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ABSTRACT The slopes of the continuous scalar functignare bounded:
We present some new global stability results of neural net- fi(a) — fi(b)
works with delay and show that these results generalize re- Os—— =1 whena # b (2)

cently published stability results. In particular, several dif- o .

ferent stability conditions in the literature which were proved Y& assume that Eq. (1) has an equilibrium paint The
using different Lyapunov functionals are generalized and €Xisteénce of an equilibrium point can be guaranteefi ié
unified by proving them using the same Lyapunov func- b_ounde(_d. This followsfrom_a_5|mple appllc_:a_tlon 0fBr0u_wer’s
tional. We also show that under certain conditions, revers- fixéd point theorem. By shifting™ to the origin, we obtain

ing the directions of the coupling between neurons preservedn€ following canonical form:

the global asymptotical stability of the neural network. @(t) = —Dx(t) + Af(z(t)) + Bf(z(t — 7)) (3)

1. INTRODUCTION wheref(0) = 0. We will only work with real matrices and
vectors. To simplify notation, we will sometimes writét)

Recently, there has been much activity to study the global@sz, f(x(t)) asf(z) and the transpose of ' asA~".

stability of neural networks with delays and many stability ~ The following simple Lemma will be useful in our sta-

criteria are proposed [1-10]. In this paper, we present ability proofs.

new criterion for the global_ stab_ilit)_/ of r_1eura| networkswith | emma 1 x7v +YTX < XTX + YTY. In particular,

delays. We shoyv that this criterion is more general than if X andY are vectors X7Y < XTxyTy

those presented in the past. 2
Our criterion is proved using a different strategy than Proof: Follows from the factthak 7 X + Y7Y — X7y —

the recent literature. In recent papers, the most general 7 X = (X - Y)T(X - Y) > 0. O

case is proved by incorporating all the generalities into the ~ The following fact will also be useful. Given nonsingu-

Lyapunov functional, resulting in a complicated Lyapunov lar matricesP and K where K is symmetric and positive

functional. Instead, we first establish the result for a simple constant3,

canonical case, and deduce the result for the general case = T

by means of simple state transformations. This technique, % > 0® K >0& K >0 PKPT >0

which was also used in [11] allows for simpler proofs of the oy main stability result is the following which gives con-
stability results with simpler Lyapunov functionals. ditions under which Eq. (3) has a globally asymptotically

stable solution.

2. GLOBAL STABILITY OF NEURAL NETWORKS . . L -
WITH DELAY Theorem 1 If there exists a symmetric positive definite ma-

trix K and a factorization of5 = B; B, such thatR =
Consider a neural networks with delays described by the2D — A — AT — BiK Bf — BJ K~'B; is positive definite,
state equation: then the origin is a globally asymptotically stable equilib-
rium point of Eq. (3).

B(t) = ~Da(t) + Af(w(®) + BfGe(t =) ke (@) o
: 2

whereD is a positive definite diagonal matrix and

z; (t) t
F(@) = (i), Fnlaen) X[ e [ S WS



for some symmetric positive semidefinite matbix. Con-
sider the Lyapunov functiondl = ¢V, + V,» where the
scalare; > 0 and the matriX? are to be determined later.
The derivative oft” along trajectories of Eq. (3) is:

V= aVi(e) + Va(e)

whereVi () = —2"Dx + 2T Af(z) + 2T Bf (x(t — 7))
and

Va(x) = —f(a(®)"Da(t) + f(z(t)" Af(x(t))
+f(2()" Bf(x(t — 7)) + f(x(t)"W f(z(t))
—f(x(t =)W f(z(t = 7))
Since
. T TD% -1
Vi(t) = - Dm+<x ﬁ) (V2D~2 Af(x(t)))

+ (xTD—ﬂ> (V2D Bf(x(t — 7)))
Several applications of Lemma 2 results in
Vilt) < —5o" Dot f(x) ATD T Af()
+f(xt—m)'BTD'Bf(2(t — 7))
—%xTDx + Mf(2) f(z)
+M f(x(t = )" f(a(t - 7))
whereM = max(|AT D=1 A|5, || BT D™1B||

2)
Let the Cholesky factorization oK be K
Sincex; f;(x;) > (fi(z;))?, we have

—f(2)" Dz < —f(x)"Df ().
By writing B = B1QQ !B, , the termV4 can be written
as:

IN

> 0.
= QQ".

V() < —f(@)"(D—-A-W)f(2)
+(f (@) B1Q)(Q ' Baf (x(t — 7))
—fla(t =7) W f(x(t — 7))

An application of Lemma 2 results in

) < —f@)T(D—A-W - BQQTB])f(x)

e =) (W~ SBIQTQ By f(a(t — 7))

= —f@)T(D-A-W— %BlKBlT)f(w)

1
—fla(t =)t (W - 5B§K‘1Bz)f(x(t —7))
Let e > 0 be such thatR — 2ex1 > 0. ChooselV =
1BTK~1B, 4+ 21 which is a symmetric positive definite
matrix. Thisimplies thats () < —2 f(2)7 f(z)— 2 f(x(t—
)T f(x(t — 7)). If we choose:; = 52 > 0%, thenV =

1f M = 0, we choose; = 1.

e1Vi+Va < —S2” Dz, SinceV (z) > Sa”'z, the originis
the unique equilibrium point and is globally asymptotically
stable by applying Lyapunov’s direct method [12, Chapter
5, Corollary 3.1]. O

Note that depending on the factorization®f= B; B>,
the matrix K is not necessarily of the same dimensiomas
andB. Some examples of the factorizatiGh= B; B, are:
(B1,B2) = (I, B), (B1,B2) = (B, I), and whenB is sin-
gular (B, B2) = (BB',B) and(By,Bs) = (B,B"B)
whereBT is the Moore-Penrose pseudoinverseof

When B is symmetric positive (negative) definite, we
can chooséB;, Bs) = (I,B) andK = B (K = —B), to
obtain:

Corollary 1 If B is symmetric positive definite and —
(A + AT) — B is positive definite, then the origin is a
globally asymptotically stable equilibrium point of Eq. (3).
The origin is also globally asymptotically stabledfis sym-
metric negative definite an® — 2 (4 + AT) + B is positive
definite.

Corollary 2 Ifthere exists a symmetric positive definite ma-
trix K such thateitheR; = 2D—-A— AT —BTKB-K~!

or Ry =2D— A— AT — BK BT — K~ 1is positive definite,
then the origin is a globally asymptotically stable equilib-
rium point of Eqg. (3).

Proof: R; is obtained fromR in Theorem 1 by choosing
(B1, B2) = (I, B) and changingk to K~ asK > 0 if
and only if K=! > 0. R, is obtained fromR by choos-
ing (B1, B2) = (B, I). The conclusion then follows from
Theorem 1. O

Note thatR;, becomesR; if we changeB to BT. This
implies thatifR; > 0, then Eq. (3) remains globally asymp-
totically stable if we transpose the matricésnd B.

Corollary 3 Ifthere exists a symmetric positive definite ma-
trix K suchthaD — A — AT — BT KB — K~ is positive
definite, then the origin is globally asymptotically stable for
each of the following four state equations:

z(t) = —Dux(t)+ Af(z(t)) + Bf(z(t — 7))
#(t) = —Dz(t)+ ATf(x(t)) + Bf(z(t — 7))
#(t) = —Dz(t)+ Af(z(t)) + BT f(x(t — 7))
#(t) = —Dx(t)+ ATf(z(@t))+ BT f(z(t — 1))

Transposing the feedback matricéandB corresponds
to reversing the coupling direction between neurons. The
above result gives condition under which such reversals do
not change the global asymptotical stability of the neural
network.

3. GENERALIZATIONS

We now generalize Theorem 1 through the use of state scal-
ing transformations.



Corollary 4 If there exists a factorization @8 = B, B-, a Corollary 5 Ifthere exists a symmetric positive definite ma-
symmetric positive definite matriX and a positive definite  trix K and a positive definite diagonal matriR such that
diagonal matrixP such thatR = 2PD — PA — ATP — eitherR, =25"'PD—-PA—-ATP-BTKB—-PK~'P
PB, KB P - B K—!B, is positive definite, then the ori-  or Ry = 2S7'PD — AP — PAT — BKBT — PK~'Pis

gin is a globally asymptotically stable equilibrium point of positive definite, then the origin is a globally asymptotically
Eg. (3). stable equilibrium point of Eq. (3).

Proof: Consider the state transformation= Pzz. The An analogue to Corollary 3 is the following:

state equation then becomes . _ . -
Corollary 6 Ifthere exists a symmetric positive definite ma-

i=—PiDP 5 :+P3 AP~ % f(2(t))+P*BP % f(z(t—7) UiX K and a positive definite diagonal matriX such that

(4 2S71PD - PA— ATP - BTKB — PK~!P is positive
where f(z) = P3f(P~%z). Note that sincef satisfies  definite, then the origin is a globally asymptotically stable
the bounded slope condition (Eq. (2f)also satisfies the ~ €quilibrium point of each of the following two state equa-
bounded slope condition. Applying Theorem 1 to Eq. (4) tons:
it follows that the origin is a globally asymptotically stable . _ _
solution of Eq. (4) and thus also of Eq. (3) if ig _ _gig j: ﬁ;gf(g()g);:rBé(Txﬁx(th)ﬂ)

2P3DP~% — P3AP~% — P~ 3 ATP3
1

_PEBKBPY - PiBTK Bt O 4. COMPARISON WITH PREVIOUS RESULTS

is positive definite. Applying the transformatioh— P3 X p3 Several result; on the global asymptotiqal stability of neu-
to Eq. (5) which preserves positive definiteness completes'@l networks with delay have appeared in recent years [1-

the proof. 0 10], each one improving upon and generalizing on previ-
In [9, 10] a more general slope condition is imposed on OUS results. This series of generalizations culminates in two
f: branches of results, one involving a term of the faBB”
fi(a) — fi(b) [7] and one involving a term of the forlB” B [9, 10]. As
0< = —3 <oiwhenazb (6)  the results in [7,10] are the most general among them, we

f ¢ 0. Let S — di will compare our results against those in [7,10]. In partic-
or some cons anis,; > 0. Let5 = |a§(o_1, " '0”)_' ular, we show that the results in [7, 10] are special cases of
Thls general case can be reduced via a scal_mg trar_‘_Sfor'Theorem 2, thus unifying these two branches. In [7] it was
matlcljtn t(')t the c?ndmon II? Eq. (2)thandbthetmtaljn St_ab'"ty shown that the origin in Eq. (3) is globally asymptotically
resutinits most generattorm can then be stated as. stable if there exists a positive definite diagonal mafrix

Theorem 2 Supposef satisfies Eq. (6). If there exists and a symmetric positive definite matix such that
a factorization of B = B; B,, a symmetric positive def- = TE |
inite matrix K and a positive definite diagonal matrik 1. PA+ AP+ K <0

such thatkR = 25~'PD — PA— AP — PBiKB{ P — 2. 2P _K+I+PBBTP<0
BT K—1B, is positive definite, then the origin is a globally N
asymptotically stable equilibrium point of Eq. (3). Theorem 2 is more general than this result since the condi-

_ _ tions above imply tha#@P— PA—ATP—1—-PBBTP > 0.
Proof: Let z = Sx. Then state equation (3) can be written Apply the transformation — P~'XP~' and we get

as , L . 2P~ — AP~' — P~'A - P2 - BBT > 0. Thisis
t=—-Dz+ Af(z)+ Bf(z(t = 7)) equivalent to the conditioR; > 0 in Corollary 5 by setting
whereD = SDS™' = D, A= SA, B = SBandf(z) = P=P',D=K=S=1I. Infact Corollary 5 is strictly

f(57'z). Note thatf satisfies condition (2) iff satisfies ~ more general sincej:[hNe CO”ditidhA_Jr ATITD +K <0
condition (6) By Coronary 4 the Origim — 0, and thus ImplIeS thatPA + A*P <0 and this requ|rement IS not

alsoz = 0, is globally asymptotically stable if necessary to apply Corollary 5.
In [10] (and in [9] under slightly stronger conditions) it

2PD—PSA—ATSP—PSB,KBTSP-BIK~'By, >0 was shown that the origin is global asymptotically stable un-
N S _ _ der condition (6) if there exists a positive definite matkix
for some positive definite diagonal matdix Using the sub-  a positive definite diagonal matri® and a positive constant

stitution P = SP = PS, the proof is complete. | 3 such that
Again, by choosingB;, B2) = (I, B) and(Bi, Bs) =
(B, I) we get —2PDS '+ PA+ATP+BBTKB+ 3 'PK'P <0



The constanp is not necessary as it can be absorbed into [8] S. Arik, “An analysis of global asymptotic stability of

the matrix K by noting that3 K > 0 if and only if K > 0.

Thus we can assume= 1 without loss of generality. The

stability condition is then equivalent to the mati¥ of
Corollary5asS~'PD = PDS~ .

delayed cellular neural networkdEEE Transactions
on Neural Networksvol. 13, no. 5, pp. 1239-1242,
2002.

Thus we have shown that the results in [7,9, 10] which [9] X. Liao, G. Chen, and E. N. Sanchez, “LMI-based ap-

were proved using different Lyapunov functionals can now
be generalized and proved using the same Lyapunov func-
tional.

5. CONCLUSIONS

We have presented new global stability results of neural net-
works with delays. We show that several results in the liter- [11]
ature can be generalized and unified by using a single Lya-
punov functional. We prove our stability result by first prov-
ing it for the canonical case and then proving it for the gen-
eral case by means of state transformations. We also sho
that under these stability conditions, reversing the direction
of coupling between neurons does not affect the stability of
the network.
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