
RC22933 (W0310-060) October 9, 2003
Computer Science

IBM Research Report

Jazzing up Eclipse with Collaborative Tools

Li-Te Cheng, Susanne Hupfer, Steven Ross, John Patterson
IBM Research Division
Cambridge, MA 02142

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

Jazzing up Eclipse with Collaborative Tools

Li-Te Cheng, Susanne Hupfer, Steven Ross, John Patterson
IBM Research

Cambridge, MA 02142
{li-te_cheng,shupfer,steven_ross,john_patterson}@us.ibm.com

Abstract

Collaboration is an integral part of software devel-
opment, occurring through tools inside and outside
the IDE. This paper presents an overview of the
Jazz project, which seeks to integrate collaborative
capabilities into the Eclipse IDE, enabling small
teams of software developers to work together
more productively.

1 Introduction

Software development is a collaborative process,
where teams of developers work together to design,
solve problems, and produce quality code [2]. In
addition to live face-to-face interactions, develop-
ers use a variety of collaborative tools in their eve-
ryday activities inside and outside of their IDE.
These can include formal tools such as source con-
trol and bug tracking systems, and ad hoc ones
such as email and instant messaging. As devel-
opment teams become increasingly distributed (e.g.
outsourced/off-shore development, open source
projects), there is a need for computer-based col-
laborative tools to support structured and unstruc-
tured communication and coordination of work.
Integrating such tools into the IDE, and enabling
them with awareness of development processes
and artifacts, may help reduce context switches
between tools inside and outside the IDE and make
the connection between development and collabo-
ration more seamless [2].
 The Eclipse platform [12] has much to offer to
support an integrated collaborative software de-
velopment environment. The tight integration of
many different development tools, ranging from
editors to source control, makes Eclipse the “desk-
top” for the developer. The platform has various
extension points for others to contribute their own
add-ons, and to gather contextual information.
Thus, there is an opportunity to insert additional
tools that not only support collaboration but also
take into account the developer’s current context,
and appear fully integrated into the IDE.

 This paper presents an overview of the Jazz
project, which aims to enable small teams of de-
velopers to work together more effectively by in-
tegrating collaborative capabilities into the Eclipse
IDE. We begin with a review of related work,
present the metaphor motivating our project, and
then describe its key features in detail. We con-
clude with future directions for this work.

2 Related Work

Booch and Brown identify the motivation and re-
quirements for collaborative development envi-
ronments, survey their current state in the market-
place as well as some of their research heritage,
and outline future directions [2]. They point out
that a rich collaborative development environment
arises from the collection of many seemingly sim-
ple collaborative components to support coordina-
tion, collaboration, and community building. They
also state that IDEs equipped with team-centric
features are a step up from those merely aug-
mented with some collaborative support.
 Non-collocated software development teams
face considerable collaboration challenges. Herb-
sleb and Grinter studied such teams [16], finding
that while architecture, plans, and processes were
important, so was support for ad hoc, flexible
communication. They recommended using tools
for finding organizational information, supporting
spontaneous meetings across different sites, and
maintaining awareness about other people’s avail-
ability. In addition, a study by de Souza, Redmiles,
and Dourish suggests that awareness of co-
workers’ activities around shared code is also
important [4].
 Various systems have been built to address
some of these issues. A number of them focus on
enhancing the source control system with fine-
grained change mechanisms or visualizations of
code changes by team members over time
[17,18,20]. A notable early system is Flesce [9],
which featured a shared testing environment,
shared debugger, shared editor, audio conferencing,
audio annotation, and shared code reviewing.

1

 Source control systems like ClearCase and
CVS support basic code awareness by sending
email when specified files are changed [8]. And
Eclipse itself has a number of built-in collabora-
tive capabilities. Features like Quick Diff and the
CVS Annotation View provide awareness of code
changes with respect to the code repository and
indicate who is responsible for the changes [11].
 There are also a growing number of Eclipse
plugins and projects supporting various facets of
group collaboration. The Eclipse Wiki plugin al-
lows creation of personal and group hyperlinked
documents [22]. Sangam enables users to chat
around a shared editor to support pair program-
ming efforts [19]. Quickshare provides ad hoc,
lightweight code sharing among developers [10].
The Koi project is building a collaborative infra-
structure for Eclipse applications [13]. The Gild
project is enabling Eclipse for collaborative learn-
ing [15]. Hipikat ties in shared software and col-
laboration artifacts to aid developers [17].
 Three Eclipse-related projects, in particular,
strongly focus on the integration of many collabo-
rative features with software development prac-
tices and processes. CodeBeamer is a product
directed at team collaboration, and has plugins for
shared task management and bug tracking, with
plans to integrate group discussion, project man-
agement, and document sharing [6]. The Com-
posent Plugin provides collaborative capabilities
such as group chat, file sharing, co-browsing, ap-
plication sharing, remote program launching, and
awareness of team members’ currently open tasks,
files, and UI selections [3]. The Stellation project
introduces fine-grained source control and uses the
notion of activities to simplify collaboration and
provide awareness of others’ changes. It features
lightweight activity authoring, and file associa-
tions, enabling developers to manage relevant
work, notify the team of their current work, and be
informed of changes pertaining to their own activi-
ties, and also provides a context for persistent con-
versations [14].

3 Jazz Metaphor

Jazz is based on the metaphor of an “open office”
approach to application development, as advocated
by approaches like Extreme Programming [1]. In
such a setting, a team of developers works in close
proximity. Within the office, each developer will
have his or her own workstation, while elsewhere
in the office will be space for team meetings,

shared whiteboards, schedule information, etc. A
key aspect of this setting is team awareness. Even
while focusing on their personal work, all team
members have a sense of what is going on else-
where in the room, who is talking to whom, what
others are working on, etc. Communication
among team members is also facilitated in this
environment, whether in the form of a question
shouted out to the team in general, or in calling a
colleague over to consult on an issue at a particular
workstation.
 We seek to extend the Eclipse Platform to
capture these features of an open office environ-
ment. Our goal is to elevate the team, a small
egalitarian group of people with common goals
and implicit trust in one another, to a first-class
object in the development environment, and to
facilitate awareness, communication, and coordi-
nation between the members of the team. Our
focus is on the core team of code developers, not
the extended team, which includes management
and support personnel, nor the extended commu-
nity that includes the team. Our expectation is
that these teams will tend to have from two to ten
members, though we are not planning on enforcing
any hard limits on team size.

4 Key Features

The Jazz project focuses on a specific set of col-
laborative features to support the core team of de-
velopers: the “Jazz Band”, chat, screen sharing,
and “Concert Awareness”.

The most visible aspect of the Jazz enhance-
ments to Eclipse is the Jazz Band, a viewpart that
provides the user with peripheral awareness of the
other team members (see Figure 1). It shows the
user and lists the teams the user belongs to, as well
as members of those teams.

Teams in Jazz are meant to be small, informal,
ad hoc, and invitation-based: anyone can create a
team, and add anyone to a team. Any team mem-
ber can subsequently add or remove team mem-
bers, although dropping oneself from a team re-
moves one’s team privileges. Unlike a typical
instant messaging buddy list, the Jazz Band is a
communal list: team state is shared and synchro-
nous, so any changes to the team immediately
show up on all team members’ Jazz Bands.

As shown in Figure 1A, each team member in
the Jazz Band is represented by a portrait, and is
decorated by an online status icon indicating
whether the person is online, away, or busy.

2

Figure 3: Concert Awareness: (A) files with
local changes are decorated with colored icons
on the bottom right of each file icon, (B)
tooltip over a file reveals who made the local
change

Figure 2: Chat: (A) list of who is in the chat right
now, (B) chat transcript with moveable items,
threading, and zooming (C) outline view, (D) text
input area

Figure 1: The Jazz Band: (A) pop-up menu to set the user’s status message and manage all teams; on
the bottom right of each portrait is an IM status; offline team members have dark grayscale portraits,
(B) people are grouped in user-defined teams; each team has a pop-up menu to enter the team’s
“Team Jam, (C) hovering over portraits reveal their online status messages (an option can be set to
overlay the messages on the portraits), (D) pop-up menu for a team member reveals options to start a
chat and a screen share

3

Offline members do not have a decorator icon and
are represented by a dark grayscale version of their
portrait image. Thus at a glance, one can gauge
whether a co-worker is working in the Jazz-
enhanced Eclipse environment or not. The por-
trait’s tooltip reveals the individual’s personal
status message (Figure 1C). Alternatively, the
user can set a preference to overlay the status mes-
sages.

A difference from status messages in typical
instant messaging applications is the ability to
“scat” in Jazz. Scats (an acronym for “status
command and text”) are optional macros the user
can insert into a status message. In addition to the
date and time information, Jazz provides scats to
reveal Eclipse-specific information, such as the
user’s currently active project, perspective, editor,
and file.

Clicking on a portrait brings up a pop-up
menu with a variety of choices (Figure 1D), nota-
bly the option to initiate a chat. At a first glance,
chatting in Jazz is similar to other chat systems.
Figure 2 shows a Jazz chat window, which in-
cludes: a list of active participants (Figure 2A), a
chat transcript area (Figure 2B), an outline version
of the chat transcript (Figure 2C), and an area to
enter text (Figure 2D). By default, the user can
type messages into the text input area and the chat
transcript stacks messages in a list-like layout.
Unlike a typical chat, however, every item in the
chat transcript area can be moved, and can be
threaded. For example, in Figure 2B, the middle
of the conversation was moved to the right to high-
light that piece as a different thread of conversa-
tion. Messages will continue to scroll downwards
like a normal chat, but the user is free to move out
messages of interest. The layout is personal – po-
sition information is not shared with others. When
a message is actively selected by the user, typing
will nest the next message as a response to the
selected message. This threading relationship is
shared among chat participants. Threading allows
users to define newsgroup-like discussion threads
which can be collapsed to reduce clutter. The out-
line view in Figure 2C provides an ordered tree
view of all chat messages, so it can be used to
jump to specific messages that are out of view or
collapsed in a thread. The transcript area is also
zoomable: right clicking will bring up a context
menu to zoom in or zoom out, so the user can
navigate through large conversations. Chats in
Jazz can also be saved for later review.

Clicking on a team name (Figure 1B) brings
up a pop-up menu with access to the “Team Jam,”

a team-centric discussion board. The Team Jam
user interface is similar to the chat interface dis-
cussed earlier, but with two major differences.
First, messages can include non-chat messages,
such as links to transcripts of older chats, and team
event notifications, such as code check-ins and
check-outs from source control. Second, all posi-
tioning information is shared, and thus the Team
Jam looks like a shared whiteboard of moveable
message items.

Beyond asynchronous discussions in the Team
Jam and synchronous chat discussions, Jazz allows
a user to share his/her screen with other team
members to support activities such as joint debug-
ging, code walkthroughs, and general consulting.
The user can initiate a screen sharing session by
clicking on a portrait and selecting “Share us-
ing…” (Figure 1D), automating steps like starting
the screen sharing service and alerting the other
party about the screen sharing session. Jazz cur-
rently supports sharing using TightVNC [21].

In addition to people-centered awareness, the
Jazz project provides resource-centered awareness,
which we call “Concert Awareness”, through ex-
tensions to the Eclipse package explorer (see Fig-
ure 3). Concert Awareness adds colored resource
decorators (Figure 3A) to indicate what others are
doing with their local copies of the files (e.g. indi-
cating that the file was locally saved but not
checked back in, and if the file is currently in fo-
cus and being changed at this very moment).
Tooltips on such resources reveal who is responsi-
ble for these changes (Figure 3B).

6 Future Directions

The goal of the Jazz-enhanced Eclipse envi-
ronment is to provide easy, in-context access to as
much of the team information as possible, without
hindering the user’s work unnecessarily. Annota-
tions, questions, answers, chats, screen shares, and
file reservations are all stored in the Team Jam,
and are also accessible from editor markers, per-
sonal icons on the Jazz Band, and the Package
Explorer. We will be experimenting with cross-
linking these artifacts, so that, for example, file
reservations will specify an associated task, tasks
can refer to locations in the code, code can contain
references to annotations, questions, and answers,
etc. The goal is to produce a web of related in-
formation that knits the members of the team into
a well-coordinated, productive working group.

4

We have also conducted a series of interviews
with professional developers discussing the man-
agement of interdependencies across teams and
gathered their reactions to Jazz. We plan to pub-
lish the results of this study and use them to inform
the design of our next iteration of Jazz.

Acknowledgements

We would like to thank our interns, Bryan Clark
and Cleidson de Souza, for their significant
contributions to the Jazz project.

About the Authors

The authors are members of IBM Research in the
Collaborative User Experience group at Cam-
bridge, Massachusetts. Their expertise center
around the technologies, user interfaces, and social
aspects behind groupware. They can be reached
via email at li-te_cheng@us.ibm.com, shupfer
@us.ibm.com, steven_ross@us.ibm.com, and
john_patterson@us.ibm.com.

References

 [1] K. Beck, Extreme Programming Explained:

Embrace Change, Addison-Wesley, 1999.

 [2] G. Booch and A, Brown, Collaborative Devel-

opment Environments, in Advances in Com-
puters Vol. 59, Academic Press, August 2003.

 [3] Composent Eclipse Plugin, http://composent.

com/code/eclipsesite/

 [4] C. de Souza, D. Redmiles, and P. Dourish,

“Breaking the Code”, Moving between Private
and Public Work in Collaborative Software
Development, to appear in Proc. ACM Group,
Sanibel Island, USA, November, 2003.

 [6] CodeBeamer, http://www.intland.com/

 [7] Collaborative Integrated Development Envi-

ronment, http://hci.usask.ca/projects/
collide.xml

 [8] cvshome.org, Telling CVS to notify you,

http://www.cvshome.org/docs/manual/current/
cvs_10.html#SEC91

[9] P. Dewan and J. Riedl, Toward Computer-
Supported Concurrent Software Engineering,
IEEE Computer, pages 17-27, January 1993.

[10] Eclipse - Collaborative Development Tools

Project, http://www.scs.carleton.ca/~skaegi/
cdt/index.html

[11] Eclipse.org, Eclipse 3.0 M2 – New and Note-

worthy, http://download.eclipse.org/
downloads/drops/S-3.0M2-
200307181617/eclipse-news-M2.html

[12] Eclipse.org, Eclipse Platform Subproject,

http://www.eclipse.org/platform

[13] Eclipse.org, Koi: A Collaborative Infrastruc-

ture for Eclipse Tools, http://www.
eclipse.org/koi

[14]Eclipse.org, Stellation: Advanced Software

Configuration Management, http://www.
eclipse.org/stellation

[15]GILD: Groupware enabled Integrated Learn-

ing and Development, http://gild. cs.uvic.ca

[16] J. Herbsleb and R. Grinter, Architectures, Co-

ordination, and Distance: Conway’s Law and
Beyond, IEEE Software, pages 63-70, Sep-
tember/October 1999.

[17] Hipikat: Recommending Useful Software Ar-

tifacts, http://www.cs.ubc.ca/labs/spl/projects/
hipikat/

[18] B. Magnusson and R. Guerraoui, Support for

Collaborative Object-Oriented Development,
in Proc. Int. Symp. On Parallel and Distrib-
uted Computing Systems, Dijon, France, 1996.

[19] Sangam Project, http://sangam.sourceforge.net

[20] A. Sarma, Z. Noroozi, and A. van der Hoek,

Palantír: Raising Awareness Among Configu-
ration Management Workspaces, in Proc. 25th
Int’l. Conf. on Software Engineering, pages
444-454, Portland, USA, May 2003.�

[21] TightVNC, http://www. tightvnc.com/

[22] Wiki Editor Plugin, http://www.teaminabox.

co.uk/downloads/wiki

5

