
RC22900 (W0309-095) September 17, 2003
Computer Science

IBM Research Report

New Approximability and Inapproximability Results for
2-Dimensional Bin Packing

Nikhil Bansal
Department of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

Maxim Sviridenko
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

New Approximability and Inapproximability results for 2-dimensional

bin packing

Nikhil Bansal∗ Maxim Sviridenko†

Abstract

We study the 2-dimensional generalization of the classi-
cal Bin Packing problem: Given a collection of rectan-
gles of specified size (width, height), the goal is to pack
these into minimum number of square bins of unit size.

A long history of results exists for this problem and
its special cases [3, 14, 10, 18, 9, 1, 15]. Currently, the
best known approximation algorithm achieves a guar-
antee of 1.69 in the asymptotic case (i.e. when the opti-
mum uses a large number of bins) [1]. However, an im-
portant open question has been whether 2−dimensional
bin packing is essentially similar to the 1−dimensional
case in that it admits an asymptotic polynomial time
approximation scheme (APTAS) [8, 13] or not? We an-
swer the question in the negative and show that the
problem is APX hard in the asymptotic case.

On the other hand, we give an asymptotic PTAS for
the special case when all the rectangles to be packed are
squares (or more generally hypercubes). This improves
upon the previous best known guarantee of 1.454 for
d = 2 [9] and 2 − (2/3)d for d > 2 [15], and settles the
approximability for this special case.

1 Introduction

In the 2-Dimensional Bin Packing Problem rectangles
of specified size (width, height) have to be packed into
larger squares (bins). The most interesting and well-
studied version of this problem is the so called orthogo-
nal packing without rotation where each rectangle must
be packed parallel to the edges of a bin. The goal is to
find a feasible packing, i.e. a packing where rectangles
do not overlap, using smallest number of bins.

Bin packing and its d−dimensional variants have
been extensively studied since the 60’s both in the
context of offline approximation algorithms and online
algorithms. A detailed survey can be found in [4,
7]. Throughout this paper we only consider offline
algorithms, and give only the relevant results.

∗Department of Computer Science, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213, USA. Email: nikhil@cs.cmu.edu.

†IBM T.J. Watson Research Center, Yorktown Heights, 10598,
Email: sviri@us.ibm.com.

We assume that every rectangle p has width 1 ≥
wp > 0 and height 1 ≥ hp > 0. Clearly the NP-
Hardness of 2-dimensional bin-packing follows for that
of 1-dimensional bin packing (which is the special case,
when all the heights are exactly 1). The standard
measure used to analyze the performance of a packing
algorithm A is the asymptotic approximation ratio R∞

A

defined by

Rn
A = max{A(L)/OPT (L)|OPT (L) = n}

R∞
A = lim

n→∞ supRn
A

where L ranges over the set of all problem instances and
A(L) (resp. OPT (L)) denote the number of bins used
by A (resp. the optimum algorithm).

For 1-dimensional bin packing, De La Vega and
Lueker gave the first asymptotic approximation scheme
[8]. Later, this was improved by Karmarkar and Karp
to give an algorithm which uses Opt + O(log2 Opt) bins
[13].

For the 2-dimensional case, the first results were
obtained by [3] who gave a 2.125 approximation algo-
rithm. For a long time this was the best known, until
a 2 + ε (for any ε > 0) approximation was obtained
(implicitly) by Kenyon and Remila [14]. The recent
breakthrough is an elegant 1.691 approximation algo-
rithm due to Caprara [1]. Interestingly, many more re-
sults are known for some special cases in which there is
a restriction on how the rectangles can be packed in a
bin. Two particular cases that are widely studied are
Strip Packing and Shelf Packing (details about these
can be found in [1] and the references there in). While
clever asymptotic approximations schemes are known
for some of these special cases, it was unclear whether
the general 2-dimensional bin packing problem admits
an approximation scheme.

For the special case of packing squares in square
bins (which is also NP-hard by [16]) only algorithms
with constant factor approximation ratios were known
prior to our work. The first guarantee better than 2.125
was obtained by [10] who gave a 1.988-approximation
algorithm. This was later improved to 14/9+ε = 1.55+ε
by Seiden and Stee [18]. Recently, Caprara gave an

1

algorithm and showed that it has approximation in the
interval [1.490, 1.507], provided a conjecture is true [1].
The best known guarantee prior to our work is due to
Epstein and Stee [9] who give an 16/11 + ε = 1.454 + ε
algorithm for the 2-dimensional case. Finally, for the
general d−dimensional hypercube packing case, [15]
obtained the first algorithm with approximation ratio
2 − (2/3)d, for fixed d.

A related problem is that of Vector Bin packing
described as follows: Given a set of n rational vectors
p1, . . . , pn from [0, 1]d, find a partition of the set into
sets A1, . . . , Am such that ||Āi||∞ ≤ 1 for 1 ≤ i ≤ m,
where Āi =

∑
j∈Ai

pj is the sum of the vectors in Ai.
The objective is to minimize m, the size of the partition.

For d = 1, the vector bin packing problem is
identical to the classical 1-dimensional bin packing, but
this is not true for d > 1. Chekuri and Khanna
[2] showed a relatively simple connection between d
dimensional vector bin packing (for arbitrary d) and
graph coloring, which implies that vector bin packing
is hard to approximate within O(d1−ε) for any ε > 0.
Woeginger [20] showed that the problem is APX hard
even for the case of d = 2. The best known result for
this problem is an (1 + εd + O(ln ε−1))-approximation
for any fixed ε > 0 [2]. This in particular implies an
O(ln(d)) approximation for constant d.

Another closely related problem is the packing
problem where we are given a set of rectangles with
nonnegative profits. The goal is to maximize the total
weight of rectangles which could be packed into a bigger
rectangle (or square by scaling). The most recent paper
on this problem is due to Jansen and Zhang [11]. They
describe few constant factor approximation algorithms
for this problem and provide references on the state of
the art for it.

1.1 Our Results We show the following results:
1. The 2−dimensional bin packing problem does

not admit an asymptotic approximation scheme. This
trivially implies the non-existence of an asymptotic
PTAS for all d ≥ 2.

2. We give the first asymptotic approximation
scheme for packing squares into square bins. More
generally, we give an APTAS for packing d-dimensional
hypercubes into bins for any fixed d. Independently
of our result, Correa and Kenyon [6] obtained the
same result which is published in this proceedings.
They also designed a resource augmented PTAS for the
general 2-dimensional rectangle packing problem, i.e.
the algorithm which packs rectangles into the optimal
number of bins of size (1 + ε) × (1 + ε).

1.2 Techniques Our result for the APX hardness of
2-dimensional bin packing has ideas similar to those
used by Woeginger [20] to show the APX hardness of 2
dimensional vector packing. However, our construction
is much more involved than in [20] as there is much
less structure on how the rectangles can be packed in
a bin. For example, given a collection of rectangles (or
equivalently vectors) p1, . . . , pn, it is NP-Hard to decide
whether these rectangles can be packed in a single bin
in the sense of rectangular bin packing (this follows by
a simple reduction from the 3-Partition problem). On
the other hand, this problem is trivial for vector bin
packing.

For d > 1 dimensional square (or hyper-cube) pack-
ing, most previous approaches which obtain a constant
factor approximation [10, 18, 15, 9] use the classical
techniques used for 1-dimensional bin packing. That is,
classify the objects into large and small. Find a pack-
ing of the large objects using rounding and exhaustive
search, and then pack the remaining small objects.

In the case when d > 1, the above approach does not
directly yield an approximation scheme for the following
reason: The gaps left in the bin after packing the large
objects can have arbitrary structure, and it is not clear
how to pack the small objects in these gaps without
wasting a constant fraction of the space.

Our approach is based on a technique due to
Sevastianov and Woeginger [19]. We partition the
objects into 3 sets: large, medium and small. This gives
us a sufficient gap between the sizes of the large objects
and the small objects. We pack the medium objects
separately, and then show how to pack the large and
the small objects together.

2 MAX SNP Hardness of 2 dimensional bin
packing

We give a reduction from the Maximum Bounded 3-
Dimensional matching problem.

Input: Three sets X = {x1, . . . , xq}, Y =
{y1, . . . , yq} and Z = {z1, . . . , zq}. A subset T ⊆
X × Y × Z such that any element in X,Y,Z occurs
in one, two or three triples in T . Note that this implies
that q ≤ |T | ≤ 3q.

Goal: Find a maximum cardinality subset T ′ of T
such that no two triples in T ′ agree in any coordinate.

Measure: Cardinality of T ′.
Kann [12] was first who proved MAX SNP hardness

of the MAX-3-DM. Petrank [17] (Theorem 4.4) proved
a refined hardness result, he proved that it is NP-hard
to distinguish between instances where |T ′| = q and
instances where |T ′| ≤ (1− ε)q for some constant ε > 0.

We start with an instance I of MAX-3-DM and we
will construct an instance of 2-dimensional bin packing

2

with 5q + 3|T | rectangles.
We first define the following integers. Let r = 32q.

x′
i = ir3 + i2r + 1, for 1 ≤ i ≤ q,

y′
i = jr6 + j2r4 + 2, for 1 ≤ j ≤ q,

z′i = kr9 + k2r7 + 4, for 1 ≤ k ≤ q.

For every triple tl = (xi, yj , zk) in T , we define an
integer t′l = r10 − x′

i − y′
j − z′k + 15 = r10 − kr9 −

k2r7 − jr6 − j2r4 − ir3 − i2r + 8. Let δ = 1/500 and let
c = (r10 + 15)/δ. Observe that 0 < x′

i, y
′
j , z

′
k < δc/10

and t′l < δc holds for all i, j, k, l.
We now describe the rectangles in our instance. A

rectangle of width w and height h will be denoted by
(w, h).

For each element in xi ∈ X we define two rectangles
ax,i = (1/4 − 4δ + x′

i/c, 1/2 + 4δ − x′
i/c) and a′

x,i =
(1/4 + 4δ − x′

i/c, 1/2 − 4δ + x′
i/c)

For each element in yi ∈ Y we define two rectangles
ay,i = (1/4 − 3δ + y′

i/c, 1/2 + 3δ − y′
i/c) and a′

y,i =
(1/4 + 3δ − y′

i/c, 1/2 − 3δ + y′
i/c)

For each element in zi ∈ Z we define two rectangles
az,i = (1/4 − 2δ + z′i/c, 1/2 + 2δ − z′i/c) and a′

z,i =
(1/4 + 2δ − z′i/c, 1/2 − 2δ + z′i/c)

Let Ax = {ax,1, . . . , ax,q} and A′
x = {a′

x,1, . . . , a
′
x,q}.

Ay, A′
y, Az and A′

z are defined similarly to be the set
of rectangles ay,i, a′

y,i, az,i and a′
z,i respectively. We

will use A to denote the collection Ax ∪ Ay ∪ Az and
A′ = A′

x ∪ A′
y ∪ A′

z.
Next for each tl ∈ T we define two rectangles bl and

b′l such that bl = (1/4 + 8δ + t′l/c, 1/2 + δ − t′l/c) and
b′l = (1/4 − 8δ − t′l/c, 1/2 − δ + t′l/c).

Let B = {b1, . . . , b|T |} and B′ = {b′1, . . . , b′|T |}.
Finally we define D to be a collection of |T | − q

dummy rectangles di such that di = (3/4 − 10δ, 1).
We say that two rectangles a and a′ are buddies

iff {a, a′} is {ax,i, a
′
x,i} or {ay,j , a

′
y,j} or {az,k, a′

z,k} for
1 ≤ i, j, k ≤ k or {a, a′} = {bl, b

′
l} for some 1 ≤ l ≤ |T |.

From the values chosen for the sizes of the rectangles it
is easy to see that,

Observation 1. For each rectangle a ∈ A∪A′, w(a)+
h(a) = 3/4. For any two buddies b ∈ B and b′ ∈ B′,
w(b) + h(b) + w(b′) + h(b′) = 3/2.

Observation 2. For any two rectangles a, a′ in A ∪
A′ ∪ B ∪ B′, h(a) + h(a′) = 1 iff a and a′ are buddies.

The following definition is needed only for the next
two lemmas. For a rectangle a, we now define ∆(a)
which allows us to relate back the rectangle to the
integers x′

i, y
′
j , z

′
k or b′l. For a rectangle ax,i ∈ Ax, let

∆(ax,i) = x′
i. Similarly, ∆(ay,j) = y′

j , ∆(az,k) = z′k,
∆(bl) = t′l and ∆(a′

x,i) = −x′
i,∆(a′

y,j) = −y′
j , ∆(a′

z,k) =
−z′k, ∆(b′l) = −t′l.

Lemma 2.1. For any three rectangles a1, a2, a3 ∈ A
and b ∈ B, w(a1) + w(a2) + w(a3) + w(b) = 1
iff {a1, a2, a3, b} = {ax,i, ay,j , az,k, bl} such that tl =
(xi, yj , zk) is a tuple in the MAX-3-DM problem.

Proof. The ”if” direction follows directly from defini-
tions. We now proof the ”only if” part of the lemma.
As 0 < ∆(ai) < δc/10, for 1 ≤ i ≤ 3 and 0 < ∆(b) < δc,
then if w(a1) + w(a2) + w(a3) + w(b) = 1, it must be
that

∑3
i=1 ∆(ai) + ∆(b) = δc = r10 + 15. Consider-

ing the quantity
∑3

i=1 ∆(ai) + ∆(b) modulo r, it fol-
lows that there is exactly one rectangle each from Ax,
Ay, Az and B since 15 = 1 + 2 + 4 + 8 and this is
the only way to represent 15 as a sum of four num-
bers from the set {1, 2, 4, 8}. Next, considering the sum∑3

i=1 ∆(ai) + ∆(b) again modulo r2, r3, . . . , r9, it fol-
lows that {a1, a2, a3, b} = {ax,i, ay,j , az,k, bl} such that
tl = (xi, yj , zk) is a tuple in the MAX-3-DM problem.

Lemma 2.2. Let R = {a1, a2, a3, a4} be four rectangles
lying in A ∪ A′, such that no two of these are buddies.
Then for any choice of ai, 1 ≤ i ≤ 4,

∑
i w(ai) �= 1.

Proof. Suppose for the sake of contradiction that∑4
i=1 w(ai) = 1. As 0 ≤ |∆(ai)| ≤ δc/10, it must be

that
∑4

i=1 ∆(ai) = 0. We first show that there can-
not be more then one rectangle from Ax ∪ A′

x in the
set R (later we will show that same argument works for
Ay∪A′

y and Az∪A′
z, thus giving a contradiction). Con-

sidering the coefficient of r and r3 in the sum quantity∑4
i=1 ∆(ai). These coefficients depend on rectangles in

(Ax ∪ A′
x) ∩ R only. Let i1, i2, i3, i4 denote the indices

of rectangles from (Ax ∪ A′
x) ∩ R (where an index is 0,

if fewer than 4 occur). Since no two rectangles are bud-
dies, we cannot have both ax,ik

and a′
x,ik

in R. So, for
each ik, 1 ≤ k ≤ 4, we associate a variable α(ik), where
α(ik) = 1 if ax,ik

∈ R and −1 if a′
x,ik

∈ R.
Since the coefficients of r and r3 sum to 0, we must

have that
∑4

k=1 α(ik)ik = 0 and
∑4

k=1 α(ik)i2k = 0, with
the constraints that all positive ik’s are distinct.

We now claim that the only feasible solution to the
above system is ik = 0 for all 1 ≤ k ≤ 4. Clearly we
need at least 3 of the ik’s to be positive else we cannot
have

∑
k α(ik)ik = 0. Second, note that all α(ik) can

not be -1 or +1.
Under these constraints, when exactly three are

non-zero ik’s, we have the equations, i1 + i2 = i3 and
i21 + i22 = i23 under the constraints that all numbers
are positive and distinct. But clearly, there can be no
solution to this.

In the case when all the ik’s are positive by renam-
ing variables all cases can be reduced to the following
two cases:

3

1. i1 + i2 = i3 + i4 and i21 + i22 = i23 + i24,

2. i1 + i2 + i3 = i4 and i21 + i22 + i23 = i24.

The last case clearly does not have a solution. For the
first case, rewrite the equations as i1 − i3 = i4 − i2 and
i21− i23 = i24− i22, which implies that i1 + i3 = i4 + i2, and
hence i1 = i4 which gives a contradiction. Repeating
the argument identically for Ay ∪ A′

y and Az ∪ Az the
result follows.

Observation 3. The width (resp. height) of any rect-
angle in the instance is at least 1/4−10δ (resp. at least
1/2−5δ), and hence the area of any rectangle is at least
1/8 − 25/4δ > 1/9. Thus no bin can have more than 8
rectangles.

Observation 4. If we consider a feasible bin packing
as a packing of some unit square with the left lower
corner in the origin and right upper corner in the point
(1, 1) then any vertical line, i.e. a line parallel to the y-
axis, intersects at most one rectangle from A ∪ B since
height of each rectangle in A∪B is strictly greater than
1/2.

This observation implies that any bin can contain at
most 4 rectangles in A∪B, and at most 3 rectangles in
B since the width of each rectangle in A∪B more than
1/5, and the width of each rectangle in B is more than
1/4. Finally, it is easy to see that,

Observation 5. If a rectangle di ∈ D lies in some bin
S, then S contains at most 2 other rectangles and at
most one of them is a rectangle from A ∪ B.

Given a packing of the bins, call a bin good if
it contains exactly 8 rectangles and moreover it has
exactly 4 rectangles from A ∪ B. The following crucial
lemma characterizes the structure of good bins.

Lemma 2.3. A bin is good if and only if it contains
the rectangles ax,i, ay,j , az,k, bl and the corresponding
rectangles a′

x,i, a
′
y,j , a

′
z,k, b′l such that tl = (xi, yj , zk)

corresponds to a triple in MAX-3-DM instance.

Proof. We first show that the rectangles corresponding
to a triple can be packed in a bin. Starting from the
bottom left corner of the bin and moving towards the
right, we pack the rectangles ax,i,ay,j , az,k and bl. Each
of these rectangles is placed such that it touches the
bottom of the bin. Figure 1 shows the packing. It is
easy to verify that these four rectangles can be packed
as described, as w(ax,i) + w(ay,j) + w(az,k) + w(bl) =
1−δ+x′

i+y′
j +z′k +t′l = 1. Next we observe that each of

the rectangles a′
x,i, a

′
y,j , a

′
z,k and b′l can be placed in the

remaining gaps (as shown in Figure 1). Clearly, a′
x,i can

1/2

0 11/4 1/2 3/4

A(y,j) A(z,k) B(l)

A’(y,j) A’(z,k) B’(l)

y=4/5
(L_2)

(L_1)
y=1/5

A’(x,i)

A(x,i)

1

Figure 1: Packing of the rectangles corresponding to a
triple

be placed on top of ax,i because h(ax,i)+h(a′
x,i) = 1 and

as h(ax,i) < h(ay,j) < h(az,k) < h(bl), this allows a′
x,i to

extend horizontally beyond ax,i. Arguing similarly and
observing that w(a′

x,i) + w(a′
y,j) + w(a′

z,k) + w(b′l) = 1,
it is easy to see that rectangles a′

y,j , a
′
z,k and b′l also fit.

We now show that any good bin must correspond to
a triple. We first give a way for labelling the 8 rectangles
in a good bin. Consider the lines L1 = {y = 1/5}
and L2 = {y = 4/5}. It is easy to see that any in
packing of a bin with 8 rectangles, each rectangle must
intersect exactly one of L1 or L2. This follows as any
rectangle has height at most 1/2 + 1/50 < 3/5 and at
least 1/2 − 1/50 > 2/5. Moreover, as any rectangle has
width strictly more than 1/5, it follows that each L1 and
L2 intersect exactly 4 rectangles. Let {a1, a2, a3, a4}
denote the rectangles that intersect L1 such that ai is
to the left of aj for i < j. Similarly let {a5, a6, a7, a8}
denote the rectangles that intersect L2 in the left to
right order. Thus we have that

4∑
i=1

w(ai) ≤ 1(2.1)

and that
4∑

i=1

w(ai+4) ≤ 1(2.2)

Finally observe that for each 1 ≤ i ≤ 4 each rectangle
ai must overlap with ai+4 in an x − coordinate. Thus

4

we have the constraints that

h(ai) + h(ai+4) ≤ 1 for 1 ≤ i ≤ 4(2.3)

We consider three cases depending on the number
of rectangles in B that lie in the bin.

1. At least 2 rectangles in B lie in the bin: Since each
bin in B has width at least 1/4 + 8δ, two such bins
use at least 1/2 + 16δ. Thus the width left for
bins from A is at most 1/2 − 16δ (we cannot put
rectangles from A on top of the rectangles from
B), and hence at most 1 bin from A can fit. Thus
the bin can have at most 3 rectangles from A ∪ B
and hence cannot be good. Similarly, if 3 rectangles
from B lie in the bin, there cannot be any rectangle
from A.

2. No rectangle in B lies in the bin: We claim the bin
cannot have more than 3 rectangles from A. For
the sake of contradiction suppose r1, r2, r3, r4 ∈ A
lie in the bin. Then no rectangle from B′ can lie in
the bin, because any rectangle in A has height at
least 1/2 + 2δ while the height of any rectangle in
B′ is at least 1/2 − δ and moreover any rectangle
in B′ must overlap in some x-coordinate with some
ri for 1 ≤ i ≤ 4. Thus all the 8 rectangles lie in
A ∪ A′.

Adding Equations 2.1, 2.2 and 2.3 we have that∑8
i=1(w(ai) + h(ai)) ≤ 6. Moreover from Observa-

tion 1 we have that
∑8

i=1(w(ai)+h(ai)) = 6, thus it
must be the case that each of Equations 2.1,2.2 and
2.3 must hold with an equality. By Observation 2,
this implies that ai and ai+4 are buddies for each
i = 1, . . . , 4. This in particular implies that among
the rectangles a1, a2, a3 and a4 no two are buddies.
Therefore, it is impossible that

∑4
i=1 w(ai) = 1 by

Lemma 2.2, and hence we have a contradiction.

3. Exactly one rectangle bl ∈ B lies in the bin: In the
case we will show that if the bin is good, then it
must correspond to a triple tl = (xi, yj , zk).

Suppose the bin is good, then there are exactly
three other rectangles from A. Since any rectangle
from B′ cannot overlap in an x-coordinate with any
rectangle in A, it follows that there can be at most
one rectangle from B′, which must overlap with bl.
Next, we show that there has to be at least one
rectangle from B′. Suppose there are no rectangles
from B′, then we claim that the total width of
all the rectangles must be strictly more than 2,
which is not possible. To see this, since there is
no rectangle from B′, there must be four rectangles
from A′. As the width of any rectangle in A′ (resp.

B) is strictly more than 1/4 + δ (resp. 1/4 + 8δ),
this takes up width > 5/4+12δ. But, as the width
of any rectangle in A is at least 1/4 − 4δ, we do
not have sufficient total width to pack 3 rectangles
from A. This proves the claim.

Hence there is exactly one rectangle from B′. Call
it b′l′ . Since b′l′ can only overlap vertically with bl

it must be that h(bl) + h(b′l′) ≤ 1, and hence that
w(bl) + w(b′l′) ≥ 1/2. Moreover, by Observation
1, w(bl) + h(bl) + h(b′l′) + w(b′l′) = 3/2. Now,
by summing Equations 2.1,2.2 and 2.3 and using
Observation 1 we have that each inequality in
Equations 2.1,2.2 and 2.3 is satisfied with equality.
To complete the argument, suppose bl intersects
line L1, let a1, a2, a3 denote the rectangles in A∪A′

which also intersect L1. Thus, we have that w(a1)+
w(a2)+w(a3)+w(bl) = 1. None of the ai, 1 ≤ i ≤ 3
can lie in A′, because otherwise it is always the
case that w(a1) + w(a2) + w(a3) + w(bl) > 1.
Since all a1, a2 and a3 lie in A, by Lemma 2.1 it
follows that these rectangles correspond to a triple
tl = (xi, yj , zk).

Theorem 2.1. There is no Asymptotic PTAS for the
2-Dimensional Bin Packing Problem unless P = NP .

Proof. If the MAX-3-DM problem has a matching con-
sisting of q tuples, then we can get a bin packing so-
lution which uses |T | bins as follows. For each of the
tuples in the matching, create a good bin as described
in Lemma 2.3. For each tl not in the matching, we put
bl and b′l along with a dummy rectangle, and hence we
use q + (|T | − q) = |T | ≤ 3q bins.

Assume now that every feasible solution of the
MAX-3-DM problem has at most (1 − ε)q triples. We
will show that any solution to the corresponding bin
packing problem uses at least (1 + ε/33)|T | bins. Con-
sider any feasible solution to the bin-packing instance.
There will be exactly nd = |T | − q bins with dummy
objects. Lemma 2.3 implies that if a bin is not good
then it either has at most 7 rectangles or else it has
at most 3 rectangles from A ∪ B. Let ng denote the
number of good bins. Since the set of good bins corre-
sponds to some feasible solution by Lemma 2.3 we have
ng ≤ (1 − ε)q. Among the bins which are not good let
nb1 denote the number of bins (other than the bins with
dummy objects) which contain at most 7 rectangles and
let nb2 denote the rest of the bins, (note that these are
precisely the bins that have eight rectangles but 3 or
fewer rectangles from A ∪ B).

Since any solution must cover all the rectangles in
A∪B and any bin with a dummy rectangle can have at
most one rectangle from A ∪ B, we have the constraint

5

that
4ng + 4nb1 + 3nb2 + nd ≥ 3q + |T |

Equivalently,

4ng + 4nb1 + 3nb2 ≥ 4q

Similarly, since all the rectangles must be covered,
we have that

8ng + 7nb1 + 8nb2 + 2nd ≥ 6q + 2|T |

Equivalently,

8ng + 7nb1 + 8nb2 ≥ 8q

Adding the equations above, 12ng +11nb1 +11nb2 ≥
12q. Equivalently, ng + nb1 + nb2 ≥ 12q/11 − ng/11.
Adding the bins with dummy objects, this implies that
the total number of bins used is at least |T |−q+12q/11−
ng/11 = |T |+(q−ng)/11 ≥ |T |+εq/11 ≥ |T |(1+ε/33).

Now if there is an APTAS for 2-dimensional bin
packing, then for every ε > 0, there exists an algorithm
Aε and a constant cε, such that for instances I if
|Opt(I)| > cε, then Aε ≤ (1 + 2ε)|Opt(I)|. Thus for
any ε > 0, if q > cε we can distinguish between two
instances of the MAX-3-DM problem with |T ′| = q and
|T ′| ≤ (1 − 66ε)q, which is an NP-hard problem by [17]

3 PTAS for square packing

In this section we give a PTAS for the special case where
we want to pack squares into bins.

We begin with some notation and definitions: The
problem instance I is a collection of squares specified
by their sizes. For any collection of squares C, we use
A(C) to denote the total area of the squares in C, and
OPT (C) is used to denote the optimum number of unit
size bins used to pack the squares in C.

Before describing our overall algorithm, we first
describe a subroutine (known as the Decreasing height
shelf algorithm) that we use to pack squares in an
arbitrary rectangular region. A shelf is a row of items
having their bases on a line which is either the base of
the bin or the line drawn at the top of the tallest item
packed in the shelf below.

Given a collection C such that the square indexed
by i has size si × si and s1 ≥ s2 ≥ . . . ≥ sn which are
to be packed in a rectangular region R, the Decreasing
Height Shelf algorithm is defined as follows:

Starting with a packing of s1 in the bottom left
corner of R, continue packing objects s2, . . . , si1 at the
base of R such that si1+1 does not fit. At this point,
we close this shelf with a vertical line L1 at height s1.
We open a new shelf with line L1 as the base, and
continue packing objects si1+1, . . . , si2 and so on. If

after k shelves, the item sik+1 does not fit in the shelf
above (i.e. we do not have enough space to begin the
(k+1)th shelf, we close the rectangle R and do not pack
any more objects in it.

This algorithm was described and studied first in
[5]. The following is a crucial property of the decreasing
height shelf algorithm.

Lemma 3.1. Let Cs be an arbitrary collection of
squares, where each square has size at most s. Let R
be a rectangular region of size a× b (means width a and
height b), in which Cs is to be packed. Assume that
the collection Cs is large enough that it never runs out
of squares while packing R. Then, packing the squares
in Cs according to the decreasing height shelf heuristic
wastes at most s(a + b) area.

Proof. Let si denote the size of job starting shelf i, and
li denote size of the last job in shelf i. The waste at the
end of this shelf is at most si+1si (because si+1 could
not fit in this shelf. The waste at the top of each shelf
(excluding the area already accounted for) is at most
(si − li)(a − si+1).

Suppose there are k shelves. The waste in the region
where we could not begin the k + 1th shelf is at most
(lk)a.

Adding up all this waste we get, lka +
∑k

i=1(si −
li)a + lisi+1. Observing that si ≥ li ≥ si+1, this waste
is upper bounded by s1a +

∑k
i=1 lis1 ≤ s1(a + b)

Corollary 3.1. While packing squares in a unit
square bin, Decreasing height shelf heuristic is a 6 ap-
proximation with respect to the area.

Proof. Suppose the largest square has size at least√
2 − 1, then we pack at least (

√
2 − 1)2 > 1/6 of the

area. If the largest square is smaller than
√

2 − 1, by
the above lemma we waste at most 2(

√
2−1) and hence

use at least 3 − 2
√

2 > 1/6.

Let ε0 = 1 > ε1 > ε2 > . . . > εk = 0 be a sequence
of numbers, where k = 	1/ε
 and εi = ε2

i−1. Note that
εi = εε2i−1, for 1 ≤ i ≤ k − 1.

Let Ii denote the subcollection of squares in I whose
sizes lie in the range [εi−1, εi), for 1 ≤ i ≤ k. Observe
that the Ii partition I into a collection of k disjoint sets.
Thus, there exists some m such that A(Im) ≤ εA(I).
We call all squares in Im as medium, squares in Ii

such that i < m are called large, and squares in Ii

for i > m are called small. This definition is due to
Sevastianov and Woeginger [19] and is very helpful in
design of PTASes for scheduling and packing problems.

We now describe our algorithm. The algorithm will
have 3 phases: In the first phase we pack the medium

6

squares. In the second phase we find a close to optimum
packing of the large squares, and in the final phase we
pack the small squares. We now describe each of these
phases.

Packing medium squares:
Take the medium squares and pack them in separate

bins using the Decreasing height shelf algorithm. These
bins are closed and will never be used again.

Packing large squares:
Let L denote the set of large objects. Let l = |L|

and s1 ≥ . . . ≥ sl denote the sizes of the squares in
L. We form g = 1/εm groups as follows. The first
group L1, consists for largest 	l/g
 pieces the second
of the next largest 	l/g
 and so on. Construct a new
instance L′ obtained by discarding the first group and
for each other group, rounding the size of the square to
the size of the largest square in this group. Note that
OPT (L′) ≤ OPT (L). This rounding trick is due to
Fernandez de la Vega and Lueker [8] and is very popular
in bin packing literature.

Our algorithm packs each square in L1 in its own
separate bin. To obtain a packing of L2 ∪ . . . ∪ Lg, we
will obtain a packing of L′. Clearly, a valid packing of
L′ can be used to pack the squares in L2 ∪ . . . ∪ Lg.

Notice that the instance L′ has at most g distinct
job sizes, call them s′1, . . . , s

′
g. We now show how to

obtain a close to optimum packing of L′. The ideas are
similar to that of one dimensional bin packing [8].

Consider the ways in which a single bin can be
packed. These can be described by a k-tuple t =
(t1, . . . , tg), where ti denote the number of squares of
size s′i in the bin. Since each large square has size at
least εm−1, the total number of such squares in any bin
can be at most 1/ε2m−1. Thus, the number of all possible

tuples can be at most
(

g + 1/ε2m−1
g

)
≤ 2g+1/ε2m−1 ≤ 22g

which is a constant.
Call a tuple T = (t1, . . . , tg) feasible, if there is

a way to pack all the objects corresponding to t in a
single bin. It is easy to check if a tuple is feasible in
constant time. For every square packed in a bin we
can assume that it is shifted to leftmost and bottom
most position which implies that each of the lower left
corner coordinates of this square can be represented as a
sum of constant number of square sizes. The algorithm
first figures out in constant time the set of all feasible
tuples. Let T = {T1, . . . , Tq} denote the set of all
feasible tuples. Let Tij denote the number of squares
of size tj in Ti.

We form a linear program (denoted by LP) as
follows:

min
q∑

i=1

xi(3.4)

subject to

q∑
i=1

Tijxi ≥ nj , for each j = 1, . . . , g

xi ≥ 0, for each i = 1, . . . , q

The variable xi corresponds to the (fractional)
number of bins which have configuration corresponding
to the tuple Ti. Observing that any basic optimal
solution to this LP has at most g non-zero variables xi.
We can obtain an integral solution by simply rounding
each non-zero xi to next integer. This increases the
cost by at most g. After that we define xi packings
corresponding to the tuple i this guarantees that for
every size type there is enough squares used in that
packing and therefore all large squares can be packed.

Packing Small Squares:
Consider the bins containing the large objects in an

arbitrary order. For each bin we first divide the gaps
into rectangular shapes using the following procedure:

Fix a bin B. For each square in B extend its top side
and bottom side horizontally in both directions until
it hits another square or the boundary of the bin B.
This divides the gaps in the bin into rectangular regions.
See figure 2. Moreover, the number of such rectangular
regions is at most 4/ε2m−1 + 1. This follows by adding
the lines one by one. Since there are at most 1/ε2m−1

squares in a bin, we have at most 4/ε2m−1 such lines
and each line adds at most one additional rectangular
region.

Regions where smalls are placed

Figure 2: Regions where small squares are packed

To pack the small objects, consider the rectangular
regions in any arbitrary order, and pack the small
objects in these regions according to the decreasing
height shelf algorithm.

If all the small objects cannot be packed in the
rectangular regions, open additional new bins to pack

7

the remaining small objects. Again, the small objects
in the new bins are packed according to the decreasing
height shelf algorithm.

Theorem 3.1. The algorithm described above is an
asymptotic PTAS for square packing in two dimensions.

Proof. By Corollary 3.1, the number of bins Nm used
for the medium sized squares is at most 6A(Im), since
A(Im) ≤ εA(I), we have that

Nm ≤ 6A(Im) ≤ 6εA(I) ≤ 6εOPT (I)(3.5)

We now account for the number of bins used by
the large squares. Since each large square has size at
least εm−1 and hence area at least ε2m−1, we have that
OPT (I) ≥ OPT (L) ≥ lε2m−1.

The number of bins used by our algorithm to pack
the objects in L1 is

	l/g
 ≤ εml + 1 = εε2m−1l + 1 ≤ εOPT (I) + 1(3.6)

Next, as LP (L′) ≤ OPT (L′), IP (L′) ≤ LP (L′) + g
and as OPT (L′) ≤ OPT (L) ≤ OPT (I) we have that

IP (L′) ≤ OPT (I) + g(3.7)

By Equations 3.6 and 3.7 it follows that the total
number of bins used by our algorithm to pack the large
objects is at most

(1 + ε)OPT (I) + g + 1(3.8)

If no additional bins are opened for the small
squares, the result follows from Equations 3.5 and 3.8.

If additional bins need to be opened for the small
squares, consider the total amount of area wasted in the
bins containing the large squares.

Note that the size of the small squares is at most
εm, and hence by Lemma 3.1 the total area in any
rectangular region of dimensions a×b is at most εm(a+
b) ≤ 2εm. Since there were at most 8/ε2m−1 such regions
that each such bin has waste at most

2εm · 8/ε2m−1 ≤ 16ε

Similarly, the area wasted in the bins in which only
small squares are packed (expect for one bin) is trivially
upper bounded by 16ε.

Thus the total number of bins used in this case is

A(I)/(1 − 16ε) + 1 + Nm ≤
A(I)/(1 − 16ε) + 1 + 6εA(I) ≤

A(I)(1 + O(ε)) + 1

for ε sufficiently small. Thus the result follows.

Extension to the d−dimensional case: The
above algorithm can extends directly to yield an APTAS
in the d−dimensional case for fixed d. The only
difference is that we choose ε0 = 1 and εi = εεd

i−1 for
1 ≤ i ≤ k − 1 and k = 	1/ε
. It is easy to see that the
algorithm for d = 2 described above gives an APTAS
for this case.

References

[1] A. Caprara. Packing 2-dimensional bins in harmony.
In Foundations of Computer Science, pages 490–499,
2002.

[2] C. Chekuri and S. Khanna. On multi-dimensional
packing problems. In Symposium on Discrete Algo-
rithms (SODA), pages 185–194, 1999.

[3] F. R. K. Chung, M. R. Garey, and D. S. Johnson.
On packing two-dimensional bins. SIAM Journal on
Algebraic and Discrete Methods, 3:66–76, 1982.

[4] E.G. Coffman, M.R. Garey, and D.S. Johnson. Ap-
proximation algorithms for bin packing: a survey. In D.
Hochbaum, editor, Approximation algorithms for NP-
hard problems, pages 46–93. PWS Publishing, Boston,
1996.

[5] E. G. Coffman, M. R. Garey, D. S. Johnson and R.
E. Tarjan. Performance bounds for level-oriented two
dimensional packing algorithms. SIAM J. Computing
9 (1980), pages 808-826.

[6] J. R. Correa and C. Kenyon. Approximation schemes
for multidimensional packing. this proceedings.

[7] J. Crisik and G. Woeginger. On-line packing and
covering problems. In Online Algorithms: The State
of the Art, editors A. Fiat and G. Woeginger, pages
147–177, 1998.

[8] W. Fernandez de la Vega and G. Lueker. Bin packing
can be solved within 1 + ε in linear time. Combinator-
ica, 1:349–355, 1981.

[9] L. Epstein and R. Van Stee. Optimal online bounded
space multidimensional packing. In CWI Technical
Report Number SEN-R0301, 2003.

[10] C. E. Ferreira, F. K. Miyazawa, and Y. Wakabayashi.
Packing squares into squares. Pesquisa Operacional,
19(2):223–237, 1999.

[11] K. Jansen and G. Zhang. On rectangle packing:
maximizing benefits. this proceedings.

[12] V. Kann. Maximum bounded 3-dimensional matching
is MAX SNP-complete. Information Processing Let-
ters, 37:27–35, 1991.

[13] N. Karmarkar and R. M. Karp. An efficient approxima-
tion scheme for the one-dimensional bin-packing prob-
lem. In Foundations of Computer Science (FOCS),
pages 312–320, 1982.

[14] Claire Kenyon and Eric Remila. Approximate strip
packing. In Foundations of Computer Science (FOCS),
pages 31–36, 1996.

[15] Y. Kohayakawa, F.K. Miyazawa, P. Raghavan, and
Y. Wakabayashi. Multidimensional cube packing. In

8

Brazilian Symposium on Graphs, Algorithms and Com-
binatorics, 2001.

[16] J. Y. T. Leung, T. W. Tam, C. S. Wong, G. H. Young
and F. Y. L. Chin. Packing Squares into a Square.
Journal of Parallel and Distributed Computing, 10:
271-275, 1990.

[17] E. Petrank. The hardness of approximation: gap
location. Computational Complexity, 4:133–157, 1994.

[18] S. Seiden and R. van Stee. New bounds for multi-
dimensional packing. Algorithmica, 36(3):261–293,
2003.

[19] S. Sevastianov and G. Woeginger. Makespan mini-
mization in open shops: a polynomial time approxi-
mation scheme. Networks and matroids; Sequencing
and scheduling. Math. Programming, 82, no. 1-2, Ser.
B:191–198, 1998.

[20] G. Woeginger. There is no asymptotic PTAS for two-
dimensional vector packing. Information Processing
Letters, 64:293–297, 1997.

9

