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ABSTRACT

We present some new global stability results of neural net-
works with delay and show that these results generalize re-
cently published stability results. In particular, several dif-
ferent stability conditions in the literature which were proved
using different Lyapunov functionals are generalized and
unified by proving them using the same Lyapunov func-
tional. We also show that under certain conditions, revers-
ing the directions of the coupling between neurons preserves
the global asymptotical stability of the neural network.

1. INTRODUCTION

Recently, there has been much activity to study the global
stability of neural networks with delays and many stability
criteria are proposed [1–10]. In this paper, we present a
new criterion for the global stability of neural networks with
delays. We show that this criterion is more general than
those presented in the past.

Our criterion is proved using a different strategy than
the recent literature. In recent papers, the most general
case is proved by incorporating all the generalities into the
Lyapunov functional, resulting in a complicated Lyapunov
functional. Instead, we first establish the result for a simple
canonical case, and deduce the result for the general case
by means of simple state transformations. This technique,
which was also used in [11] allows for simpler proofs of the
stability results with simpler Lyapunov functionals.

2. GLOBAL STABILITY OF NEURAL NETWORKS
WITH DELAY

Consider a neural networks with delays described by the
state equation:

ẋ(t) = −Dx(t) + Af(x(t)) + Bf(x(t − τ)) + c (1)

whereD is a positive definite diagonal matrix and

f(x) = (f1(x1), . . . fn(xn)).

The slopes of the continuous scalar functionsfi are bounded:

0 ≤ fi(a) − fi(b)
a − b

≤ 1 whena 6= b (2)

We assume that Eq. (1) has an equilibrium pointx∗. The
existence of an equilibrium point can be guaranteed iffi is
bounded. This follows from a simple application of Brouwer’s
fixed point theorem. By shiftingx∗ to the origin, we obtain
the following canonical form:

ẋ(t) = −Dx(t) + Af(x(t)) + Bf(x(t − τ)) (3)

wheref(0) = 0. We will only work with real matrices and
vectors. To simplify notation, we will sometimes writex(t)
asx, f(x(t)) asf(x) and the transpose ofA−1 asA−T .

The following simple Lemma will be useful in our sta-
bility proofs.

Lemma 1 XT Y + Y T X ≤ XT X + Y T Y . In particular,
if X andY are vectors,XT Y ≤ XT X+Y T Y

2 .

Proof: Follows from the fact thatXT X + Y T Y −XT Y −
Y T X = (X − Y )T (X − Y ) ≥ 0. 2

The following fact will also be useful. Given nonsingu-
lar matricesP andK whereK is symmetric and positive
constantβ,

K > 0 ⇔ βK > 0 ⇔ K−1 > 0 ⇔ PKPT > 0

Our main stability result is the following which gives con-
ditions under which Eq. (3) has a globally asymptotically
stable solution.

Theorem 1 If there exists a symmetric positive definite ma-
trix K and a factorization ofB = B1B2 such thatR =
2D−A−AT −B1KBT

1 −BT
2 K−1B2 is positive definite,

then the origin is a globally asymptotically stable equilib-
rium point of Eq. (3).

Proof: Let V1 = 1
2xT x and

V2 =
∑

i

∫ xi(t)

0

fi(s)ds +
∫ t

t−τ

f(x(η))T Wf(x(η))dη
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for some symmetric positive semidefinite matrixW . Con-
sider the Lyapunov functionalV = ε1V1 + V2 where the
scalarε1 > 0 and the matrixW are to be determined later.
The derivative ofV along trajectories of Eq. (3) is:

V̇ = ε1V̇1(x) + V̇2(x)

whereV̇1(x) = −xT Dx + xT Af(x) + xT Bf(x(t − τ))
and

V̇2(x) = −f(x(t))T Dx(t) + f(x(t))T Af(x(t))
+f(x(t))T Bf(x(t − τ)) + f(x(t))T Wf(x(t))
−f(x(t − τ))T Wf(x(t − τ))

Since

V̇1(t) = −xT Dx +

(
xT D

1
2√
2

)
(
√

2D− 1
2 Af(x(t)))

+

(
xT D

1
2√
2

)
(
√

2D− 1
2 Bf(x(t − τ)))

Several applications of Lemma 2 results in

V̇1(t) ≤ −1
2
xT Dx + f(x)T AT D−1Af(x)

+f(x(t − τ))T BT D−1Bf(x(t − τ))

≤ −1
2
xT Dx + Mf(x)T f(x)

+Mf(x(t − τ))T f(x(t − τ))

whereM = max(‖AT D−1A‖2, ‖BT D−1B‖2) ≥ 0.
Let the Cholesky factorization ofK be K = QQT .

Sincexifi(xi) ≥ (fi(xi))2, we have

−f(x)T Dx ≤ −f(x)T Df(x).

By writing B = B1QQ−1B2 , the termV̇2 can be written
as:

V̇2(t) ≤ −f(x)T (D − A − W )f(x)
+(f(x)T B1Q)(Q−1B2f(x(t − τ)))
−f(x(t − τ))T Wf(x(t − τ))

An application of Lemma 2 results in

V̇2(t) ≤ −f(x)T (D − A − W − 1
2
B1QQT BT

1 )f(x)

−f(x(t − τ))T (W − 1
2
BT

2 Q−T Q−1B2)f(x(t − τ))

= −f(x)T (D − A − W − 1
2
B1KBT

1 )f(x)

−f(x(t − τ))T (W − 1
2
BT

2 K−1B2)f(x(t − τ))

Let ε2 > 0 be such thatR − 2ε2I > 0. ChooseW =
1
2BT

2 K−1B2 + ε2
2 I which is a symmetric positive definite

matrix. This implies thaṫV2(t) ≤ − ε2
2 f(x)T f(x)− ε2

2 f(x(t−
τ))T f(x(t − τ)). If we chooseε1 = ε2

2M > 01, thenV̇ =
1If M = 0, we chooseε1 = 1.

ε1V̇1+V̇2 ≤ − ε1
2 xT Dx. SinceV (x) ≥ ε1

2 xT x, the origin is
the unique equilibrium point and is globally asymptotically
stable by applying Lyapunov’s direct method [12, Chapter
5, Corollary 3.1]. 2

Note that depending on the factorization ofB = B1B2,
the matrixK is not necessarily of the same dimension asA
andB. Some examples of the factorizationB = B1B2 are:
(B1, B2) = (I, B), (B1, B2) = (B, I), and whenB is sin-
gular (B1, B2) = (BB+, B) and(B1, B2) = (B, B+B)
whereB+ is the Moore-Penrose pseudoinverse ofB.

WhenB is symmetric positive (negative) definite, we
can choose(B1, B2) = (I, B) andK = B (K = −B), to
obtain:

Corollary 1 If B is symmetric positive definite andD −
1
2 (A + AT ) − B is positive definite, then the origin is a
globally asymptotically stable equilibrium point of Eq. (3).
The origin is also globally asymptotically stable ifB is sym-
metric negative definite andD− 1

2 (A+AT )+B is positive
definite.

Corollary 2 If there exists a symmetric positive definite ma-
trix K such that eitherR1 = 2D−A−AT −BT KB−K−1

or R2 = 2D−A−AT −BKBT −K−1 is positive definite,
then the origin is a globally asymptotically stable equilib-
rium point of Eq. (3).

Proof: R1 is obtained fromR in Theorem 1 by choosing
(B1, B2) = (I, B) and changingK to K−1 asK > 0 if
and only if K−1 > 0. R2 is obtained fromR by choos-
ing (B1, B2) = (B, I). The conclusion then follows from
Theorem 1. 2

Note thatR1 becomesR2 if we changeB to BT . This
implies that ifR1 > 0, then Eq. (3) remains globally asymp-
totically stable if we transpose the matricesA andB.

Corollary 3 If there exists a symmetric positive definite ma-
trix K such that2D−A−AT −BT KB−K−1 is positive
definite, then the origin is globally asymptotically stable for
each of the following four state equations:

ẋ(t) = −Dx(t) + Af(x(t)) + Bf(x(t − τ))
ẋ(t) = −Dx(t) + AT f(x(t)) + Bf(x(t − τ))
ẋ(t) = −Dx(t) + Af(x(t)) + BT f(x(t − τ))
ẋ(t) = −Dx(t) + AT f(x(t)) + BT f(x(t − τ))

Transposing the feedback matricesA andB corresponds
to reversing the coupling direction between neurons. The
above result gives condition under which such reversals do
not change the global asymptotical stability of the neural
network.

3. GENERALIZATIONS

We now generalize Theorem 1 through the use of state scal-
ing transformations.
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Corollary 4 If there exists a factorization ofB = B1B2, a
symmetric positive definite matrixK and a positive definite
diagonal matrixP such thatR = 2PD − PA − AT P −
PB1KBT

1 P −BT
2 K−1B2 is positive definite, then the ori-

gin is a globally asymptotically stable equilibrium point of
Eq. (3).

Proof: Consider the state transformationz = P
1
2 x. The

state equation then becomes

ż = −P
1
2 DP− 1

2 z+P
1
2 AP− 1

2 f̃(z(t))+P
1
2 BP− 1

2 f̃(z(t−τ)
(4)

where f̃(z) = P
1
2 f(P− 1

2 z). Note that sincef satisfies
the bounded slope condition (Eq. (2))̃f also satisfies the
bounded slope condition. Applying Theorem 1 to Eq. (4)
it follows that the origin is a globally asymptotically stable
solution of Eq. (4) and thus also of Eq. (3) if

2P
1
2 DP− 1

2 − P
1
2 AP− 1

2 − P− 1
2 AT P

1
2

−P
1
2 B1KB1P

1
2 − P− 1

2 BT
2 K−1B2P

− 1
2

(5)

is positive definite. Applying the transformationX → P
1
2 XP

1
2

to Eq. (5) which preserves positive definiteness completes
the proof. 2

In [9, 10] a more general slope condition is imposed on
f :

0 ≤ fi(a) − fi(b)
a − b

≤ σi whena 6= b (6)

for some constantsσi > 0. Let S = diag(σ1, . . . σn).
This general case can be reduced via a scaling transfor-

mation to the condition in Eq. (2) and the main stability
result in its most general form can then be stated as:

Theorem 2 Supposef satisfies Eq. (6). If there exists
a factorization ofB = B1B2, a symmetric positive def-
inite matrix K and a positive definite diagonal matrixP
such thatR = 2S−1PD − PA − AT P − PB1KBT

1 P −
BT

2 K−1B2 is positive definite, then the origin is a globally
asymptotically stable equilibrium point of Eq. (3).

Proof: Let z = Sx. Then state equation (3) can be written
as

ż = −D̃z + Ãf̃(z) + B̃f̃(z(t − τ))

whereD̃ = SDS−1 = D, Ã = SA, B̃ = SB andf̃(z) =
f(S−1z). Note thatf̃ satisfies condition (2) iff satisfies
condition (6). By Corollary 4 the originz = 0, and thus
alsox = 0, is globally asymptotically stable if

2P̃D−P̃SA−AT SP̃−P̃SB1KBT
1 SP̃−BT

2 K−1B2 > 0

for some positive definite diagonal matrix̃P . Using the sub-
stitutionP = SP̃ = P̃ S, the proof is complete. 2

Again, by choosing(B1, B2) = (I, B) and(B1, B2) =
(B, I) we get

Corollary 5 If there exists a symmetric positive definite ma-
trix K and a positive definite diagonal matrixP such that
eitherR1 = 2S−1PD−PA−AT P −BT KB−PK−1P
or R2 = 2S−1PD − AP − PAT − BKBT − PK−1P is
positive definite, then the origin is a globally asymptotically
stable equilibrium point of Eq. (3).

An analogue to Corollary 3 is the following:

Corollary 6 If there exists a symmetric positive definite ma-
trix K and a positive definite diagonal matrixP such that
2S−1PD − PA − AT P − BT KB − PK−1P is positive
definite, then the origin is a globally asymptotically stable
equilibrium point of each of the following two state equa-
tions:

ẋ(t) = −Dx(t) + Af(x(t)) + Bf(x(t − τ))
ẋ(t) = −Dx(t) + AT f(x(t)) + BT f(x(t − τ))

4. COMPARISON WITH PREVIOUS RESULTS

Several results on the global asymptotical stability of neu-
ral networks with delay have appeared in recent years [1–
10], each one improving upon and generalizing on previ-
ous results. This series of generalizations culminates in two
branches of results, one involving a term of the formBBT

[7] and one involving a term of the formBT B [9, 10]. As
the results in [7, 10] are the most general among them, we
will compare our results against those in [7, 10]. In partic-
ular, we show that the results in [7, 10] are special cases of
Theorem 2, thus unifying these two branches. In [7] it was
shown that the origin in Eq. (3) is globally asymptotically
stable if there exists a positive definite diagonal matrixP̃
and a symmetric positive definite matrix̃K such that

1. P̃A + AT P̃ + K̃ < 0

2. −2P̃ − K̃ + I + P̃BBT P̃ ≤ 0

Theorem 2 is more general than this result since the condi-
tions above imply that2P̃−P̃A−AT P̃−I−P̃BBT P̃ > 0.
Apply the transformationX → P−1XP−1 and we get
2P̃−1 − AP̃−1 − P̃−1A − P̃−2 − BBT > 0. This is
equivalent to the conditionR2 > 0 in Corollary 5 by setting
P = P̃−1, D = K = S = I. In fact Corollary 5 is strictly
more general since the conditioñPA + AT P̃ + K̃ < 0
implies thatP̃A + AT P̃ < 0 and this requirement is not
necessary to apply Corollary 5.

In [10] (and in [9] under slightly stronger conditions) it
was shown that the origin is global asymptotically stable un-
der condition (6) if there exists a positive definite matrixK,
a positive definite diagonal matrixP and a positive constant
β such that

−2PDS−1 + PA + AT P + βBT KB + β−1PK−1P < 0
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The constantβ is not necessary as it can be absorbed into
the matrixK by noting thatβK > 0 if and only if K > 0.
Thus we can assumeβ = 1 without loss of generality. The
stability condition is then equivalent to the matrixR1 of
Corollary 5 asS−1PD = PDS−1.

Thus we have shown that the results in [7, 9, 10] which
were proved using different Lyapunov functionals can now
be generalized and proved using the same Lyapunov func-
tional.

5. CONCLUSIONS

We have presented new global stability results of neural net-
works with delays. We show that several results in the liter-
ature can be generalized and unified by using a single Lya-
punov functional. We prove our stability result by first prov-
ing it for the canonical case and then proving it for the gen-
eral case by means of state transformations. We also show
that under these stability conditions, reversing the direction
of coupling between neurons does not affect the stability of
the network.
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