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ON THE COMPLEXITY OF A CLASS OF MIXED INTEGER
LINEAR PROGRAMS

FRANCISCO BARAHONA

Abstract. We consider a class of mixed integer linear programs like
z = {max cx + dy | Ax + By ≤ b, x integer valued}, with the property that for any
fixed vector ȳ the integer program z(ȳ) = {max cx | Ax ≤ b − Bȳ, x integer valued},
is polynomially solvable. This means that if the continuous variables are fixed, then
the remaining integer program is polynomially solvable. Because of this one could ex-
pect that the original problem could be solved in polynomial time with a Benders like
approach, however we show that it is NP-hard.

1. Introduction

Benders decomposition [2] is a technique to deal with linear programs like

z = max cx + dy

subject to
Ax + By ≤ b,

with the assumption that when the variables y are fixed then the sub-problem below is
“easy” to solve.

z(ȳ) = max cx(1)
subject to(2)
Ax ≤ b−Bȳ.(3)

The process consists of solving a master problem that gives a vector ȳ to the sub-problem,
then the sub-problem gives back a cutting plane to the master problem and the process
continues until convergence. This is useful for instance when the sub-problem (1)-(3) can
be efficiently solved in a combinatorial way. This process combined with the ellipsoid
method can be shown to converge in polynomial time, see [4]. In this paper we study the
case when the sub-problem is polynomially solvable but it has the additional constraint
that x should be integer valued.

We denote by Π the class mixed integer linear programs like

z = max cx + dy(4)
subject to
Ax + By ≤ b(5)
x integer valued,(6)
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with the additional property that when the continuous variables y are fixed then

z(ȳ) = max cx(7)
subject to
Ax ≤ b−Bȳ(8)
x integer valued,(9)

is polynomially solvable.

Because of this last property one could expect that problem (4)-(6) could be solved in
polynomial time with a Benders like approach. We prove that Π is NP-hard, namely we
show that the max-cut problem admits a MILP formulation with the properties described
above. We refer to [3], [6] for a discussion on NP-hardness.

Given a graph G = (V,E) an U ⊆ V the set of edges with exactly one endnode in U
is called a cut. If each edge e has a weight c(e) the max-cut problem consists of finding
a cut C such that the sum of the weights of the edges in C is maximum. This problem
appears in the initial list of NP-hard problems given by Karp [5].

2. A MILP formulation of max-cut

In this section we show that the max-cut problem admits a MILP formulation with
the properties described before. We start with some definitions.

Let G = (V, E) be a weighted graph and assume that there is a node v0 that is adjacent
to all other nodes in V . This can always be achieved by adding edges of weight zero. We
denote by G′ the subgraph G \ v0. For an edge e incident to u and v we also denote e
by uv. For an edge uv ∈ G′ we denote by Tuv the triangle Tuv = {v0u, uv, vv0}. For a
set S ⊆ E the vector xS ∈ <E defined by xS(e) = 1 if e ∈ S, and xS(e) = 0 if e /∈ S, is
called the incidence vector of S.

We need a series of Lemmas below. The following is well known in graph theory.

Lemma 1. A 0-1 vector x is the incidence vector of a cut if and only if

(10) x · y ≡ 0(mod 2),

for every vector y that is the incidence vector of a cycle.

Proof. Clearly the intersection between a cut and a cycle has even cardinality.

Now let us assume that S is an edge-set whose intersection with any cycle has even
cardinality. We describe a procedure to deduct a cut from the set S. We first pick a
spanning tree. Then we give to a node the label +. Then we traverse the tree giving the
labels + and − to the nodes based on the following rule. If an edge in the tree is in S
then its endnodes should have opposite labels, if the edge is not in S then its endnodes
should have the same label.

Now we claim that for the every edge e /∈ T its endnodes have opposite labels if and
only if e ∈ S. Let u and v be the endnodes of e. If e ∈ S because of the initial assumption,
in the path in T between u and v there is an odd number of edges in S, this means that
there is an odd number of changes in the labels, therefore u and v have different labels.
Similarly if e /∈ S then there is an even number of edges in S in the path between u and
v, thus u and v have the same label.

The labels partition V into V+ and V−. The cut given by this partition is exactly the
set S. ¤
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Thus the set of incidence vectors of cuts are the 0− 1 vectors that satisfy

(11) Ax ≡ 0(mod 2),

where the rows of the matrix A are the incidence vectors of cycles. It is enough to include
in A a basis of the vector space over GF (2) generated by the rows of A, this is called a
cycle basis.

Lemma 2. The set of incidence vectors of triangles Tuv for every edge uv ∈ G′, form a
cycle basis.

Proof. Since every edge uv ∈ G′ appears in exactly one triangle, this set of vectors is
linearly independent.

Now consider a cycle {u1u2, · · · , uku1} in G′. Its incidence vector can be obtained
by adding (mod 2) the incidence vectors of Tu1u2 , · · · , Tuku1 . Finally consider a cycle
{v0u1, u1u2, · · · , ukv0}, its incidence vector can be obtained by adding (mod 2) the inci-
dence vectors of Tu1u2 , · · · , Tuk−1uk

. ¤

Lemma 3. Let uv ∈ G′ and let x1, x2, x3 be associated with v0u, uv, vv0 respectively.
Condition (10) for Tuv is equivalent to

x1 + x2 + x3 ≤ 2(12)
x1 − x2 − x3 ≤ 0(13)
−x1 + x2 − x3 ≤ 0(14)
−x1 − x2 + x3 ≤ 0(15)
xi ∈ {0, 1}, for i = 1, 2, 3.(16)

Proof. It is easy to see that a 0-1 vector x satisfies (12)-(16) if and only if x1 + x2 + x3

is even. ¤

Inequalities (12)-(15) are called triangle inequalities, cf. [1]. From the lemmatta above
we have that an integer programming formulation of max-cut is given by

max cx(17)
x satisfies (12)-(16) for all Tuv, uv ∈ G′.(18)

The next lemma shows that we can relax the integrality of the variables associated
with edges in G′.

Lemma 4. The integrality of x1 and x3 in (12)-(15) implies the integrality of x2.

Proof. First notice that (13) and (15) imply x2 ≥ 0.

If x1 = x3 = 1 then (12) implies x2 ≤ 0. If x1 = x3 = 0 then (14) imply x2 ≤ 0.

Now notice that (12) and (14) imply x2 ≤ 1. If x1 = 1, x3 = 0 then (13) implies
x2 ≥ 1. If x1 = 0, x3 = 1 then (15) implies x2 ≥ 1. ¤

The lemma below shows that inequalities 0 ≤ xi ≤ 1 are not needed.

Lemma 5. Inequalities (12)-(15) imply 0 ≤ xi ≤ 1.

Proof. Just add all possible pairs of these inequalities. ¤
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Let us partition the vector x into y and z, where y is associated with edges incident
to v0 and z is associated with edges in G′. Now we can write the following mixed integer
linear programming formulation.

max dy + ez(19)
(y, z) satisfies (12)-(15) for all Tuv, uv ∈ G′(20)
y integer valued.(21)

Now we shall see that if z is fixed then (19)-(21) is easy to solve.

Lemma 6. If the vector z is fixed then (19)-(21) can be solved in linear time.

Proof. Consider first the case when z has a fractional component. Lemma 4 implies that
there is no integer feasible vector y.

Now assume that z is integer valued. Consider a triangle Tuv and inequalities (12)-
(15). If x3 = 0 then (13) and (14) imply x1 = x2. If x3 = 1 then (12) and (15) imply
x1 = 1− x2.

So we can pick a node v ∈ G′ and let λ = y(v0v). Then for an edge vw ∈ G′ we set
y(v0w) equal to either λ or 1 − λ depending on the value of z(vw). We continue until
either a contradiction is found, or all variables y have an assigned value. Then we decide
whether λ should be 0 or 1. ¤

Problem (19)-(21) is a mixed integer linear programming formulation of max-cut with
the property that when the continuous variables are fixed, the remaining integer program
is polynomially solvable. Therefore we can state our main result.

Theorem 1. Problem Π is NP-hard.

3. Final Remarks

We studied the complexity of Π after failing to produce a polynomial time algorithm
for this class of mixed integer linear programs. We still find it surprising that this is
NP-hard.

Acknowledgments. I am grateful to Maxim Sviridenko who brought this question
to my attention.
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