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1 Introduction

Last decade the new discrimination technique for estimating of parameters became
popular. It is based on the transformation formula for continuous parameters [9].
This formula was obtained as approximation of the Baum-Eagon like growth trans-
formation formula for rational functions of discrete parameters that was introduced
in [5]. The paper deals mostly with theoretical aspects related to [5]. One of the
goal of this paper is to give several proofs for growth transformations for these
transformation formula in the case of continuous parameters. The first proof is
based on the modification of the basic principle of adding specific constants that
was introduced in [5] and that allowed to extend to rational functions Baum-Eagon
like growth transformations for polynomial functions. The other proof is based on
the lineriazation of the problem for nonlinear functions and computing explicitly
the growth estimate for linear forms of Gaussians using a sufficiently large specific
constant. In the paper we also give a new proof of the growth of Baum-Eagon
like transformation formula for arbitrary objective functions of discrete parameters
generalizing [5]. And finally, we derive new transformation formula for continuos
parameters case and run simulation experiments to compare growth for different
transformation formula.

Acknowledgement The author would like to thank Leonid Rashevsky, Vaib-
hava Goel, Peder Olsen for useful discussions and help in preparation of this paper.
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2 Growth transformations for rational functions
with discrete parameters

Let R(z) = P1(z), or R(z) = P1(z)/P2(z) where P1, P2 are homogenous polynomi-
als of the same degree m with positive coefficients and z ∈ D = {zij ≥ 0,

∑
j zij =∑j=mi

j=1 zij = 1}
The following growth transformation zij 7→ ẑij was obtained in [5] for sufficiently
large C.

ẑij =
zij( δ

δzij
R(z) + C)

∑
i zij( δ

δzij
R(z) + C)

(1)

In other words, for sufficiently large C = C(z) the following property holds: R(ẑ) >
R(z) if ẑ 6= z

3 Linearization

This principle is needed to reduce proofs of growth transformation for general func-
tions to linear forms.

Let F : z ∈ Rn → R1 be some function. We tell that F is good at (z, i) if there
exists such a small ball V = Vz(ε) = {z′||z′ − z| < ε} at a center z that for any
z′ ∈ V the following holds: F (z′)−F (z) =

∑
i

δF (z)
δzi

(zi′−zi)+O(|z′−z|1+δ), where

δ > 0 and δF (z)
δzi

6= 0. For example, F is good at (z, i) if it has all derivatives of a
second order at z and its derivative of the first order by zi is not equal to zero at
z.We also will tell that F is good at z if it is good at (z, i) for some i.

Lemma 1 Let
F (z) = F ({uj}) = F ({gj(z)}, j = 1, ..m (2)

be a function that can be represented as a composite of a system of m functions
uj = gj(z) where z varies in some real vector space Rn of dimension n. Let, futher,
L(z′) = L({gi(z′)}) =

∑
j

δF ({uj})
δuj

gj(z′) where δF ({uj})
δuj

is taken at uj = gj(z) and
z′ ∈ Rn . Let F and L be good at (z, i). Let Tε be a family of transformations
Rn → Rn that factors through the transformation dF : z ∈ Rn → ({ δF (z)

δzj
}) ∈ Rm,

i.e. there exists a family of map Gε : Rm → Rn, such that Tε = GεdF . Assume
also that Tε(z) → z if ε → 0 and Tε(z)i 6= zi for some i .Then there exists such a
small Vz(ε) that Tε is growth for sufficiently small ε for F at z iff Tε is growth for
L at z.

.
Proof

First, from the definition of L we have δF (z)
δzk

=
∑

j
δF ({uj})

δuj

δgj(z)
δzk

= δL(z)
δzk

Next we have: F (z′)−F (z) =
∑

i
δF (z)

δzi
(zi′−zi)+O(α1+δ) =

∑
i

δL(z)
δzi

(zi′−zi)+
O(α1+δ1) = L(z′)−L(z)+O(α1+δ2), where α = |z′−z|, δ1 > 0 and δ2 > 0, z′ = Tε(z)
and ε is sufficiently small. Therefore for sufficientlay small ε F (z′) − F (z) > 0 iff
L(z′)− L(z) > 0.
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4 Proof of transformation formula for general func-
tions

. Here we give a different proof of (1). This proof generalize the statement to any
function that allows linearization, i.e. that have derivatives of the second order.
Therefore we assume now that R(z) is arbitrary function that has all derivatives of
the second order.

According to the linearization principle, we can assume that R(z) = l(z) =∑
aijzij is a linear form.
Than the transformation formula for l(x) is the following:

ẑij =
aijzij + Czij

l(z) + C
(3)

We need to show that
l(ẑ) ≥ l(z) (4)

It is suffcient to proove this inequality for each linear sub component associated
with i

j=n∑

j=1

aij ẑij ≥
j=n∑

j=1

aijzij

Therefore without loss of generality we can assume that i is fixed and drop sub-
index i in the fortcoming proof (i.e. we assume that l(z) =

∑
ajzj , where z = {zj},

zj ≥ 0 and
∑

zj = 1.
We have:

l(ẑj) =
l2(z) + Cl(z)

l(z) + C
(5)

Where
l2(z) :=

∑

j

a2
jzj (6)

We need to prove that the following

Lemma 2
l2(z) ≥ l(z)2 (7)

Proof
Let as assume that aj ≥ aj+1 and substituting z′ = ∑j=n−1

j=1 zj we need to proove:

j=n−1∑

j=1

[a2
jxj + a2

n(1− z′)] ≥
j=n−1∑

j=1

(aj − an)2z2
j + 2

j=n−1∑

j=1

(aj − an)anz′2 + a2
n (8)

We will proove the above formula by prooving for every fixed j

(a2
j − a2

n)zj ≥ (aj − an)2z2
j + 2(aj − an)anzj (9)

If (aj − an)zj 6= 0 then the above inequality is equivalent to

aj + an > (aj + an)zj (10)

The above ineqaultiy is obviously holds since 0 ≤ zj ≤ 1

Lemma 3 For sufficiently large |C| the following holds:
l(ẑ) > l(z) if C is positive and l(ẑ) < l(z) if C is negative.
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Proof
From (7) we have the following inequalities. l2(z) + Cl(z) ≥ l(z)2 + Cl(z) l(ẑ) =
l2(z)+Cl(z)

l(z)+C ≥ l(z)2+Cl(z)
l(z)+C if l(z) + C > 0 and l(ẑ) = l2(z)+Cl(z)

l(z)+C ≤ l(z)2+Cl(z)
l(z)+C if

l(z) + C < 0 This proves the statement.
The following theorem is a generalization of the statement that was given in [7]

for growth transformations for analytic functions.

Theorem 1 Let F (z) is a function that is defined over D = {zij ≥ 0,
∑

zij = 1}.
Let F be good at z ∈ D. Let

ẑij =
zij( δ

δzij
F (z) + C)

∑
i zij(

δF (z)
δzij

F (z) + C)
(11)

And let ẑ 6= z for sufficiently large |C|. Then F (ẑ) > F (z) for sufficiently large
positive C and F (ẑ) < F (z) for sufficiently small negative C.

Proof It follows immediately from linerization principle and the previous lemma.

5 New optimization principle

Let us consider the following polynomial: P (X) =
∑

cνXνi
ν where cν are coeffi-

cients in a polynomial, Xnν
ν =

∏
Xni

i , Xi, i = 1, ...l are variables , ν = {i1, i2, ...} is
a multi-index and nν = {ni1 , ni2 , ..., nil

} . Let x = (x1, x2, ..., xl) , x̃ = (x̃1, x̃2, ..., x̃l)
be some points with all xi, x̃i ≥ 0 and such that

∑
xi =

∑
x̃i > 0. Let LP (x, x̃) =∑

xici log x̃i, where ci = δ
δxi

P ({xi}). We call LP associated with P at x and x̃. It is
well known (see [3]) that if all coefficients in P are non negative then the inequality
LP (x, x̃) > LP (x, x) implies the inequality P (x̃) > P (x) .
If the polynomial P does not have all coefficients positive one can use the following
statement

Proposition 1 Let D(x) be a polynomial and x̃ another point such that the follow-
ing holds:

K(x) = P (x) + D(x) (12)

has all coefficients non-negative,

D(x̃) ≤ D(x) (13)

and
LK(x, x̃) > LK(x, x) (14)

Then x 7→ x̃ is a growing transformation, i.e. P (x̃) > P (x).

Proof
K(x̃) > K(x) because of (12) and (14). The final statement now follows from (13).

This generalizes the principle in [5] in which it was assumed that D(x) is a con-
stant for all x in a probability domain. If x depends on some continuous parameters
(12) and (13) conditions give rise to some equations for these parameters. Solving
these equations can lead to new optimization procedures. Later we use these con-
siderations to deduct an iterative optimization formula for continuous parameters.
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6 Heuristic iterative formula for continuous pa-
rameters

In this section we derive a heuristic re-estimation formula for models with continuous
parameters, using (1). These formula were initially obtained in [6], [9].
Let Y = {y1, ...yK} denotes a training data, where yi are real numbers. Let xij =
N(yi, µj , σj), i = 1, ...K be one dimensional Gaussian densities.
Let

R({µj , σj}) = R({xij}) =
P1({xij})
P2({xij}) (15)

be a rational function where either P1, P2 are homogenous polynomials of xij of the
same degree m with positive coefficients or P2 = 1.

We want to find re-estimation formula that resolves the following

6.1 Problem

Find
Arg max

{µj ,σj}
R({µj , σj}) (16)

We need to introduce some notations to derive the heuristic formula for a growth
transformation for the problem (16). We will follow [8] approach in derivation of
heuristic formula.

Let partition a real axis (domain of Gaussian density) into three non-overlapping
intervals: I1 = (−∞, µj − ν)
I2 = [µj − ν, µj + ν]
I3 = (µj + ν, +∞)
Let partition I2 in T non-overlapping non-zero sub-intervals ∆k of length hk ≤ h.
Choose ν so large that all points of the training data y1, ...yK ∈ Y fall in the second
segment I2. Let x1 ∈ ∆1, x2 ∈ ∆2, ...xT ∈ ∆T be some points in sub-intervals ∆i.
Let ∆k are chosen so small that each ∆k contains not more than one yi from the
sampling data Y . Let us denote a set of all ∆k each of which contain some yi from
the sampling data Y as ∆̃. Let us change xi and enumerate xi, yj , ∆k in such a
way that xi = yi ∈ ∆i if yi belonged some ∆j ∈ ∆̃.
Let I = {k : ∆k ∈ ∆̃} denote a set of all indexes for ∆k ∈ ∆̃. Let denote by
W = W (I, Y,X, {∆i}) a system that contains the set of indexes I, the training
data Y , the set of points X = {x1, x2, ...xT }, and the set sub-intervals {∆i}).
It is clear that if ν grows than T also grows but the size of I depends only on the
size of training data Y that does not changes with growth of T . Let now all hk = h
and let us define

aij =
N(xi, µj , σj)h∑
i N(xi, µj , σj)h

(17)

For any y and sub-interval ∆ containing xi the following holds:

limh→0xi = y

limh→0N(xi, µj , σj) = N(y, µj , σj)

limh→0,ν→∞
∑

i

N(xi, µj , σj)h = 1

Let us consider the following ”discrete approximation” procedure. We substitute
N(xi, µj , σj) with {aij} in (16).

R({µj , σj}) = R({xij}) → R({aij})

5



Then
limh→0,ν→∞R({aij}) = R({xij})

Consider the following discrete optimization problem:

Arg max
{aij}

R({aij}) (18)

Let consider the following growth transformation for the problem (18) {aij} 7→ {âij}
.

âij =
aij( δ

δaij
R({aij}) + C)

∑
i aij( δ

δaij
R({aij}) + C)

(19)

Let obtain new continuous parameters via the following approximation:

µ̂j = limh→0,ν→∞
∑

i

âijxi (20)

σ̂j
2 = limh→0,ν→∞

∑

i

âij(xi − µ̂j)2 (21)

We can compute µ̂j and σ̂2
j using the following equalities.

limh→0,ν→∞
∑

i

aijxi = µj (22)

limh→0,ν→∞
∑

i

aijx
2
i = µ2

j + σj
2 (23)

Let cij = δ
δxij

R({xij}. Using (22) and (23) we get the following transformation
formula:

µ̂j = µ̂j(C) =
∑

i∈I xijcijxi + Cµj∑
i∈I xijcij + C

(24)

σ̂2
j = σ̂j(C)2 =

∑
i∈I xijcijx

2
i + C(µ2

j + σj
2)∑

i∈I xijcij + C
− µ̂2

j (25)

The problem with this heuristic development is that a constant C = C(aij) is
obtained from a discrete formulae (19) and depends on aij , i.e. depends on h.
When h → 0 then C →∞ in (24) and (25). This is shown in the Appendix.
In practice iterative algorithms that are based on these formula provided good
incremental growth for discrimination objective functions (that involve functions
like (2)). The goal of the next chapter is to prove the following statement.

Theorem 2 For sufficiently large C the map (24),(25) {µj , σj} 7→ {µ̂j , σ̂j} is
growth transformation, i.e. R({x̂ij}) > R({xij}) if {x̂ij} 6= {xij}.

Remark: Vaibhava Goel informed me that Axelrod [1], [2], has recently pro-
posed another proof of existance of C that ensures validity of the MMIE auxiliary
function as formulated by Gunawardana et.al. [4]. His derivation applies in general
to density functions that obey certain smoothness constraints around the current
parameter value.
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7 Proof of Theorem 2

We first prove the variant of this theorem for polynomials. Then we deduct the
statement for rational functions. Let f(x, µ, σ) be density (e.g. N(x, µ, σ)). Let
P (xij) be a homogenous polynomial in xij of deg m where i ∈ I. Let us consider
a function P (f(xi, , µj , σj)) that is obtained from P (xij) by substituting xij with
f(xi, µj , σj). Here xi are of values from a sample of training data i ∈ I and µj , σj

are parameters . Consider the following problem

Arg max
{µj ,σj}

P (f(xi, µj , σj)) (26)

If the polynomial (26) has all coefficients positive then one can generate growth
transform as described in [3] . Otherwise, we need to reduces the original problem
to the new one that involves only the polynomial with the positive coefficients. Our
proof consists of the following

7.1 Steps:

1. First we consider a discrete variant of the continuous problem that associate
with a transformation some large constant C.

2. We will use the new principle and constraints (12), (13). introduce a system of
equations for µ, σ. The coefficients in these equations will be ”guessed” from
formula (24),(25) that were obtained via heuristics limit procedure. Therefore
solutions of this system of equations will be exactly formulae (24),(25).

7.2 Discreditation

Here we consider new notation (assuming also notation of Section 4).
Notation

Let zk, k ∈ {1, ...T} be unknowns whose values belong to a domain that will be
described later.

Let set: Aij = Aij(zi) = f(xi, µj , σj)zi. and
Âij = Âij(zi) = f(xi, µ̂j , σ̂j)zi.
We also set
fij = f(xi, µj , σj) = N(xi, µj , σj)
f̂ij = f(xi, µ̂j , σ̂j) = N(xi, µ̂j , σ̂j)
For any µ, σ, µ̂, σ̂ let define the following set E = EC(I, Y, X, µ, σ, µ̂, σ̂, {zk}) of

equations and constrains for zk.
zk = zk′ (27)

if k, k′ ∈ I. We denote zk = z if k ∈ I

zk >= 0 (28)
∑

i=1

Aij = 1 (29)

∑

i=1

Âij = 1 (30)

∑

i=1

Aijxi = µj (31)

∑

i=1

Aijx
2
i = µ2

j + σ2
j (32)
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It is clear that in the system EC = EC(I, X, µ, σ, µ̂, σ̂, {zk}) the data I, X can
be constructed from W = W (I, Y, X, {∆i})). We therefore sometime will denote
EC(I, Y,X, µ, σ, µ̂, σ̂, {zk}) as EC = EC(W,µ, σ, µ̂, σ̂, {zk}). The value of the in-
troduced system of the equations and inequalities can be seen from the following
statement:

Lemma 4 Let µ̂j = µ̂j(C) and σ̂j = σ̂j(C) are defined as in (24), (25) for some
I, Y, µ, σ. Then there exist such large C and such X containing Y that if the system
EC has a solution, then {µj , σj} 7→ {µ̂j , σ̂j} is growth transformation

Proof
Let fix any positive value of z. First, we have the following implication: if P ({f̂i,j}) >
P ({fi,j}) then

P ({Âi,j}) = P ({f̂i,j})zm > P ({Ai,j}) = P ({fi,j})zm (33)

This follows from the fact that P () is a homogenous polynomial and that only those
Ai,j are considered in P () for which Âi,j = f̂i,jz and Ai,j = fi,jz. (In other words,
I is chosen in such a way that for any xij in P i ∈ I). If {Ai,j} 7→ {Âi,j} is a growth
transformation for P ({Ai,j}), i.e. the inequality (33) holds, then it is equivalent to
the following inequality:

P ({Âi,j}) + C(
∑

i=1,T

{Âi,j})m > P ({Ai,j}) + C(
∑

i=1,T

{Ai,j})m (34)

for any C since (
∑

i{Âi,j}) =
∑

i{Ai,j} = 1 is constant (by (29) and (30)). Choos-
ing C sufficiently large we get all coefficients in PC = P ({Ai,j}) + C(

∑
i{Ai,j})m

positive. Let Z = Z(C) = {zk} be some solution of EC(W,µ, σ, µ̂, σ̂, {zk}). Then
(34) is the consequence of the following two facts:

Fact 1 Let Cij are computed as follows:

Cij =
δ

δAij
P (Aij) (35)

Then (33) holds if the following inequality holds:
∑

i=1,T

(AijCij + CAij) log Âij >
∑

i=1,T

(AijCij + CAij) log Aij (36)

This is a consequence of Jensen inequality for concave functions [3].
Fact 2 Let g(µj , σj) =

∑
i=1,T (AijCij +CAij) log fij where fij = N(xi, µj , σj).

and let
(µ̂j , σ̂j) = Arg max

{µj ,σj}
g(µj , σj) (37)

Then (µ̂j , σ̂j) equals (24), (25) with some replacement for C.
We start from solving the problem (37).
This problem (37) is the problem of maximization of concave function and can be
resolved easily via the following standard methods.

δ

δsj
g(µj , σj)|µ̂j ,σ̂j = 0 (38)

where sj = µj or σj . The (38) leads to the following equations for µ̂j and σ̂j .
∑

i

(AijCij + CAij)(xi − µ̂j) = 0 (39)
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∑

i

(AijCij + CAij)(−1 +
(xi − µ̂j)2

σ̂2
j

) = 0 (40)

The solution of (39) is

µ̂j =
∑

i AijCijxi + C
∑

i Aijxi∑
i AijCij + C

∑
i Ai

(41)

And the solution of (40) is

σ̂j
2 =

∑
i AijCijx

2
i + C

∑
i Aijx

2
i∑

i AijCij + C
∑

i Ai
− µ̂2

j (42)

Since Cij = 0 for i not in I
∑

i AijCijxi =
∑

i∈I AijCijxi. This allows to re-write
(41) and as follows.

µ̂j =

∑
i∈I AijCijxi + C

∑
i=1,T Aijxi∑

i∈I AijCij + C
∑

i=1,T Aij
(43)

Similarly one can re-write (42) as follows

σ̂j
2 =

∑
i∈I AijCijx

2
i + C

∑
i=1,T Aijx

2
i∑

i∈I AijCij + C
∑

i=1,T Aij
− µ̂2

j (44)

Using (29), (30), (31) and (32) we get the following values:

µ̂j =
∑

i∈I AijCijxi + Cµj∑
i∈I AijCij + C

(45)

And

σ̂j
2 =

∑
i∈I AijCijx

2
i + C(µ2

j + σ2
j )∑

i∈I AijCij + C
− µ̂2

j (46)

Replacing Aij with fij and C with C/z gives (24), (25). The theorem 2 will follow
from the following

Lemma 5 For any C, µ, σ, µ̂, σ̂, Y, I there exists X containing Y such that EC has
non-empty solution Z = {zk}.
Proof
The proof consists of the several steps.
Step 1
Given conditions of Lemma 2 and arbitrary positive constant d one can choose W
such that length of all ∆k = h and h is so small and T is so large that the following
system of equations and inequalities hold for zk = h:

∑

i=1

Aij = 1 + d1(h1+δ)

∑

i=1

Âij = 1 + d2(h1+δ)

∑

i=1

Aijxi = µj + d3(h1+δ)

∑

i=1

Aijx
2
i = µ2

j + σ2
j + d4(h1+δ)

9



h + d(h1+δ) > 0 (47)

where |di| < d and δ > 0.
Step 2
One can choose some 4 different î = {1 < i1, i2, i3, i4 <= T} outside I and
xir , r = 1, 2, 3, 4 such that linear independent columns in the system of equations
are generated in Step 1

fi1j fi2j fi3j fi4j

f̂i1j f̂i2j f̂i3j f̂i4j

fi1jxi1 fi2jxi2 fi3jxi3 fi4jxi3

fi1jx
2
i1

fi2jx
2
i2

fi3jx
2
i3

fi4jx
2
i3

This follows from the fact that determinant of this matrix is a polynomial of xj

and it defines a variety of co-dimension one on some space. Slightly varying xi

outside of this variety one can obtain xi that belong intervals that are defined by
∆k and that determinant of this matrix is non-zero.
Step 3 Let replace unknown zi with i ∈ î by h + εi. Then the system of equalities
in (47) gives rise to the following system of equations.

∑
r=1,4

firjεir = −d1(h1+δ)

∑
r=1,4

f̂irεir = −d2(h1+δ)

∑
r=1,4

firjxiεir = −d3(h1+δ)

∑
r=1,4

firjx
2
i εir = −d4(h1+δ)

This system of equation is solvable since the determinant of the system is non-zero.
The solutions of this system satisfy inequalities |εir | < d5(h1+δ) for some large d5

as can be seen from explicit solutions of this system. If d5 > d, let put d = d5 and
choose h sufficiently small and T so large that (47) holds. Then one can choose the
following solution of the system of equations EC : zk = h if k does not belong to î
and zir = h + εir > 0 .
Q.E.D.
The theorem 2 for rational functions now follows by standard reduction of the ra-
tional function R to a polynomial P1 − kP2 for some coefficient k (see Appendix
1) and the fact that coefficients (35) for polynomials proportional to coefficients cij

for rational functions in (24), (25).

7.3 Generalization

In the notation of 5.2 for any µ, σ, µ̂, σ̂ let us define the following general set DC =
DC(I, Y, X, µ, σ, µ̂, σ̂, {zk}) of equations and constrains for zk.

zk = zk′ (48)

if k, k′ ∈ I. We denote zk = z if k ∈ I

zk >= 0 (49)

10



∑

i=1

Aij =
∑

i=1

Âij (50)

Lemma 6 Let µ̂j = µ̂j(C) and σ̂j = σ̂j(C) are defined as in (43), (44) for some
I, Y, µ, σ. Then there exist such large C and such X containing Y that if the system
DC has a solution, then {µj , σj} 7→ {µ̂j , σ̂j} that corresponds this solution is growth
transformation.

Proof
In the proof of this lemma we can follow the proof of the lemma 1 until (44).

8 Another proof of growth transformations for gen-
eral functions with continuous parameters

Let R in (15) be a real function. For simplicity of the notation we consider the
transformation (24), (25), only for a single pair of variables µ, σ, i.e. R(µ, σ) =
R(Ni), where

Ni =
1

(2π)1/2σ
e−(yi−µ)2/2σ2

(51)

We also use the notation ci = Ni
δR
δNi

and

N̂i =
1

(2π)1/2σ̂
e−(yi−µ̂)

2
/2σ̂2

(52)

Let write transformation formula (24), (25) as

µ̂ = µ̂(C) =
∑

i∈I ciyi + Cµ∑
i∈I ci + C

(53)

σ̂2 = σ̂(C)2 =
∑

i∈I ciy
2
i + C(µ2 + σ2)∑
i∈I ci + C

− µ̂2 (54)

Now we can formulate a theorem that extends applicability of transformation
formula (24), (25) to general functions.

Theorem 3 Let µ, σ be such that
∑

cj(yj − µ) 6= 0 (55)

or ∑
cj [(yj − µ)2 − σ2] 6= 0 (56)

Let R(µ, σ) = R({Ni}), i = 1...m, be good at µ, σ. Then for sufficiently large C

R({N̂i})−R({Ni}) = T/C + o(1/C2) (57)

Where

T =
1
σ2
{{

∑
cj [(yj − µ)2 − σ2]}2

2σ2
+ [

∑
cj(yj − µ)]2} > 0 (58)

In other words, R({N̂i}) grows proportionaly to 1/C for sufficiently large C.

Proof
We will prove the theorem via linearization. According to the linearization principle,
we can assume that R((µ, σ) = l(µ, σ) := l({Ni}) :=

∑i=m
i=1 aiNi. Let denote also

l(µ̂, σ̂) := l({N̂i}) :=
∑i=m

i=1 aiN̂i

11



We consider the following transformation formula

µ̂ = µ̂(C) =

∑j=m
=1 cjyj + Cµ
∑j=m

=1 cj + C
(59)

where cj = ajNj .

σ̂2 = σ̂(C)2 =

∑j=m
=1 cjy

2
j + C(µ2 + σ2)

∑j=m
=1 cj + C

− µ̂2 (60)

We want to prove that for sufficiently large C
l(µ̂, σ̂) ≥ l(µ, σ)
This inequality is sufficiently to prove with precision 1/C2.

µ̂ = µ̂(C) =

∑j=m
=1 cjyj + Cµ
∑j=m

=1 cj + C
=

1
C

∑j=m
j=1 cjyj + µ

1
C

∑j=m
=1 cj + 1

∼

∼ (
1
C

j=m∑

j=1

cjyj + µ)(1−
∑

cj

C
) ∼ µ +

1
C

(
j=m∑

j=1

cjyj − µ

j=m∑

j=1

cj) (61)

µ̂ ∼ µ +

∑j=m
=1 [cj(yj − µ)]

C
(62)

Let compute σ̂2 using (60)s
∑j=m

=1 cjy
2
j + C(µ2 + σ2)

∑j=m
=1 cj + C

∼

∼ (

∑j=m
=1 cjy

2
j

C
+ µ2 + σ2)(1−

∑j=m
=1 cj

C
) ∼

∼ µ2 + σ2 +
1
C

[
j=m∑
=1

cjy
2
j − (µ2 + σ2)

j=m∑
=1

cj ] (63)

µ̂2 ∼ µ2 +
2µ

C

j=m∑
=1

cj(yj − µ) (64)

This gives

σ̂2 ∼ µ2 + σ2 +
1
C

[
j=m∑
=1

cjy
2
j − (µ2 + σ2)

j=m∑
=1

cj ]− [µ2 +
2µ

C

j=m∑
=1

cj(yj − µ)] =

= σ2 +
1
C

[
j=m∑
=1

cjy
2
j − (µ2 + σ2)

j=m∑
=1

cj − 2µ(
j=m∑
=1

cj(yj − µ)] (65)

And finally

σ̂2 ∼ σ2 +
∑

[(yj − µ)2 − σ2]cj

C
(66)

(yi−µ̂)2/σ̂2 ∼ 1
σ2

[(yi−µ)2−2(yi − µ)
∑j=m

=1 cj(yj − µ)
C

]{1−
∑j=m

=1 cj [(yj − µ)2 − σ2]
σ2C

} ∼

∼ (yi − µ)2

σ2
− 1

Cσ2
{ (yi − µ)2

σ2

∑
[(yj − µ)2 + σ2]cj +2(yi−µ)

∑
(yj −µ)cj} (67)

12



N̂i ∼ 1
(2π)1/2σ̂

e
−(yi−µ)2

2σ2 + A
Cσ2 (68)

Where

Ai =
(yi − µ)2

2σ2

∑
[(yj − µ)2 − σ2]cj + (yi − µ)

∑
(yj − µ)cj (69)

Continue this we have

N̂i ∼ Ke
−(yi−µ)2

2σ2 (1 +
Ai

Cσ2
) (70)

Where
K =

1
(2π)1/2σ̂

1/σ̂ ∼ 1
σ
{1−

∑
ci[(yi − µ)2 − σ2]

2σ2C
} (71)

(1 +
Ai

Cσ2
){1−

∑
ci[(yi − µ)2 − σ2]

2σ2C
} ∼

∼ 1+
1

Cσ2
{ (yi − µ)2

2σ2

∑
[(yi−µ)2−σ2]cj+(yi−µ)

∑
(yj−µ)cj ]−1/2

∑
cj [(yj−µ)2−σ2]} ∼

∼ 1 +
1

Cσ2
{[ (yi − µ)2

2σ2
− 1/2]

∑
[(yi − µ)2 − σ2]cj + (yi − µ)

∑
(yj − µ)cj ]} (72)

∼ 1 +
Bi

Cσ2
(73)

Where Bi = [ (yi−µ)2

2σ2 − 1/2]
∑

[(yi − µ)2 − σ2]cj + (yi − µ)
∑

(yj − µ)cj ]
Using the last equalities we get

N̂i = Ni +
Bi

Cσ2
Ni (74)

Since l(µ̂, σ̂) is a linear form we have

l({N̂i}) = l({Ni}) +
l({BiNi})

Cσ2
(75)

and

L({BiNi}) =
∑

aiNi{[ (yi − µ)2

2σ2
−1/2]

∑
cj [(yj−µ)2−σ2]+(yi−µ)

∑
cj(yj−µ)}

(76)

=
∑

ci{[ (yi − µ)2

2σ2
− 1/2]}

∑
cj [(yj − µ)2 − σ2] + (yi − µ)

∑
cj(yj − µ)} (77)

=
{∑ cj [(yj − µ)2 − σ2]}2

2σ2
+ [

∑
cj(yj − µ)]2 (78)

l({N̂i})− l({Ni}) ∼ 1
Cσ2

{{
∑

cj [(yj − µ)2 − σ2]}2
2σ2

+ [
∑

cj(yj − µ)]2} (79)
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9 Another Baum Growth Transformation formu-
lae for general ”good” functions with continuos
parameters

In this section we derive a new re-estimation formula for models with continuous
parameters for general functions that have some good properties that will be spec-
ified later.
We refer to this transformation as modified Baum (and refer to the previous trans-
formation as standard Baum).
Let Y = {yij} denotes a training data, where yij are real numbers. Let Nij =
N(yij , µj , σj), i = 1, ...k, j = 1...m be one dimensional Gaussian densities. Let
f({Ni}) = f({µi, σi}) be a general function from Gaussians Nij . We derive the
formula under assumptions that all 0 ≤ µi ≤ Di, 0 ≤ σi ≤ Ei. Then we can in-
troduce slack variables µ′ ≥ 0, σ′ ≥ 0 such that µ + µ′ = 1, σ + σ′ = 1. Then we
can compute updates for µ and σ using (1). This gives rise to the following growth
transformations:

µ̂j = Djµj

∑
i∈{1...k}

δf({Nij})
δNij

× (yi−µj)

σ2
j

+ C

∑
i∈{1...k}

δf({Nij})
δNij

× (yi−µj)

σ2
j

µj + DjC
(80)

σ̂j = Ej

∑
i∈{1...k}

δf({Nij})
δNij

Nij [−1 + (yi−µj)
2

σ2
j

] + Cσj

∑
i∈{1...k}

δf({Nij})
δNij

Nij [−1 + (yi−µj)2

σ2
j

] + EjC
(81)

In the case that µj are negative one can change coordinates to make them
positive (i.e. add to µj some positive number), compute updates for new variables
in the new coordinate system and then go back to the old system of coordinates.
Q.E.D.

10 Comparison of two growth transformation

Here we compare two different growth transformation that were obtained in this pa-
per for very large C. From the linearization principle it follows that one can consider
a linear form. Here we assume that 0 < µ < 1 (to apply discrete transformation
formula to continuous parameters).

l =
∑

aiNi (82)

δl

δµ
=

∑
aiNi

yi − µ

σ2
(83)

l(µ′)− l(µ) ∼ δlN
δµ

(µ′ − µ) =

=
∑

aiNi
(yi − µ)

σ2
(µ′ − µ) =

=
[
∑

aiNi
yi−µ

σ2 ]2µ(1− µ)∑
aiNi + C

=

=
[
∑

ci
yi−µ

σ2 ]2µ(1− µ)∑
aiNi + C

(84)
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At the same time the growth using a different formulae can be expressed as

l(µ′)− l(µ) ∼ 1
Cσ2

{{
∑

ci[(yi − µ)2 − σ2]}2
2σ2

+
[
∑

ci(yi − µ]2

Cσ2
} (85)

It is easily to construct examples when some of the formula provides bigger
incremental step.. For example, if

∑
ci[(yi−µ)2−σ2] is close to zero and σ close to

zero than the first formula (modified Baum) provide bigger incremental step than
standard Baum.

11 Preliminary numerical simulation experiments

Our preliminary experiments are done for linear forms of Gaussians l(µ, σ) :=
l({Ni}) :=

∑i=m
i=1 aiNi. We are taking weighted sum for two variants for growth

for µ, σ - modified and standard Baums. We also vary constant C in modified and
standard Baum transformations to find for which weights and constant C we have
the biggest incremental step. Here are more details about the experiments.

1. Compute best standard Baum We compute standard Baum for linear forms
for C varying from t1 to t2

µ̂(C) =

∑j=m
=1 cjyj + Cµ
∑j=m

=1 cj + C
(86)

where cj = ajNj .

σ̂(C)2 =

∑j=m
=1 cjy

2
j + C(µ2 + σ2)

∑j=m
=1 cj + C

− µ̂(C)2 (87)

And set µs = µ̂(C′), σs = σ̂(C′) where optimal

C′ = argmaxC∈{t1,...,t2}l(µ̂(C′), σ̂(C′))
2. Compute best modified Baum We compute modified Baum for linear forms

for C varying from t1 to t2

µ̂(C) = Dµ

∑
i∈{1...k} ci × (yi−µ)

σ2
j

+ C

∑
i∈{1...k} ci × (yi−µ)

σ2
j

µ + DC
(88)

σ̂(C) = E

∑
i∈{1...k} ci[−1 + (yi−µ)2

σ2 ] + Cσ
∑

i∈{1...k} ci[−1 + (yi−µ)2

σ2
j

] + EC
(89)

And set µm = µ̂(C′), σm = σ̂(C′) where optimal

C′ = argmaxC∈{t1,...,t2}l(µ̂(C′), σ̂(C′))
3. Compute best mixture of standard and modified Baum We define a mixture

of Baums as:
µ(α) = αµs + (1− α)µm (90)

σ(α′) = α′σs + (1− α′)σm (91)

And set µ̂ = µ(α̂), σ̂ = σ(α̂′) where optimal

(µ̂, σ̂) = argmax(α,α′)∈[0,1]×[0,1]l(µ(α), σ(α′))
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Typical numerical example Here are some experimental results along the lines
that are described above. In these experiments D=E=3 in (88) and (89), a number
of observables yi and coefficients ai in the linear form l(Ni) equals m. Coefficients
in this linear form ai and observables yi are random.

In the table below αµ = α and ασ = α′ from (90) and (91), Mod Baum (best C)
stands for best modified Baum , Stdn Baum (with best C) stands for best standard
Baum and Mix mod-stnd Baum denotes a best mixture of standard and modified
Baum. Mod Baum and Stdn Baum were computed either from initial µ, σ or from
those µ, σ that were obtained in a previous iteration for Mix mod-stnd Baum.

0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

o  Mixture of modifed and standard Baums and best C

x Modifed Baum with the best C

> Standard Baum with the best C

+ Modified Baum

. Standard Baum

Figure 1: Graphs of objective values for 5 maximization methods .

Iter Method of Maximization αµ ασ C Obj Value
0 —– —— – – -0.015
1 Mod Baum (best C) – – 1.0 0.052
1 Stnd Baum (best C) – – 6 .0 0.01
1 Mix mod-stnd Baum 1 0 – 0.087
2 Mod Baum (best C) – – 1.0 0.052
2 Stnd Baum (best C) – – 11 0.141
2 Mix mod-stnd Baum 1 0 – 0.292
3 Mod Baum (best C) – – 6.0 0.344
3 Stnd Baum (best C) – – 66 0.57
3 Mix mod-stnd Baum 1 0 – 0.778
4 Mod Baum (best C) – – 51 0.97
4 Stnd Baum (best C) – – 51 0.778
4 Mix mod-stnd Baum 4/5 1 – 0.98
5 Mod Baum (best C) – – 11 3.96
5 Stnd Baum (best C) – – 11 0.981
5 Mix mod-stnd Baum 1/10 1 – 3.97
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These illustrative simple numerical experiments show that different growth trans-
formations can exhibit different behavior and that combining them with appropriate
weights can improve the growth rate. This leaves open a question for efficient com-
putation of weights and constants in these formula. One of the possible approaches
to estimating weights and constants is to treat them as parameters and estimate
them together with means and variables. For example, assuming that 1 ≤ C ≤ ∞
one can replace in (1) C = 1/P and obtain the new formula

ẑij =
zij(P δ

δzij
R(z) + 1)

∑
i zij(P δ

δzij
R(z) + 1)

(92)

Substituting these formula for P into R one can estimate P using (1) transformation
for P (adding a slack variable P ′ and constraints P + P ′ = 1). We will investigate
this approach somewhere.

12 Appendix

Here we show that C({aij}) →∞ when h → 0.
The formulae in (1) is obtained as follows.
Let us consider P = P1(x) − kP2(x) + C ′f(x) where f(x) is the constant over a
domain of probability values, k = P1(x0)

P2(x0)
, C ′ is such a large constant that P has

positive coefficients. Then a growing transformation for the polynomial P is defined
as follows:

x̂ij =
xij(

δ
δxij

P (x)+C′′)∑
i
xij(

δ
δxij

P (x)+C′′)

x̂ij =
xij(

δ
δxij

P (x)+C′′)∑
i
xij(

δ
δxij

P (x)+C′′)
Where C ′′ = δ

δxij
C ′f(x) is the constant (independent of

i, j). The formulae (1) can be obtained as follows:

x̂ij =
xij( δ

δxij
(P1(x)− kP2(x)) + C ′′)

∑
i xij( δ

δxij
P (x) + C ′′)

=
xij( δ

δxij
P1(x)− P1(x0)

P2(x0)
δ

δxij
P2(x) + C ′′)

∑
i xij( δ

δxij
P (x) + C ′′)

(93)

=
xij(P2(x0) δ

δxij
P1(x) 1

P 2
2 (x0)

− P1(x0)
P 2

2 (x0)
δ

δxij
P2(x) + C′′

P2(x0)
)

∑
i xij( δ

δxij

P (x)
P2(x0)

+ C′′
P2(x0)

)

For x = x0 we get (1) with C = C′′
P2(x0)

. If P2 is a homogenous polynomial and all
coordinates x = (xij) → 0 then C → ∞. This is the case when xij = aij in (4).
Namely, xij = aij → 0 if h → 0.
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