

0
1000
2000
3000
4000
5000

K
B

ps

si so

so
0

1000
2000
3000
4000
5000

kB
ps

so/ao
0

1000
2000
3000
4000
5000

kB
ps

so/ao/ai/
bg

0
1000
2000
3000
4000
5000

1 301 601 901 1201 1501 1801 2101 2401 2701

kB
ps

Figure 6: Paging activity traces of LU running on four machines for various adaptive paging policies.

3 With this data class, the selected benchmark programs
require 188MB to 400MB of memory which are suitable
for our experimental setup.

 8

nificantly. However, an even larger time quanta would
decrease the benefits of a better response and fairness
in gang scheduling. The graph demonstrates that our
adaptive paging policies reduce these overheads to
between 5% and 37%. In case of LU, the overhead
reduces from 26% to 5%.

Graph (c) presents the bars for the paging reduction
over the original paging algorithm. For MG, the com-
bination of all policies shows the biggest reduction,
93%. For LU, SP, and CG, the resulting reductions
are 84%, 78% and 68%, respectively. The paging re-

duction of IS, is relatively small, 19%. This is due to
its relatively small memory requirement. Overall, for
the serial benchmark programs whose working size is
large, our adaptive paging mechanisms were able to
reduce the paging overhead by more than 65%.

4.2 Gang Scheduled Parallel Jobs
Now, we extend the experiments to the parallel ver-
sions of the NPB2 benchmark with the MPI communi-
cation library. Our adaptive paging mechanisms force
the paging activities to occur simultaneously at all the

Job Completion Times

0

2000

4000

6000

8000

10000

LU CG IS MG
Applications

Ti
m

e/
4

(s
ec

)

Orig
All
Batch

Switching Overhead

0

2 5

5 0

7 5

10 0

Or i g A l l
Policy

O
ve

rh
ea

d
%

LU

CG

I S

M G

Paging Reduction

0 50 100

LU

CG

IS

MG

A
pp

lic
at

io
ns

Reduction (%)

(a) (b) (c)
Job Completion Times

0

2000

4000

6000

8000

10000

LU SP CG IS
Applications

Ti
m

e/
 4

 (s
ec

)

Orig
All
Batch

Switching Overhead

0

25

50

75

100

Orig A llPolicy

O
ve

rh
ea

d
%

LU

SP

CG

I S

Paging Reduction

0 50 100

LU

SP

CG

IS

A
pp

lic
at

io
ns

Reduction (%)

(d) (e) (f)
Figure 8: Job completion time, switching overhead, and reduction for parallel benchmarks

(a-c: 2 machines; d-f: 4 machines)

Job Completion Times

0

2000

4000

6000

8000

10000

LU SP CG IS MG

Applications

Ti
m

e
(s

ec
)

Orig

All

Batch

Switching Overhead

0

25

50

75

100

Orig All
Policy

O
ve

rh
ea

d
%

LU

SP

CG

IS

MG

Paging Reduction

0 50 100

LU

SP

CG

IS

MG

A
pp

lic
at

io
ns

Reduction (%)

(a) (b) (c)

Figure 7: Job completion time, switching overhead and reduction for serial benchmarks

 9

nodes at the beginning of the context switch. We pre-
sent the benefit of adaptive paging for the cluster-level
gang scheduling.

In Figure 8, Graphs (a) and (d) demonstrates the job
completion time for the four parallel benchmark appli-
cations running on two and four machines. Note that
SP is included only for 4 machines since it does not
compile for 2 machines, and MG is included only for
2 machines as its memory size is not suitable for our
setup. Batch represents the base case for comparison
when the two instances of each application run se-
quentially, one after the other incurring no paging for
job switching. All the applications consistently im-
prove the completion time with so/ao/ai/bg. CG typi-
cally has a small working set size and does not induce
as much paging. It shows some improvement when
run on 2 machines, but on 4 machines, its memory size
and working set size reduce to such an extent that
even with memory locking paging does not occur.
Graph (d) shows that the reduction in completion time
is minimum. SP, because of its large memory size,
needs a longer quantum of 7 minutes to avoid con-
tinuous memory thrashing when run on 4 machines.

Graphs (c) and (f) illustrate the reduction in paging
overhead over the original paging algorithm. CG man-
ages a small reduction by 38% and 7% with
so/ao/ai/bg policy when run on 2 and 4 machines,
respectively. LU and IS reduce the job switching time
by 61% and 72% for two machines, and 43% and 57%
for four machines respectively when all three adaptive
paging policies are used with background writing. SP
shows significant reduction to 70% for four machines.
This shows that our policies work even better when
greater memory stress exists. The experiments with
the parallel benchmark post a significant overall im-
provement in performance due to our adaptive paging
algorithms.

In this section, we presented the results of the experi-

ments with both the serial benchmark on a single node
and the parallel benchmark with synchronization com-
munications. We demonstrated that the memory paging
time is a dominant factor for job switching and the use
of our adaptive paging mechanisms can reduce it sig-
nificantly. This reduction will enable the gang sched-
uler to use a smaller time quantum and hence to im-
prove the responsiveness of parallel jobs.

4.3 Effects of Adaptive Paging Mechanisms
To better understand the effectiveness of each adaptive
paging mechanism we developed, the detailed results of
experiments are discussed in this section. Due to space
limitation, only the results for LU are presented.

The graphs in Figure 9 show the results of serial and
parallel runs (with both 2 and 4 machines). We have
selected six representative combinations of our four
mechanisms – ai, so, so/ao, so/ao/bg, and so/ao/ai/bg.
Graph (a) shows the effect of various combinations of
our paging policies on the completion time of the appli-
cation. Note that measuring speedup from these results
is not relevant since different input data sizes and mem-
ory locking sizes were used to emulate tight and over-
committed memory by the gang scheduler. For both
serial and parallel executions, adaptive page-in and
selective page-out policies show the biggest reduction
in completion time. Introduction of aggressive page-out
reduces the benefit by a small amount in case of serial
run because both the page-out policies together tend to
cause too many page-outs. This negative effect is
alleviated by background writing which disperses the
page-outs over a slightly longer duration. For both
psarallel runs, aggressive page-out actually helps selec-
tive page-out further by reducing the finish time by a
small amount. Lastly, for all the runs, adaptive page-in
reduces the completion time by reading in only the re-
quired pages.

For parallel runs, the original algorithm shows 55% to

Job Completion Time

0

2000

4000

6000

8000

1 2 4
Processors

Ti
m

e
(s

ec
)

Orig
ai
so
so/ao
so/ao/bg
so/ao/ai/bg
batch

Switching Overhead

0

20

40

60

80

1 2 4
Processors

%
 O

ve
rh

ea
d

Paging Reduction

0 20 40 60 80 100

1

2

3

Pr

oc
es

so
rs

Reduction (%)

(a) (b) (c)

Figure 9. Detailed experimental results for LU

 10

75% paging overhead as demonstrated in graph (b).
The maximum reduction is achieved when all the poli-
cies work in cooperation. For parallel executions, the
paging overhead is reduced to around 35% to 45% and
with serial execution it is reduced to one-sixth of
original algorithm.

Graph (c) shows the reduction in paging overhead
achieved by using various combinations of mecha-
nisms over the original algorithm. Adaptive page-in
and selective page-out again prove to be the most ef-
fective strategies with more than 65% reduction in
both cases. Aggressive page-out and background writ-
ing further help to reduce the overhead by 83%, 61%
and 71% for serial, 2- and 4-machine executions, re-
spectively.

5 Related Work
Many variations of gang scheduling systems for paral-
lel applications have been proposed and experimented
on [1,3,4,8,9,10]. Previous work exploring the context
switch overhead for gang scheduling was limited to
either reporting the observed performance impact of
memory paging [3,4], or analyzing the possible impact
on performance [5]. Wang, et al studied the relation-
ship between the context switch overhead and the time
quantum [11]. They suggested that it is better to use a
longer time quantum for the systems with higher job
switching overhead so that the overhead can be amor-
tized over a longer execution time. However, the
choice of longer time quantum would decrease the
responsiveness of the system. This contrasts with the
goal of gang scheduling to get good response time
even for applications with higher memory demands.

A number of researches have been conducted on
scheduling paradigms, in which memory is one of the
resources to be scheduled in addition to the processing
resources (processor cycles) [12,13,14]. Batat, et al
found that exercising the admission control that allows
only those jobs that fit into the available memory
gives overall improvement in performance while suf-
fering from delayed job execution [15]. Various algo-
rithms aiming at advanced reservation of resources
have been proposed and evaluated for computational
grid environments [16]. However, the advantages of
both of these approaches can only be realized if there
is accurate a priori information on the memory utiliza-
tion of jobs.

Zhang, et al analyzed the variations of page replace-
ment implementations in recent Linux kernels (version
2.0, 2.2, and 2.4) to compare their abilities to deal with
system thrashing [17]. They found that even though
version 2.2 has relatively more effective protection

against thrashing, none of these kernels have the ability
to dynamically adapt to changes in memory demands;
and, thus the protection that they provide is limited.
This observation has a bearing on our choice of Linux
kernel version 2.2 for implementing our modifications.

The dynamic resource allocation system, which is
aimed at reducing the memory resource contention
caused by page faults and I/O activity, was proposed by
Xiao, et al [18]. In a cluster system with dynamic load
sharing support, a small number of running jobs with
unexpectedly large memory requirements may signifi-
cantly increase the queuing delay times of the rest of
the jobs with normal memory requirements. Chen, et al
proposed a software method to deal with this problem
of job blocking using virtual cluster reconfiguration
mechanism [19].

Block paging is popular among many virtual memory
systems [6,20]. However, none of them examines the
effect of adaptive paging techniques on scientific envi-
ronments. Wang, et al speculated that the block paging
techniques used in non-parallel and timesharing sys-
tems may bring forth similar advantages to parallel
applications [5].

6 Conclusion and Future Work
In this paper, we observed that the widely accepted
demand paging model with the LRU page replacement
algorithm does not exploit the characteristics of gang
scheduled processes. We presented the adaptive paging
mechanisms that were built on top of the Linux kernel
and its performance impact on the gang scheduled
applications.

Our design included the ideas of selective page-out,
aggressive page-out, adaptive page-in, and background
writing. Under this new adaptive paging scheme, the
overall result showed a remarkable reduction of the
paging cost in job switch for gang scheduling. Our
experiments with NAS NPB2 benchmark programs
showed that the job switching time can be reduced by
up to 90%.

We are currently conducting experiments with a larger
cluster with the NAS NPB2 benchmark and applica-
tions of various working set sizes. We are extending
our performance study to parallel applications running
on 8 and 16 nodes.

References
[1] A. Hori, H. Tezuka, Y. Ishikawa, et al. Implementa-
tion of Gang-scheduling on Workstation Cluster. Pro-
ceeding of IPPS Workshop on Job Scheduling Strate-
gies for Parallel Processing, April, 1995.

 11

[2] D. G. Feitelson, L. Rudolph. Evaluation of Design
Choices for Gang Scheduling using Distributed Hier-
achical Control. Journal of Parallel and Distributed
Computing, Vol 16, No 4, May, 1996

[3] J. E. Moreira, W. Chan, L. L. Fong, et al. An in-
frastructure for Efficient Parallel Job Execution in
Terascale Computing Environments. Proceeding of
SC98. November, 1998.

[4] D. G. Feitelson, M. A. Jette. Improving Utilization
and Responsiveness with Gang Scheduling. Proceed-
ing of IPPS Workshop on Job Scheduling Strategies
for Parallel Processing, April, 1997.

[5] F. Wang, M. Papaefthymiou, M. Squillante. Per-
formance Evaluation of Gang Scheduling for Parallel
and Distributed Multiprogramming. Proceeding of
IPPS Workshop on Job Scheduling Strategies for Par-
allel Processing, April 1997.

[6] W. H. Tetzlaff, T. Beretvas, W. M. Buco, et al. A
paging-swapping Prototype for VM/HPO. IBM Sys-
tem Journal, Vol. 26, No. 2, 1987.

[7] D. Ridge, D. Becker, P. Merkey, T. Sterling. Beo-
wulf: Harnessing the Power of Parallelism in a Pile-
of-PCs. Proceedings, IEEE Aerospace, 1997.

[8]G. Alverson, S. Kahan, R. Korry, et al. Scheduling
on the Tera MTA. Proceeding of IPPS Workshop on
Job Scheduling Strategies for Parallel Procoessing,
April, 1995

[9] R. N. Lagerstrom, S. K. Gipp. PscheD-Political
Scheduling on the Cray T3E. Proceeding of IPPS
Workshop on Job Scheduling Strategies for Parallel
Processing, April, 1997.

[10] E. W. Parsons, K. C. Sevcik. Implementing
Multiprocessor Scheduling Disciplines. Proceeding of
IPPS Workshop on Job Scheduling Strategies for Par-
allel Processing, April, 1997.

[11] F. Wang, H. Franke, M. Papaefthymiou, et al. A
Gang Scheduling Design for Multiprogrammed Paral-
lel Computing Environmnets. Proceeding of IPPS
Workshop on Job Scheduling Strategies for Parallel
Processing, April 1996.

[12] IBM/SP LoadLeveler product.

[13] V. G. J. Peris, M. S. Squillante, V. K. Naik.
Analysis of the Impact of Memory in Distributed Par-
allel Processing System. Proceedings of ACM SIG-
METRICS Conference, February, 1994

[14] S. K. Setia. The Interaction between Memory
Allocation and Adaptive Partitioning in Message-
Passing Multicomputers. Proceeding of IPPS Work-

shop on Job Scheduling Strategies for Parallel Process-
ing, April 1997.

[15] A. Batat, D. G. Feitelson. Gang Scheduling with
Memory Consideration. Proceeding of 14th Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS) 2000, May, 2000.

[16] W. Smith, I. Foster, V. Taylor. Scheduling with
Advanced Reservations. Proceedings of IPDPS confer-
ence, May 2000.

[17] S. Jiang, Z. Zhang. Adaptive Page Replacement to
Protect Thrashing in Linux. Proceedings of the 5th an-
nual Linux showcase and conference, November 2001.

[18] L. Xiao, S. Chen, X. Zhang. Dynamic Cluster Re-
source Allocations for Jobs with Known and Unknown
Memory Demands. IEEE transactions on parallel and
distributed systems, March 2002.

[19] S. Chen, L. Xiao, X. Zhang. Adaptive and Virtual
Reconfigurations for Effective Dynamic Job Schedul-
ing in Cluster Systems. Proceedings of the 22nd interna-
tional conference on distributed computing systems,
2002.

[20] S. J. Leffler, M, K. McKusick, M. J. Karels, J. S.
Quarterman. The Design and Implementation of the
4.3.BSD Unix Operating System. Addison-Wesley
Publishing Company.

[21] M. Beck, H. Bohme, M. Dziadzka, et al. Linux
Kernel Internals. Addison-Wesley, 1998.

