
RC22932 (W0310-059) October 9, 2003
Computer Science

IBM Research Report

Breaking Out of Eclipse: Developing an ActiveX Host for SWT

Li-Te Cheng
IBM Research Division

Lotus Development
1 Rogers St.

Cambridge, MA 02142

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Breaking out of Eclipse: Developing an ActiveX host for SWT

Li-Te Cheng
IBM Research

Cambridge, MA 02142
li-te_cheng@us.ibm.com

Abstract

SWT enables Eclipse developers to create user
interfaces with native OS look-and-feel and per-
formance. Without significant extra effort, how-
ever, SWT applications are limited to operate
within the confines of Eclipse, or as a standalone
desktop application. This paper describes the mo-
tivation and initial efforts to embed SWT applica-
tions within an ActiveX container, presents a sim-
ple API to enable SWT applications for ActiveX
containment, and discusses future directions for
embedding the Eclipse framework into other ex-
ternal native OS applications.

1 Introduction

SWT is a Java library enabling Eclipse developers
to create user interfaces with native OS look-and-
feel and performance [4]. It is the foundation of
Eclipse’s own UI [5], and for various other higher-
level libraries, such as JFace [5] and GEF [3].
Developers can use the suite of widgets SWT of-
fers or create their own to produce user interface
controls that extend the Eclipse environment, or to
support standalone Java applications.
 There are alternatives to SWT. A developer
could use graphical toolkits like Swing and AWT
within Eclipse in a limited fashion [13]. A devel-
oper could also embed components to drive a dif-
ferent user interface framework, such as a web
browser (e.g. Internet Explorer, Mozilla), or an
ActiveX control (e.g. Flash [12]).
 A notable aspect of these alternate approaches
is their varying ability to be embedded within ex-
ternal non-Java native applications. Swing and
AWT use the Java Applet mechanism. Web
browsers like Internet Explorer and ActiveX con-
trols [11] can be embedded into native applications
directly, often with a few lines of HTML or
through an “Insert/Object…” menu option. Em-
bedding can be motivated by a need to reuse com-
ponents to deliver content in different mediums,
such as within a web portal, a spreadsheet, or pres-
entation software.

 In contrast, SWT does not offer a direct solu-
tion for embedding SWT-based controls into non-
Eclipse host applications. This paper focuses on
how to embed SWT-based controls in Windows
applications through ActiveX, and describes how
this is implemented in the native and Java levels.
A simple API is then presented to allow develop-
ers with no knowledge of ActiveX to enable their
SWT components in ActiveX. The paper con-
cludes with a discussion on improvements and
directions in embedding the Eclipse framework
into other external native OS applications.

2 SWT outside of Eclipse

An option to the problem of embedding is to favor
a completely non-SWT solution, such as the alter-
natives described in the previous section. And
depending on requirements and goals of the final
application, this may be adequate. For example,
Java already has an Applet framework, making
Swing and AWT a clear choice. The ease of creat-
ing interfaces in HTML and the ubiquity of the
Web suggests a web-browser based UI. The rich
palette of effects, a sizeable development commu-
nity, and a large base of supported clients are
points in favor for Flash.
 But if significant effort was already invested
in creating an SWT-based application, and if there
is a desire not to port the user interface to another
alterative, then one must consider how to embed
SWT outside of Eclipse. Building on SWT also
offers the advantages of integrating with a growing
library of other SWT components like those al-
ready available in the Eclipse platform and using
more powerful and high-level libraries like GEF
[3]. For Microsoft Windows developers, SWT
also provides mechanisms to incorporate ActiveX
controls alongside SWT controls [7]. With these
motivations in mind, there are a number of options
available to embed SWT code into a native non-
Java host application.
 One choice is to launch the SWT application
as a standalone application from the host applica-
tion. This involves little or no changes to the SWT

1

application, and requires some means to launch a
new Java process from the host application. The
main drawback is the SWT user interface is not
truly integrated into the host application from a
visual standpoint: it appears as a “pop-up” window.
Examples of accomplishing this choice include
embedding a system call to execute a batch file,
and using Java Web Start [6].
 Another option is to abstract out the user inter-
face by some neutral API or language that pro-
vides an implementation for SWT, and a medium
compatible with the host application. While this is
a powerful concept, the drawback here is how
much functionality can be expressed and if any
performance is sacrificed by this intermediate
layer versus pure SWT code. Also, the component
may already be written for SWT, and now extra
effort must be made to port it into this neutral for-
mat. Finally, the intermediate layer must provide
an SWT implementation and an implementation
compatible with the host application. Examples of
neutral layers providing SWT implementations
include Luxor [10] and Jelly [1].
 Another option is to use the experimental
SWT class, org.eclipse.swt.internal.awt.win32.
SWT_AWT, to embed SWT within an AWT pane
which would then be placed inside an Applet [8].
However, security permissions must be set to
make this work, this only works in Windows, and
not many applications support direct embedding of
applets (unless the applet itself was wrapped by an
embeddable web browser control).
 One can also use the Java Native Interface
(JNI). While many applications use JNI to incor-
porate native code into Java (for instance, SWT
does this internally), JNI does offer an API to cre-
ate a Java process and execute Java code directly
from native code [14]. Like the previous solution,
using JNI requires a platform-specific implementa-
tion. Also, using JNI does not guarantee a solution
to truly embedding the SWT application within its
host.

3 Creating an ActiveX Host

My work focuses on a JNI-based solution using an
ActiveX control [11] to host the SWT component.
While limited to the Microsoft Windows environ-
ment, an ActiveX control can supply a window
handle to embed the SWT component into a host
application and is supported by many popular Mi-
crosoft Windows based applications such as Inter-
net Explorer, Word, etc. In this section, I describe

the process of creating the ActiveX control and
enabling it to use SWT.
 The first step is to create the ActiveX control
itself. This can be accomplished quickly by using
the MFC ActiveX Wizard in Microsoft Visual
Studio. The ActiveX control I used was based on
the STATIC control, and used the “Available in
Insert Object dialog”, “Activates when visible”,
and “Acts as a simple frame control” options. This
generates the necessary C++ code for a simple
ActiveX control consisting of a blank rectangular
frame.
 Next is to determine where the SWT code to
use and supporting classpath information is. In my
implementation, I load a text file containing this
information from a fixed location.
. The next step is to initiate the JVM from
within C++. This is done only once when the
ActiveX control is first “activated” in the host ap-
plication. The OS registry is checked for an in-
stalled JVM, and if found, its installation directory
is obtained. The JVM’s DLL is then located and
loaded using the “LoadLibrary” Windows API
function. A handle to JNI invocation API function,
“JNI_CreateJavaVM”, is then found from the
loaded DLL. JNI_CreateVM is called to start a
JVM thread with classpath and library path pa-
rameters [14]. Note that I only link to the JNI
invocation API at runtime through DLL entry
point calls. Thus, I only need to compile my C++
code with the JNI header file, and not link with a
specific JVM’s library file.
 With the JVM ready, the SWT control can be
instantiated and interconnected with rendering
events fired on the ActiveX control. JNI’s reflec-
tion API is used to obtain method handles to the
SWT control’s default constructor and a set of
event handlers conforming to a Java interface
specifying how to make an SWT control usable
within its ActiveX “container.” The ActiveX con-
trol’s “OnWndMsg” method is overloaded to in-
tercept Windows event calls. Events such as
WM_PAINT, WM_SIZE, and WM_MOVE are
trapped and the Java code corresponding to these
events are called via JNI.

4 Enabling SWT for ActiveX

This part describes the steps used to enable an
SWT component to work within the ActiveX host
described in the previous section. The key is to
modify SWT to create a Shell that is a child of an
external, non-SWT window.

2

 In examining the SWT source code, I found
that one of its fundamental classes, Control, has a
private method, “createHandle”, for creating the
Windows handle for housing an SWT control.
The SWT Shell class, which is a child of the Con-
trol class, is used as the top level control of an
SWT application, and offers the SWT.win32_new()
method to create a Shell as child of an external
non-SWT window handle. However, the window
creation code in createHandle uses default location
and size to initialize the Shell’s bounds, and the
style bits do not force the window to be an embed-
ded child widget.
 Thus, I modified createHandle in the Control
class to call a protected method, “customCreate-
Handle” which by default uses the original SWT
implementation of createHandle. Then I added a
new class in the SWT package, ActiveXHost,
which creates an extended version of Shell (Ac-
tiveXHost must be defined in the SWT package set,
otherwise I could not subclass the Shell class),
which overloads createHandle to create an SWT
Shell, but with style bits to force the Shell to be an
embedded child widget, and with position and size
information supplied by the containing ActiveX
control.
 Then I created an interface class, IActiveX-
Control (see Figure 1), which defines the methods
called by the ActiveX control to handle a rudimen-
tary set of Window UI events (create, paint, move,
resize, destroy). I also created an abstract class,
AbstractActiveXControl, which provides a refer-

public class
 AbstractActiveXControl
 implements IActiveXControl
{
 Display display;
 Shell shell;

 public
 AbstractActiveXControl() {}

 public abstract void
 createControl(Shell shell);

 public void activeXCreate(
 long hwnd, long inst,
 int x, int y, int w, int h){
 ActiveXHost host = new
 ActiveXHost(hwnd,inst,
 x,y,w,h);
 display = host.getDisplay();
 shell = host.createShell();

 createControl(shell);

 while(!shell.isDisposed()) {
 if (!display.readAndDispatch())
 display.sleep();
 }
 shell.dispose();
 }

 public void activeXResize(
 int w, int h) {
 shell.setSize(w,h);
 }

 public void activeXMove(
 int x, int y) {
 shell.setLocation(x,y);
 }

 public void activeXPaint() {
 shell.redraw();
 }

 public void activeXDestroy() {
 shell.close();
 }
}

Figure 2: AbstractActiveXControl, a reference
implementation of IActiveXControl. It uses the
modified version of the SWT library, notably
the new class, ActiveXHost, to set up a Shell
that is embedded in the ActiveX container.

public interface IActiveXControl
{
 public void activeXCreate(
 long window_handle,
 long module_instance,
 int x, int y,
 int w, int h);

 public void activeXResize(
 int w, int h);

 public void activeXMove(
 int x, int y);

 public void activeXPaint();

 public void activeXDestroy();
}

Figure 1: IActiveXControl, a basic interface
defining Java methods called by the ActiveX
container when various UI events occur.

3

ence implementation using the new ActiveXHost
class I added to the SWT package (see Figure 2).
A developer only needs to implement one method
in AbstractActiveXControl, “createControl” (see
Figure 3 for an example), where he or she can set
up the entire component for use in the ActiveX
container, and ensure the code is built using the
customized version of SWT. Figure 4 shows the
final results of embedding SWT components
within a web page and a native Windows applica-
tion.

6 Discussion

This work assumes Java and SWT are already in-
stalled. Also, only SWT components are sup-
ported, not the entire Eclipse platform. A signifi-
cant improvement is to include a distribution, de-
ployment, security, and execution mechanism for
the core Eclipse platform. This can be done by
incorporating the work underway at the Equinox
project [2], which is already investigating these
problems. Another point of reference is the source
code responsible for launching the Eclipse plat-
form. These improvements can be executed dur-
ing the JVM start up process. It may also be desir-
able to make the Eclipse platform an ongoing
process which the ActiveX control can then con-
nect to, rather than instantiating a new JVM and
new platform from scratch every time the control
is instantiated.
 Using an ActiveX container for SWT is simi-
lar to using an Applet to host SWT via AWT, but
the ActiveX container can be embedded directly in
other Windows applications. The container can
also be extended with a COM interface to provide
an API for native applications to interact with the
SWT component, perhaps by dynamically generat-
ing the COM interface through JNI reflection calls
on the SWT component (Jawin can help with this
[9]). Also, the ActiveX container is configurable
via a text file (to specify where the SWT code is),
and the developer only needs to implement one
Java method and compile against a modified SWT
jar file. Thus, without any knowledge of ActiveX,
internal SWT routines, or JNI, a Java developer
can make SWT part of native, non-SWT applica-
tions. This work only touches the potential of
bringing forth applications outside the Eclipse
environment.

Acknowledgements

I would like to thank Seymour Kellerman for his
ideas and early discussion, Carl Kraenzel for ask-
ing to “make it happen”, and John Patterson for
allowing me to go off on a tangent with this work.

About the Author

Li-Te Cheng is a researcher from IBM Research in
the Collaborative User Experience group at Cam-
bridge, Massachusetts. He is currently working on
enabling collaborative capabilities for small teams
of developers in the Eclipse IDE, and also has in-
terests in lightweight shared workspaces, mobile
computing, and augmented reality. He can be
reached by email at li-te_cheng@us.ibm.com.

References

 [1] Apache Jakarta Project, Jelly: Executable

XML, http://jakarta.apache.org/commons/jelly

 [2] Eclipse.org, Equinox Home Page,

http://www.eclipse.org/equinox/

 [3] Eclipse.org, Graphical Editing Framework,

http://www.eclipse.org/gef

 [4] Eclipse.org, SWT – Standard Widget Toolkit,

http://www.eclipse.org/swt

public class HelloWorld extends
AbstractActiveXControl
{
 public void createControl(
 Shell shell) {
 shell.setLayout(

 new FillLayout());
 (new Label(shell,0)).
 setText(“Hello World”);
 }
}

Figure 3: A simple example of enabling SWT
controls to be used within an ActiveX con-
tainer. The createControl() method is used by
AbstractActiveXControl to set up the SWT
widget, and the Shell parameter looks like a
normal SWT shell, but in fact is a proxy to the
ActiveX container.

4

 [5] Eclipse.org, UI – Platform User Interface,
http://dev.eclipse.org/viewcvs/index.cgi/%7Ec
heckout%7E/platform-ui-home/main.html

 [6] J. Gunther, Deploy an SWT Application Using

Java Web Start, June 19, 2003, http://www-
106.ibm.com/developerworks/opensource/
library/os-jws/

 [7] V. Irvine, ActiveX Support in SWT, March

22, 2001, http://www.eclipse.org/articles/

 [8] V. Irvine, Re: How much effort for porting

SWT application to applet?, April 4, 2003,
http://dev.eclipse.org/newslists/news.eclipse.t
ools/msg63914.html

 [9] Jawin – Interop support for Java, Windows,

COM, http://jawinproject.sourceforge.net/

 [10] Luxor – XML User Interface Language
(XUL) Toolkit, http://luxor-
xul.sourceforge.net/

 [11] Microsoft, ActiveX Controls, http://www.

microsoft.com/com/tech/ActiveX.asp

 [12] D. Park, SWT Flash Plugin, http://www.

docuverse.com/eclipse/swtflash.jsp

 [13] S. Shavor, J. D’Anjou, S. Fairborther, D.

Kehn, J. Kellerman, P. McCarthy. Chapter 25:
Swing Interoperability. In The Java Devel-
oper’s Guide to Eclipse, pages 545-554, Addi-
son-Wesley , 2003.

[14] Sun, Java Native Interface Specification: The

Invocation API, http://java.sun.com/
products/jdk/1.2/docs/guide/jni/
spec/invocation.doc.html

Figure 4: Breaking a SWT com-
ponent out of Eclipse. Top row,
left to right: A functional instant
messaging buddy list built in
SWT using a Tree widget living
inside of Eclipse as a ViewPart.
Next is the same SWT compo-
nent, but as a standalone SWT
application running inside a pop-
up Shell widget. The third
screenshot shows the same SWT
component embedded in a web
page. On the second row, to the
left is the same SWT component
embedded in a non-Java native
application

5

