
RC22905 (W0304-120) April 11, 2003
Computer Science

IBM Research Report

Arithmetic Reasoning for Static Analysis of Software

Daniel Brand
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598

Florian Krohm
IBM Microelectronics

East Fishkill, NY

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Arithmetic Reasoning for Static Analysis of Software

Abstract

Software and hardware veri�cation has shown the

ability to prove the correctness of many sophisticated

algorithms and to discover many subtle errors. But

the veri�cation tools are not in every-day use by non-

specialists. This paper describes several of the veri-

�cation methods in a tool, which is in every-day use

by programmers. The paper concentrates on theorem

proving and related aspects.

1 Introduction

Software is an increasingly larger component of
computer systems, which makes it both an increas-
ingly larger contributor and impediment to overall
system reliability. Therefore there is an increased ur-
gency to bringing into everyday practice the veri�ca-
tion methods developed over the past 40 years. This
paper describes several such methods in practical use.

The most widely practiced approach to increasing
reliability is testing. Testing is dynamic analysis in
the sense that the program under test is executed on
concrete inputs. In contrast, static analysis does not
rely on executing the program, instead it analyzes its
source description.

Dynamic methods include the popular Purify [1]
and similar tools. Dynamic methods take as input
an executable version of a program and a set of test
cases. They execute the testcases and compare the
results against desired behavior. The desired behavior
can be in the form of speci�c output values, or in the
form of generic requirements independent of desired
functionality, e.g., "no access to freed memory", no
"memory leaks", etc.

Static tools include compilers, lint [2, 3, 4, 5], and
formal veri�ers [6, 7, 8, 9, 10, 11]. Their input is the
source of the whole program, or only a portion of it.
They issue a complaint if they �nd a possibility of an
input that violates desired behavior. The desired be-
havior can be in the form of a speci�c input-output
relationship, or the same generic requirements men-
tioned for dynamic tools.

Static and dynamic tools have their advantages and
disadvantages, which makes them complementary. We
will talk about a static tool, whose goal is to address a
major disadvantage of static tools. Lint-like tools and

formal veri�ers are famous for their tendency to issue
invalid complaints (called "false positives" by some,
and "false negatives" by others); namely complaints
that do not represent any defect in the given program.

There are three main sources of invalid complaints.
Tools that require some form of speci�cation may issue
complaints that are due to mistakes in the speci�ca-
tion or due to inadequacy of the speci�cation. Tools
that require an abstract model of an actual program
may report problems in the model that have no coun-
terpart in the actual program. And �nally, no tool
can decide the correctness of every program and there-
fore there is always some uncertainty. Tools that aim
at veri�cation (guarantee of correctness) issue a com-
plaint even when uncertain whether it represent a real
defect.

Our tool (called BEAM) has the goal of maximiz-
ing the number of problems detected subject to three
constraints:
1) The input is the actual program exactly as given to
a compiler.
2) No speci�cations are required.
3) Every complaint issued should represent a valid de-
fect that the user will want to correct.
These are our goals and in Section 7 we will discuss
to what degree we can meet them.

This implies that the tool's goal is not veri�cation,
namely forming a proof of correctness and issuing a
complaint if not successful. Its goal is falsi�cation,
namely forming a proof of incorrectness and issuing a
complaint if successful.

In its goals BEAM is closest to the tool Pre�x [12],
which is based on symbolic execution [13]. BEAM
also uses symbolic execution, but only as a con�rma-
tion of the results of other analyses, which avoid the
path explosion problem of symbolic execution. Some
methods of our tool are also related to Meta-Level
Compilation [14]. However, that is not a falsi�er {
it does not avoid invalid complaints due to infeasible
paths. There is more work related to algorithms de-
scribed in this paper and that will be discussed in the
pertinent sections.

The choice of falsi�cation rather than veri�cation
is key to acceptability by users. It has also several im-
plications on algorithms used. For example, induction

1

analysis

program source

parse tree

flow graph

candidate paths

complaints

gcc parser

semantic analysis

data-flow analysis

symbolic execution

solver
constraintinter-procedural

Figure 1: Structure of BEAM

plays a very di�erent role than in veri�cation. Further,
it is not suÆcient to report an error whenever there
are input values that would cause it; the tool must
also provide evidence that the program is intended to
work on such values.

The above considerations are applicable to both
hardware and software. In fact, since a function can be
compiled into either software or hardware, the distinc-
tion loses its relevance. However, for the purposes of
static analysis there is one relevant distinction, namely
the way computer operations (e.g. addition) are mod-
eled. The issue is that computer operations violate
the rules of arithmetic when over
ow occurs. If over-

ow is considered a normal occurrence in the design
then it is appropriate to use a �nite model of computer
arithmetic. On the other hand, if over
ow is consid-
ered an abnormal occurrence then an in�nite model
of arithmetic is more appropriate; that is, arithmetic
is performed on unbounded numbers, which are trun-
cated when stored into memory. The decision depends
on how the designer thinks { if he thinks in terms of
bit operations then the analysis tool should do the
same. But if he assumes all the rules of arithmetic
when reasoning about his design, then the tool must
use the same rules in its reasoning. In addition, the
tool needs to detect where the rules could be violated
and whether it could cause a problem. Our tool is
geared to software analysis in the sense that it uses
the in�nite model of arithmetic.

The paper is organized as follows. We start with
a general overview of the tool and gradually focus to-
wards one portion { a solver of arithmetic constraints.

2 Overview
This section uses an an example to illustrate the

operation of our tool and in particular to illustrate
the use of the constraint solver.

#include <stdlib.h>

void foo(int N, int I, char X)

{

int J;

char *A, *B;

L1: A = (char *) calloc(N, 1);

L2: B = (char *) calloc(N+5, 1);

L3: B[N-1] = X;

L4: if (B[I])

L5: J = I;

else

L6: J = I-1;

L7: A[J] = 1;

}

Figure 2: Sample program

Fig. 1 shows the structure of the tool. Its input
is a source program as shown in Fig. 2. There are
several defects in this program, such as memory leaks
and possible indices out of array bounds. We will con-
centrate on the last statement L7 and will consider
the question of whether the index J could exceed the
bound of the array A.

The source program is input into the gcc parser,
which we have modi�ed to produce a parse tree plus
other information. This extra information is necessary
to relate any complaints to the source program, in
terms understandable to the user. That is in general
an extremely diÆcult problem, but it is not the subject
of this paper.

From the parse tree we generate a control and data

ow graph as shown in Fig. 3. It is a rather standard

ow graph with the possible exception of the mux
node, which we will explain later. The
ow graph
is a simpli�cation of our actual representation, and
shows only those aspects needed to explain how our
constraint solver operates on the graph. Each control

ow node has a label C1, ..., C9, which is attached for
the purposes of this explanation.

The �rst node C1 represents the action of
calloc(N, 1). It allocates a piece of memory, which
is not named in the program, but we will call it U.
There is more information associated with the mem-
ory location U, namely its size and the fact that it is
initialized to all zero.

The second node C2 assigns a pointer to U into the
memory location A. And similarly for nodes C3 and
C4.

The assignmemt statement C5 illustrates a com-

2

C3 ALLOCATE V using calloc

C1 ALLOCATE U using calloc

= 0

C8

C9 ASSERT J8 < N8

B5[I5]MUX

C2 ASSIGN A := &U

C4 ASSIGN B := &V

C5 ASSIGN B4[N4 - 1] := X4

C6 ASSIGN J := I5 C7 ASSIGN J := I5 - 1

= 0

Figure 3: Original
ow graph

C3 ALLOCATE V using calloc

C1 ALLOCATE U using calloc

C7 ASSIGN J := I0 - 1

C8
V5[I0]

C9 ASSERT J8 < N0

MUX

= 0 = 0

C4 ASSIGN B := &V

C2 ASSIGN A := &U

C5 ASSIGN V[N0 - 1] := X0

C6 ASSIGN J := I0

Figure 4: Reduced
ow graph

mon notation used for exposition. If a location name
(e.g., A, B, U, V, I, J) is followed by a number then
it refers to the contents of the memory location. And
the number indicates at what point in the control
ow
graph the contents should be obtained. For example
B4 refers to the contents of the location B in the mem-
ory state after C4 (which happens to be &V).

All the control
ow nodes are considered in a func-
tional sense; namely they take as input a state of
memory and produce a new state of memory. The
if-condition does not represent any updates to mem-
ory and therefore no node is shown for it.

The two branches of the if-statement are repre-
sented by the nodes C6 and C7. The text "I5-1" is an
example of a shorthand for several data
ow nodes,
which perform the computation and whose output is
then input into the node C7.

The nodes C6 and C7 produce di�erent states of
memory. One of them is selected by the mux C8, de-
pending on the value of the control input B5[I5]. The
control input is compared with the predicates written
inside each input pin. Each predicate is a set of in-
tegers in which the control value may lie. If it does
then the corresponding input is selected to become the
value on the output of the mux.

This representation allow us to combine the control
and data
ow graphs into one
ow graph, with every
node producing a value. As we will see the constraint
solver can then generate conditions on the values of
control nodes and treat them in a uniform manner
with the data
ow nodes. An example of a data
ow
node is the the node B5[I5] controlling the mux.

For statement L7 of Fig. 2 we show only the node
C9 representing the assertion that the index J does
not exceed the array bound.

After the
ow graph of Fig. 3 is built, it is simpli�ed
into that of Fig. 4 using rewrite rules (Section 3). All
the components in Fig. 1 below semantic analysis then
operate on the graph in search for feasible paths. That
process will be explained in later sections.

The example of Fig. 2 does not illustrate our han-
dling of loops. Loops are represented as recursive
procedures and their properties are calculated during
inter-procedural analysis. These properties describe
which locations could be modi�ed, which pointers will
be dereferenced, etc.

The data
ow analysis that derives the properties is
path-insensitive (i.e. does not determine feasibility of
paths) and is a form of induction. However, induction
cannot be used in a search for a feasible path lead-
ing to an error. A successful inductive proof can be
used to terminate a search. However, a failing induc-
tive proof cannot be used by a falsi�er to report an
error, because the failure might be due to inadequacy
of an inductive hypothesis, whether generated auto-
matically or manually. We can report an error only
if we can exhibit a feasible path leading to it. There-
fore the search unrolls loops a �xed amount of times,
and searches in that limited space. All path-sensitive
analyses thus operates on an acyclic
ow graph, and
so does the constraint solver.

3 Rewrite Rules
The meaning of the the graph nodes is de�ned by

rewrite rules. Each rewrite rule can have two e�ects {
it can modify the graph, and it can create constraints.
Both e�ects can be conditional.

We illustrate the modi�cation of the graph by a
rewrite rule, that understands the ASSIGN nodes and
fetches of values from memory. The e�ect of the rule
is shown in Fig. 4. For example, the rule understands

3

that none of the assignments a�ect the location I, and
therefore I5 = I0. That is, the content of I after C5
is the same as the content of I before C1. And since
this is true unconditionally, the graph can be modi�ed
replacing I5 with I0. Similarly it understands that the
assignment C4 a�ects the location B in a way that B4
= &V.

In general, the assignment rule takes as input an
assignment node (e.g. C5: V[N0-1] := X0) and a
memory access (e.g. V5[I0]) and has three possible
outcomes. If it determines that the assignment has
no e�ect on the memory access then it generates the
equality constraint V5[I0] = V4[I0]. If it determines
that the assignment does a�ect the given memory ac-
cess then it generates the equality constraint V5[I0] =
X0. If it cannot decide then it does nothing.

If a rewrite rule can generate an equality uncondi-
tionally then the equality can be used to modify the
graph. And that is how the graph is simpli�ed before
any analysis starts (Fig. 4). The next section illus-
trates the situation of conditional rewrite rules.

4 Example of Reasoning
Before explaining path traversal and the constraint

solver we show how they work together on the example
of Fig. 4. They generate a sequence of constraints as
in Fig. 5.

The constraint 1. is the negation of the assertion.
If it is found consistent with constraints of some path
then we have a feasible path to the error.

We perform backward data-
ow analysis and there-
fore we will illustrate backward path traversal. The
path traversal considers both of the paths in Fig. 4
starting with the left branch, which is executed under
condition 2.

Imposing the constraint 2. on the node representing
V5[I0] triggers rewrite rules that understand semantics
of nodes attached to that node V5[I0]. In our case it
triggers the rule for mux, which generates constraint
3. It says that the state of memory after C8 is the
same as after C6.

All references to C8 are replaced by C6. This re-
placement makes J8 = J6 (constraint 4.)

The rule of assignment generates 5. because the
value of J after C6 is I0 (independently of any as-
sumptions).

After substituting all the equalities we get 6. From
that the rule of assignment can conclude that the as-
signment C5 does not e�ect V5[I0], resulting in con-
straint 7.

The assignment C4 has no e�ect on V, which is
expressed by constraint 8.

The rule that understands calloc() knows that its
result is all zero, concluding with 9.

1. J8 >= N0 (Condition violating assert)

2. V5[I0] != 0 (Chose left branch)

3. C8 = C6 (From 2. by rule of mux)

4. J8 = J6 (From 3. by equality)

5. J6 = I0 (By rule of assignment)

6. I0 >= N0 (From 1, 4, 5 by equality)

7. V5[I0] = V4[I0] (From 6. by rule of assignment)

8. V4[I0] = V3[I0] (By rule of assignment)

9. V3[I0] = 0 (By rule of calloc)

10. 0 != 0 (From 2, 7, 8, 9 by equality)

Figure 5: Constraints generated for V5[I0] != 0

1. J8 >= N0 (Condition violating assert)

11. V5[I0] == 0 (Chose right branch)

12. C8 = C7 (From 11 by rule of mux)

13. J8 = J7 (From 12 by equality)

14. J7 = I0-1 (By rule of assignment)

Figure 6: Constraints generated for V5[I0] == 0

However, after substituting all the equalities into 2.
we get 10. which is a contradiction. It indicates that
whenever execution follows the left branch the index
in statement L7 will not exceed the array bound.

It is important to note that path traversal merely
chose to follow the left branch between C6 and C8.
From that the constraint solver followed the conse-
quences all the way to node C3. Putting the program-
ming language semantics into the constraint solver,
rather than the path traversal is important in reduc-
ing the number paths considered.

In searching for a feasible path, path traversal backs
up to the mux C8 to chose the right branch. All the
deductions in Fig. 5 are on a stack, and backing up
to C8 pops the stack leaving only the entry 1. Af-
ter that the stack grows again with constraints of the
right branch, see Fig. 6. This time no contradiction is
derived implying a feasible path along which the index
J will exceed the bound of A.

Should this be reported to the user? A veri�er
would report it because no preconditions were spec-
i�ed that would prevent the index from being out of
bounds. In veri�cation, the burden of proof is on the
user to show the impossibility of error.

In falsi�cation the burden of proof is on the tool
to show that the procedure foo(N,I,X) was intended
to function even if give inputs I > N. A falsi�er must
�nd evidence of intentions without requiring any spec-
i�cations. We recognize two forms of such evidence.
First, if there were a call to foo(N,I,X) with I > N,

4

then the problem could be reported. A second form of
evidence would be an explicit test, say if (I <= N),
inside the function foo(). Such a test indicates that
the programmer does expect parameters that make
the test evaluate sometimes to true and sometimes to
false.

In general, a problem can be reported only after
�nding a path that is not only consistent with the
condition of the error, but actually implies it. This
is not the case in Fig. 2, therefore our tool could not
report any possibility of index J out of array range.

5 Path Traversal
Path traversal is needed to �nd a feasible path lead-

ing to an error. The main issue in path traversal is to
avoid enumerating all the paths. As mentioned above,
all loops and recursive procedures have been unrolled
a �xed number of times, so that the number of paths is
actually �nite. However, it is in general exponential in
the size of the program. We avoid path enumeration
by a combination of path-sensitive data-
ow analysis
and symbolic execution. They perform path traversal
in di�erent ways, but both call the constraint solver
to determine feasibility of paths. The main purpose
of this section is to explain how path traversal and
constraint solving interact.

There are two basic approaches to the interaction
between path traversal and constraint solving. Veri�-
cation condition generators (�rst implemented by [15])
collect the conditions of a path in a formula and pass it
to a stand-alone theorem prover, which then decides
the formula's satis�ability. An alternative approach
pioneered by [16] lets the the program representation
itself be the formula. We use the latter approach be-
cause it lends itself to incrementality, which is key to
reducing the problem of path explosion.

Our constraint solver is incremental in two ways.
First when extending a partial path a new constraint
may be given to the solver (e.g., line 2 in Fig. 5). That
may trigger calculation of some implications from the
new constraint, but does not require reprocessing pre-
vious constraints. Secondly when path traversal aban-
dons a particular path it may backtrack to a previ-
ous branch point. That causes the constraint solver
to undo all implications derived along the abandoned
sub-path, while preserving all previous implications
that are still valid.

This incrementality is implemented by placing all
the solvers information on a stack. For eÆciency the
stack is implemented as a hash table.

6 Constraint Solver
As illustrated above the constraint solver accepts

constraints, and determines whether they are consis-

tent. A constraint is any relation operator of the
programming language between two nodes of the
ow
graph (e.g. A < B). In general, any such predicate
can be considered as a function returning 0 or 1. And
that is indeed how we treat all predicates with the
exception of =; 6= and <;�; >;� on integers.

The solver is a combination of rewrite rules (ex-
pressing the semantics of the programming language)
plus special handling of linear integer arithmetic. The
latter is needed because integer arithmetic is key for
eÆcient reasoning about programs. And the rewrite
rules provide
exibility in handling a variety of pro-
gramming language constructs.

6.1 Integer Arithmetic

Linear Integer arithmetic is the subset of integer
arithmetic containing the operations +;�; < in addi-
tion to equality. It is of great interest for two reasons.
First it is indispensable to reasoning about programs,
and secondly it is decidable [17] (in contrast to general
arithmetic containing multiplication).

However, the decision procedure has a super expo-
nential upper and lower bound [18, 19]. Therefore the
key to a practical solver is to �nd a subset of arithmetic
rules as small as possible for eÆciency, yet suÆcient
for the purposes of the application. There are several
such subsets [20, 21, 22]. This section presents our
subset of rules which is smaller than existing ones.

In our case of a falsi�er, all formulas are existen-
tially quanti�ed, which matches the formulation of in-
teger programming [23]. Integer programming can de-
cide the satis�ability of a number of constraints of the
form
a1x1 + :::+ anxn < c
where a1; :::; an; c are constants and x1; :::; xn are vari-
ables.

We extend the formulation to be of the form
a1x1 + :::+ anxn 2 R
where R is any set of integers. This extension allows
more eÆcient handling of constraints of the form
a1x1 + :::+ anxn 6= c
which can be represented as
a1x1 + :::+ anxn 2 (�1; c) [(c;1).
This extension causes us to sacri�ce the convexity of
the solution space, which makes linear programming
approaches inapplicable.

Secondly we restrict n � 2. That is, we consider
constraints of the form
A 2 R or
a1A1 + a2A2 2 R
where A;A1; A2 are nodes in the
ow graph. Con-
straints of this form are very common in program
analysis, while cases of n > 2 are much less common.
Moreover, the case of n � 2 can be handled more eÆ-

5

ciently than n > 2.

More general constraints with n > 2 can still be
represented because any of the nodes A1; A2 can be
the results of arbitrary operations. However, reason-
ing about more general constraints is done through
rewrite rules in the
ow graph as opposed to any spe-
cial reasoning about inequalities.

As a result of our approach to arithmetic there are
three types of constraints
1) equalities (e.g., A = B)
2) unary constraints (e.g. A < 5)
3) binary constraints (e.g. A < B)

At any point in time the constraint solver main-
tains a list of constraints with all their implications.
Any addition of a new constraint triggers derivation
of implications, and application of rewrite rules. The
objective is to keep reducing the ranges R in the unary
and binary constraints. If we can deduce a constraint
with the empty range R then we proved that the given
set of constraints is not satis�able; that commonly im-
plies the impossibility of a particular error.

We always try to keep the
ow graph and the con-
straints in a canonical representation, wherever pos-
sible. For that purpose we consider a �xed topolog-
ical ordering of all the nodes in the
ow graph. In
this ordering �rst come nodes representing constants,
then nodes representing memory locations, then nodes
representing input value, and then come all the other
nodes in topological order. This topological order de-
termines the ordering of terms in binary constraints
and the ordering of inputs to commutative graph
nodes.

6.1.1 Equality

We represent equality as an equivalence relation using
the union/�nd algorithm of [24]. This representation
allows average O(log n) time to retrieve the represen-
tative of any node. Equality constraints are imposed
simply by replacing every reference to a node by its
representative.

The axiom of substitutivity A = B) f(A) = f(B)
is implemented using a rewrite rule, common called
\common term elimination" or \value numbering".
We made no attempt to implement full congruence
closure.

6.1.2 Unary Constraints

Unary constraints are of the form A 2 R, where A is
a node in the
ow graph and R is a set of integers.
They are represented by storing a range of integers
(denoted <(A)) with every node A. Initially <(A) is

the maximal range determined from the corresponding
declaration in the program source.

Unary constraints are imposed by range propaga-
tion on the
ow graph. For example, consider a
node A = B + C. A change of <(B) will trig-
ger a possible reduction of <(A) and <(C) so that
<(A) � <(B) + <(C),
<(C) � <(A)�<(B).

In the above we rely on the usual extension of all
the arithmetic operators to sets. For example,
R1 +R2 = fxjx = r1 + r2; r1 2 R1; r2 2 R2g.

In addition, the following rule relates unary con-
straint and equality constraints:
A 2 fkg , A = K
That means that if the range of A consists of the sin-
gle number k then A equals the node K representing
the number k.

6.1.3 Binary Constraints

Binary constraints are of the form aA+bB 2 R, where
A;B are nodes in the
ow graph, a; b are integer coef-
�cients and R is a set of integers.

Binary constraints are stored in an array, and are
normalized so that A comes beforeB in the topological
order, a > 0, b 6= 0, (a; b) are relatively prime.

The following operation is applied as a generaliza-
tion of transitivity (x < y ^ y < z) x < z � 1).
Suppose there is a pair of binary constraints
aA+ b1B 2 R1;
cC + b2B 2 R2;
sharing a node B (A and C may or may not be iden-
tical). Then we generate another binary constraint
b2aA� b1cC 2 b2R1 � b1R2, obtained by subtracting
the original two so as to eliminate B.

The following rules relate binary constraints to
unary constraints. That means, any of the ranges be-
low may be reduced to as to ensure these relations.
<(aA+ bB) � a<(A) + b<(B)
<(A) � (<(aA+ bB)�<(B))=a

Finally the following rule relates binary constraints
to equality constraints
A�B 2 f0g) A = B.

6.1.4 Soundness and Completeness

The constraint solver is sound in the sense that it de-
rives a constraint with the empty range only if the
given set of constraints is unsatis�able. However, it
may fail to discover some unsatis�able sets of con-
straints, for example, A 6= B;B 6= C;C 6= A;A 2
f0; 1g; B 2 f0; 1g; C 2 f0; 1g.

Failure to discover an inconsistency would lead to
reporting an error that can happen only along an in-

6

Table 1: Frequency of problems reported

NUM COMPLAINT

1107 Dereference of NULL

448 Uninitialized return value

317 Test without e�ect

236 Uninitialized variable

195 Missing parentheses from macro de�nition
143 Error in printf arguments
118 Missing break in a switch statement

71 Subscript out of array range

38 Statement without e�ect
33 Unused assignment
31 Mistake in operator precedence
24 Memory leak

23 Mistake in parameters to strncmp
19 Wrong deallocating function

16 Failure to close a �le

11 Function returning dangling pointer

11 Incorrectly nested loops
10 Incorrect use of vararg
8 Access to freed memory

8 Unintended semicolon
7 Loop without e�ect

7 Unintended assignment in an if-condition
2 Memory freed twice

2 Locks set without releasing

1 Problem of portability to 64 bit machines

feasible path. While the solver could be extended to-
wards completeness, it proved unnecessary. Doing so
would slow it down, reducing the number of valid com-
plaints reported.

7 Experience

Our tool has been used over a year inside IBM to
analyze C and C++ programs, mainly in �rmware and
system software development. The purpose of this sec-
tion is to give the reader an idea of its e�ectiveness,
what problems it detects most frequently, and to what
degree the tool meets the goals in Section 1.

During the week March 1 - 7, 2003 there were
8,247 source �les analyzed through BEAM, containing
4,111,775 lines. Many of the runs involved the same
�le being reanalyzed after some modi�cation. There-
fore it is more meaningful to provide statistics only
for the �rst run of each �le. There were 1,794 unique
source �les containing 1,577,015 lines. For those 2,943
complaints were issued in the categories shown in Ta-
ble 1. Bold font indicates complaints requiring the
algorithms of this paper. The other complaints are

purely syntactic analysis, where feasibility of paths
need not be determined.

In Section 1 we stated three goals.
Goal 1) requires that we process the source code in

the form given to the compiler. We can do that for
close to 100% of the functions. For the rest there is
a problem of language compliance. Our various users
have various compilers running on various operating
systems. Each compiler o�ers language extensions,
which would be rejected by other compilers. We make
an e�ort to con�gure our gcc-based parser to handle
such extensions, but that e�ort is not always 100%
successful.

Goal 2) states that no speci�cations be required.
We honor this goal, but we allow users to give us ad-
ditional information about their application; for exam-
ple, which functions allocate memory, which functions
terminate a thread, etc. Also application speci�c cod-
ing rules can be checked for; for example after some
operation certain cleanup is required, or the results of
a function need to be checked for -1 before used as an
index. For user acceptability it is essential that this
extra information be considered part of the tool and
that the responsibility for its correctness lie on the
people supporting the tool, not the programmer.

Goal 3) states that we report only problems indicat-
ing a defect in the source code. We do not have statis-
tics on how well we meet this goal, but apparently
to suÆcient degree for user acceptance. There are two
major causes of invalid complaints. One cause is insuf-
�cient information about user's function library. For
example, if the tool does not know that a particular
function reports an internal error, then it may tell the
user that of a crash that will happen after he called
that function { not a useful piece of information. (This
problem is eliminated for users who provide informa-
tion about their function library.) The second cause
of invalid complaints is the fact that a tool can report
only symptoms of problems, and may misread user's
intentions. For example, sometimes programmers in-
tentionally force a crash. A more common example
of invalid complaints are those reporting unnecessary
computation, for example, statements without e�ect.
There is a trade-o� between reporting invalid com-
plaints and missing valid defects. That trade-o� is
di�erent for di�erent source �les, and it is up-to the
users to con�gure the tool to their needs. It is es-
sential that the tool allows the elimination of invalid
complaints to any degree desired.

8 Conclusions
We have learned three main lessons. First, the most

important for acceptability is meeting the goals of ac-
cepting the program source exactly as is and avoiding

7

invalid complaints. Inability to turn o� invalid com-
plaints would cause users to ignore all complaints.

Secondly, the main complexity issue is avoiding
path enumeration. Our approach through a combi-
nation of data-
ow analysis, symbolic execution and
incremental constraint solver proved successful, al-
though eÆciency remains a problem.

Thirdly, it turned out that logical reasoning in soft-
ware is extremely shallow, and a fast and simple con-
straint solver is suÆcient.

There are several areas where our tool needs im-
provements. Better inter-procedural analysis would
allow us to report more sophisticated errors. (We mea-
sure \sophistication" by the amount of code that has
to be examined in determining the cause of a prob-
lem.) EÆciency improvements are needed in both the
constraint solver and path traversal. For better usabil-
ity we need to be able to explain the chain of reasoning
so that users can more easily �nd the cause of a prob-
lem. In general, as we drive towards more sophisti-
cated problems, the user will need to spend more time
for each complaint issued, which calls for improving
user interaction and for avoiding invalid complaints.

References
[1] Rational, http://www.rational.com/.

[2] S. C. Johnson, \Lint, a C program checker," Tech.
Rep. 65, Bell Laboratories, Murray Hill, NJ 07974,
1978.

[3] I. F. Darwin, Checking C programs with lint. O'Reilly,
1988.

[4] PC-lint/FlexeLint 7.5. 3207 Hogarth Lane, Col-
legeville, PA19426, USA: Gimpel Software, 1998.

[5] D. Evans, J. Guttag, J. Horning, and Y. M. Tan,
\Lclint: A tool for using speci�cations to check code,"
in Proceedings of the SIGSOFT Symposium on the
Foundations of Software Engineering, ACM, Decem-
ber 1996.

[6] S. I. Hantler and J. C. King, \Introduction to proving
the correctness of programs," ACM Computing Sur-
veys, vol. 8, pp. 331{353, September 1976.

[7] S. M. German, \Automating proofs of the absence
of common runtime errors," in Proceedings of the 5th
ACM Symposium on Principles of Programming Lan-
guages, pp. 105{118, ACM, 1978.

[8] R. B. Jones, D. L. Dill, and J. R. Burch, \EÆ-
cient validity checking for processor veri�cation," in
Proceedings of the IEEE International Conference on
Computer-Aided Design, (Santa Clara, CA), pp. 2{6,
IEEE, November 1995.

[9] P. J. Windley, \Formal modeling and veri�cation of
microprocessors," IEEE Transactions on Computers,
vol. 44, January 1995.

[10] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Sri-
vas, \A tutorial introduction to pvs," inWorkshop on
Industrial Strength Formal Speci�cation Techniques,
April 1995.

[11] B. Jacobs, J. van den Berg, M. Huisman, and M. van
Berkum, \Reasoning about java classes," SIGPLAN
Notices, vol. 33, pp. 329{340, October 1998.

[12] W. R. Bush, J. D. Pincus, and D. J. Siela�, \A
static analyzer for �nding dynamic programming er-
rors," Software Practice and experience, vol. 30, no. 7,
pp. 775{802, 2000.

[13] J. C. King, \Symbolic execution and program test-
ing," Communications of the ACM, vol. 19, no. 7,
pp. 385{394, 1976.

[14] D. R. Engler, D. Y. Chen, and A. Chou, \Bugs as
inconsistent behavior: A general approach to inferring
errors in systems code," in Symposium on Operating
Systems Principles, pp. 57{72, 2001.

[15] J. C. King, A Program Veri�er. PhD thesis, Carnegie-
Mellon University, Pittsburg, Pennsylvania, Septem-
ber 1969.

[16] R. S. Boyer and J. S. Moore, A Computational Logic.
London, England: Academic Press, 1979.

[17] M. Presburger, \On the completeness of certain sys-
tem of arithmetic in which addition occurs as the only
operation," History and Philosophy of Logic, vol. 12,
no. 2, pp. 225{233, 1991.

[18] M. J. Fischer and M. D. Rabin, \Supper-exponential
complexity of presburger arithmetic," Tech. Rep. 43,
MIT, 1974.

[19] D. C. Oppen, \A 2**2**2**pn upper bound on
the complexity of presburger arithmetic," Journal
of Computer and System Sciences, vol. 16, no. 3,
pp. 323{332, 1978.

[20] R. E. Shostak, \A practical decision procedure for
arithmetic," Journal of ACM, vol. 26, pp. 351{360,
April 1979.

[21] G. Nelson and D. C. Oppen., \Simpli�cation by coop-
erating decision procedures," ACM Transactions on
Programming Languages and Systems, vol. 1, Octo-
ber 1979.

[22] C. Barrett, D. L. Dill, and J. Levitt, \Validity check-
ing for combinations of theories with equality," in
First International conference on formal methods in
computer-aided design, (Aachen, Germany), pp. 187{
201, Lecture Notes in Computer Science, November
1996.

[23] G. L. Nemhauser and L. A. Wosley, Integer and Com-
binatorial Optimization. John Wiley and Sons, 1988.

[24] R. E. Tarjan, \EÆciency of a good but not linear set
union algorithm," Journal of the ACM, vol. 22, no. 2,
pp. 215{225, 1975.

8

