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ABSTRACT 

Hardware performance counters have become an invaluable asset for application performance tuning. 
However, since hardware counters have in general been designed for debugging hardware and not for 
application performance measurements, there are no standards and there is little documentation across the 
industry in terms of what is being counted. This lack of standards and documentation, in conjunction with 
the lack of understanding by users of the performance impact of certain compiler switches, can cause 
pitfalls and misinterpretations when using hardware counters for characterization of application 
performance. Thus, although hardware performance counters can provide valuable data to the application 
programmer, the data must be understood! In this paper we study the performance impact of various 
compiler options via the use of hardware performance monitor event counts on IBM’s Power3 and Power4 
microprocessors. In addition, we demonstrate the need for counter data calibration, and illustrate how 
some hardware metrics can be misleading due to incorrect interpretation. 

 
1. Introduction 

Hardware performance counters have become an invaluable asset for application performance tuning. 

They can provide useful data that can be used by the application programmer to identify causes of 

performance degradation and, thus, ways to enhance performance. However, since hardware counters 

have been designed, in general, for debugging hardware and not for application performance 

measurements, there are no standards and there is little documentation across the industry in terms of 

what is being counted. Hence, this lack of standards and documentation can cause pitfalls and 

misinterpretations when using hardware counters for characterization of application performance.  

 

Along these lines, the effective use of compiler options is an important technique applied by application 

programmers to improve performance, but the selection of a “wrong” set of options can backfire and 

degrade application performance. As demonstrated in this paper, hardware performance monitors can be 

used to understand the effect of compiler options on the performance of a program or specific regions of 

code. In this work we study the performance impact of various compiler options via the use of hardware 

performance monitor event counts on IBM’s Power3 and Power4 microprocessors, providing several 

examples of how performance counters can be used for this purpose. We also demonstrate the need for 

counter data calibration and exemplify how data generated by performance counters can be calibrated. In 

addition, we illustrate how some hardware metrics can be misleading due to incorrect interpretation.  
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The remainder of the paper is organized into five sections. Section 2 briefly discusses hardware 

performance counters. Section 3 describes the computing environment used to perform the experiments 

described in Section 4. Sections 4.1 through 4.4 present experiments that demonstrate how event counts 

can be used to evaluate the performance effect of compiler options and, in doing so, presents what may 

be, for some, surprising results with respect to the performance effect of compiler optimizations. Sections 

4.5 and 4.6 address counter data calibration and the level-one instruction cache hit event on the Power3. 

Section 5 concludes the paper with a summary and a discussion of planned future work in this research 

area. 

 

2. Hardware Performance Monitors 

Hardware performance monitors, which are available in most modern microprocessors, are realized by a 

small set of registers that count and/or record information about events, which are occurrences of specific 

signals and states related to a processor’s function. Example events include the occurrence of a load, 

cache hit, or a floating-point operation. Originally, hardware counters were designed for hardware 

debugging, but since the monitoring of events has a number of uses in application benchmarking, 

performance analysis, and optimization, hardware counters have become an invaluable asset for 

application performance tuning. 

 

Event monitoring can be accomplished by either counting the number of occurrences of the event or 

sampling, i.e., recording information about the event every so often. The overhead of sampling is 

relatively low as compared to that of aggregate counting. However, there is a tradeoff between incurred 

overhead and accuracy. Using sampling, aggregate counts must be estimated from samples. Thus, when 

using sampling, programs must run for a sufficiently long time to allow the counts to converge to 

expected values and must have a structure that is amenable to this type of performance evaluation. 

Understanding the performance impact of compiler optimizations requires accuracy and, thus, aggregate 

counting is the sound option for this work  [9]  

 

3. Experimental Environment 

The work described in this paper focuses on: 

• two microprocessors families: IBM’s Power3 and Power4;  

• two operating systems: AIX 4.3 and AIX 5.1; 

• three compilers: native C and Fortran compilers for the IBM POWER series (XLC Version 6.1 and 

XLF Version 7.1), and GCC; 

2



• three performance monitor interfaces: PMAPI  [4] IBM’s native Performance Monitor Application 

Program Interface to the hardware counters in the Power series microprocessors; the HPM Toolkit 

 [2] IBM’s native High Performance Monitor; and PAPI  [1] a cross-platform Performance 

Application Program Interface, which is built upon vendor interfaces, such as PMAPI; and 

• aggregate event counts, rather than sampled event counts.  

 
Microprocessors and Operating Systems: 

The IBM Power4 processor used in this study is a component of Cheetah [11], Error! Reference source 

not found.a 27-node IBM pSeries system operated by the Computer Science and Mathematics Division 

of Oak Ridge National Laboratory. Cheetah has 32 1.3 GHz Power4 processors per node, two processors 

per chip. Each chip is associated with three levels of cache: on-chip level-one instruction caches (64 KB 

per processor), on-chip level-one data caches (32 KB per processor), an on-chip 1.5 MB level-two unified 

cache shared by the two on-chip processors, and an off-chip 32 MB level-three cache. The resident 

operating system is AIX 5.1.  

 

Two IBM Power3-based systems running AIX 4.3, both operated by the University of Tennessee-

Knoxville’s Computer Science Department, also are used in this study: a two-CPU SMP (symmetric 

multiprocessor) comprised of 200 MHz Power3 processors and a two-CPU SMP comprised of 375 MHz 

Power3+ processors.  

 

Compiler Options: 

Various XLC and XLF compiler options  [6] are investigated; these include: 

-qrealsize=8 
Sets the default size of real variables (including constants) to 8 bytes, i.e., double precision (real*8). 
 
-qtune=pwrX, where X = 3 and 4 for the Power3 and Power4, respectively 
Tunes the specified instruction selection, scheduling, and other implementation-dependent 
performance enhancements for the specified architecture. 
 
-qarch=pwrX, where X = 3 and 4 for the Power3 and Power4, respectively 
Controls which instructions the compiler generates and produces a binary containing instructions that 
run on a PowerX, but potentially may not run on earlier versions.  
 
-Oi, where i specifies the optimization level 
 

Performance Monitor Interfaces: 

Both the IBM Power3 and Power4 series microprocessors have eight physical registers associated with 

the performance monitor. These counters can be accessed by the IBM native API: PMAPI or by higher 

level APIs, such as the HPM Toolkit or PAPI. These two interfaces use the PMAPI at a lower level. They 
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differ from the PMAPI in that the PMAPI is harder to set up and use but has a lower overhead, since it is 

implemented at kernel level. 

 

The HPM Toolkit supports performance data capture, analysis, and presentation for applications written 

in Fortran, C, and C++, executing on sequential or parallel systems, running shared-memory, message-

passing, or mixed-paradigm applications. In addition to presenting the raw counter data, the HPM Toolkit 

also computes a rich set of derived metrics, which are dependent on the hardware events being counted. 

PAPI is a cross-platform interface that provides access to all native counter events and counting modes. It 

is intended for use by application engineers and tool developers, also providing an easy-to-use interface 

for starting, reading, and stopping a specified list of event counters and derived metrics.  

 

4. Evaluation of Performance Effects of Compiler Options, Calibration, and Interpretation 

The following investigations of the performance effects of compiler options demonstrate (1) how event 

counts generated by a hardware performance monitor can identify causes of performance degradation and 

can assist the programmer in tuning the performance of application code, (2) how event counts can be 

calibrated, and (3) how important it is to understand the definition of an event. Some of these 

investigations use real benchmarks for these purposes, while others (those discussed in Section 4.3-4.6) 

utilize micro-benchmarks, designed specifically to stress a particular portion of the microarchitecture or 

memory hierarchy and the associated events. In the latter case, the methodology used to study the data 

generated by performance counters is similar to that used in [7, 8, 10, and 13]. It consists of seven phases, 

which are repeated as necessary. For a specific event, the seven phases are as follows: 

1. Micro-benchmark: Design and implement a validation micro-benchmark that permits event 

count prediction.  

2. Prediction: Predict event count using tools and/or mathematical models. 

3. Data collection-1: Collect hardware-reported event count data using a high-level API such as 

PAPI or HPM. 

4. Data collection-2: Collect predicted event count data using a simulator such as SIGMA [3] (not 

always necessary or possible). 

5. Comparison: Compare predicted and hardware-reported event counts. 

6. Analysis: Analyze results to identify and possibly quantify differences. 

7. Alternate approach: When analysis indicates that prediction is not possible, use an alternate 

approach to either verify reported event count accuracy or demonstrate that the reported event 

count seems reasonable. 
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Micro-benchmarks: A validation micro-benchmark is a simple program, usually small in size, designed 

to permit prediction of a particular event count. It is based on a section of code that is being monitored; 

the monitored code is delineated by calls to the performance monitor interface that set up the performance 

counters to monitor the target event and to start, stop, and read the counters. A micro-benchmark’s size, 

simplicity, or execution time facilitates the tracing of its execution path and/or prediction of the number 

of times the target event is generated. A small benchmark increases the probability that code execution 

will be limited to a single time slice and, therefore, limits the perturbation that might be introduced by 

other processes, including operating system processes. This is important because even though an event 

count generated on behalf of a process under study is differentiated from the event counts of other 

processes, for some events the event count of the process under study may be severely affected by the 

processing environment. For example, if the execution of monitored code spans multiple time slices, then 

hardware-reported counts associated with memory hierarchy events may be perturbed by the memory 

activity of other processes.  

 

Data Collection: A test suite is executed for any given event. The test suite is comprised of different 

versions of the event’s validation micro-benchmark, which differ with respect to predicted event count. In 

general, a test suite is comprised of benchmark versions that generate from 1 to 1,000,000 instances of the 

event. For some events, due to platform limitations or benchmark design, a smaller test suite is used. Each 

version of the benchmark is executed 100 times and the mean and standard deviation of the hardware-

reported counts are computed. Using an average takes into account the variability of the reported counts. 

The standard deviation as well as data inspection ensures the stability of the results and identifies data 

anomalies that call for further study. A script, as opposed to wrapping the micro-benchmark in a for-loop, 

is used to run 100 instances of a benchmark. The latter would cause reuse of benchmark and interface 

data as well as instructions and, consequently, could eliminate events that would be generated otherwise 

or introduce some events that would not be generated otherwise. For example, using the latter, instruction 

cache misses may only occur during the execution of the first instance. 

 

4.1   Performance Degradation Due to D0 Constants and –qrealsize=8 

The study of the effect of the XLF Fortran compiler option –qrealsize=8 on the performance of the SPEC 

2000 Swim benchmark  [12] using the HPM Toolkit, demonstrates how the definition of a constant and 

compiler options, without an understanding of their performance effects, can result in significant 

performance degradation. Swim is a two-dimensional simulation model of the dynamics of the shallow 

water wave equations  [14] Originally, it was written in Fortran 77, at the National Center for Atmospheric 

Research (NCAR), for performance analysis of supercomputers. From the Swim benchmark the “DO 
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100” loop, depicted in Figure 1, is of particular interest with respect to the identified performance 

degradation. This DO loop computes expressions with variables and constants such as: 

  

CV(I,J+1)  = .5D0 * (P(I,J+1) + P(I,J)) * V(I,J+1) 

 
Line # Fortran Code 
278 
279 
280 
281 
282 
283 
284 
285 
286 

DO 100 J = 1, N 
DO 100 I = 1, M 
      CU(I+1,J)  = .5D0 * (P(I+1,J) + P(I,J)) * U(I+1,J) 
      CV(I,J+1)  = .5D0 * (P(I,J+1) + P(I,J)) * V(I,J+1) 
      Z(I+1,J+1) = (FSDX * (V(I+1,J+1) - V(I,J+1)) – FSDY *  
1       (U(I+1,J+1) - U(I+1,J))) / (P(I,J) + P(I+1,J) + P(I+1,J+1) + 
2       P(I,J+1)) 
      H(I,J)     = P(I,J) + .25D0 * (U(I+1,J) * U(I+1,J) +  
1       U(I,J) * U(I,J) + V(I,J+1) * V(I,J+1) + V(I,J) * V(I,J)) 
100   CONTINUE 

 
 
 

From the example above, “.5D0” represents a double-precision constant (eight bytes); the other variables 

are elements of double-precision two-dimensional arrays. When the benchmark is compiled with the         

–qrealsize=8 compiler option, the benchmark’s performance degrades. As shown below, the degradation 

is due to the “D0” constants coupled with the –qrealsize=8 option.  

 

To determine the cause of performance degradation, two sets of experiments were conducted. The first set 

of experiments consists of compiling the benchmark on the IBM Power3 in two different ways (one with 

–qrealsize=8 and one without), producing two different codes: 

 

SwimR8D0: –O3 –qtune=pwr3 –qarch=pwr3 –qrealsize=8 

SwimD0     : –O3 –qtune=pwr3 –qarch=pwr3 (no –qrealsize=8) 

 

The second set consists of two different codes, SwimR8E0 and SwimE0, produced by changing all “D0” 

constants in the source code to “E0” (single-precision, four-bytes) constants and compiling using the 

same two different compiler options specified above. Table 1 shows the performance data collected for 

the “DO 100” loop when running 120 iterations on the Power3 and Power4 systems, with N=M=512. 

The events monitored with the HPM library are loads completed (PM_LD_CMPL), stores completed 

(PM_ST_CMPL), instructions completed (PM_INST_CMPL), cycles (PM_CYC), and execution time. 

From the performance data in Table 1, it is evident that the number of instructions and the number of 

loads completed are causing the performance of SwimR8D0 to be significantly less than the other three 

Figure 1.  Swim DO 100 Loop 
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code versions. Concentrating on the effect of “D0” constants and the –qrealsize=8 compiler option, for 

SwimR8D0 the number of loads completed is almost double.  

 

 
Code Version SwimD0 SwimR8D0 SwimE0 SwimR8E0 

Constants D0 E0 
Compiled with –O3 -qrealsize=8 -O3 –O3 -qrealsize=8 -O3 
PM_LD_CMPL 345,785,040.00 629,269,080.00 345,785,040.00 345,785,040.00
PM_ST_CMPL 172,646,640.00 125,829,360.00 172,646,640.00 172,646,640.00
PM_INST_CMPL 1,110,347,639.00 3,996,245,279.00 1,110,347,639.00 1,110,347,639.00
PM_CYC 1,159,037,215.00 4,103,932,982.00 1,159,847,577.00 1,160,975,812.00
Execution time 5.80 Sec. 20.52 Sec. 5.80 Sec. 5.80 Sec.

Table 1.  Performance Metrics: Do 100 Loop on Power3 
 

The performance degradation experienced by SwimR8D0 is due to the fact that when the compiler 

option -qrealsize=8 is used, “D0” constants are promoted to 16 bytes. 16-byte constants do not fit in a 

(64-bit) register. As a result, every time a 16-byte constant is referenced it is loaded from memory, 

causing the number of loads completed to increase, and hence performance to degrade. 

 

The promotion of “D0” constants to 16-byte constants is documented. However, this result indicates that 

a lack of understanding on the part of the application programmer about the side effects of certain 

compiler options can lead to significant loss of performance. The programmer may use “D0” constants 

and the compiler option -qrealsize=8 to increase computational precision, not knowing that this choice 

will result in a significant loss of performance.  

 

4.2   Performance Degradation Due to Register Spills Associated with –qrealsize=8 

The study of the effect of the XL Fortran compiler option –qrealsize=8 on the performance of the Swim 

benchmark, using the HPM Toolkit, also demonstrates how register spills and the related loads and stores 

generated by a compiler option can result in significant performance degradation. For this investigation 

SwimD0 and SwimR8D0 are used (see Section 4.1). 

 

The code generated for SwimR8D0 contains a significantly smaller number of assembler instructions than 

the code generated for SwimD0, but looking at Table 1, we observe that it executes approximately 3.6 

times more instructions. By inspecting each assembler code, we observe that SwimR8D0 includes library 

functions to compute operations on 16-byte values. For instance, a multiplication in line 280 of the 

Fortran source code, i.e., .5D0 * (P(I+1,J) + P(I,J)) * U(I+1,J), is computed with the 

function “_xlqmul,” which is not the case for SwimD0. The number of floating-point loads completed 
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for SwimR8D0 is almost double that of SwimD0. This is due to library function calls such as 

“_xlqmul”, which due to their nature are probably slow and require several loads in order to perform 

computations on 16-byte operands. Consequently, this increases the execution time of SwimR8D0, 

making it 3.5 times slower than SwimD0. Note, however, that the number of stores for SwimD0 is greater 

than that of SwimR8D0. This is because of register spills triggered by not having enough registers to store 

all needed values; some values are stored onto the stack to free registers. On the IBM systems, it is the 

responsibility of the called function, e.g.  “_xlqmul”, to save and restore some registers. Hence, there 

are no register spills for SwimR8D0 and the number of hardware-reported stores is almost exactly the 

number of stores expected from inspection of the source code (about four stores per iteration). 

 

4.3 Performance Degradation Due to Square Root Implementation 

The performance effect of compiler options often can be quantified by examining event counts via PAPI 

and the HPM Toolkit. For example, the Total Floating Point Instructions event count on IBM’s Power3 

and Power4 processors can be used to quantify the performance effect of compiler options affecting 

square root implementation. The Power3 and Power4 can perform square root (SQRT) operations in 

hardware, which is significantly faster than software implementations that use a sequence of other, more 

common, floating-point instructions to implement iterative algorithms that approximate SQRT (e.g., 

Newton-Raphson). Whether the hardware or software implementation is utilized depends on the compiler 

options specified. The native C compiler on the Power platform, XLC, requires the qarch=pwrX (where X 

= 3 or 4) and O3 flags to be used in order to execute SQRT instructions in hardware. The qarch flag is 

used to specify either a common ISA for backward-compatibility support among Power platforms or to 

set an ISA for a specific platform. For example, setting qarch=pwr3 results in executable code 

specifically targeted at the Power3 platform. According to the XLC compiler documentation, the O3 flag 

(in combination with the qarch flag set to the specific Power platform) causes the compiler to generate 

code that includes hardware-implemented SQRT instructions, rather than calls to a library routine that 

implements SQRT in software. 

 

The Power platforms have two native events that are triggered by a SQRT instruction executed via 

hardware: one counts SQRT operations executed in hardware (PM_FSQRT) and the other counts floating-

point instructions completed (PM_FPU0_CMPL, PM_FPU1_CMPL). To expose the differences in the 

PAPI “floating-point instructions” event (PAPI_FP_INS) and associated performance due to compiler 

options, a micro-benchmark that monitors the number of floating-point (FP) instructions executed 

(PAPI_FP_INS), FMA (fused multiply-add) instructions completed (PAPI_FMA_INS), total cycles 

(PAPI_TOT_CYC), and FLOPS (derived from the number of cycles and the number of FP instructions 
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executed) was designed and implemented. The monitored code is shown in Figure 2. It uses the SQRT 

operation in conjunction with a FP multiplication (which appears to be needed to trigger the PM_FSQRT 

event on the Power31).  

 
double zz[100]; 
//Setup and initialization code … 
[Library call to either PAPI or HPM Toolkit to start the counters]
   /* monitored code */    
   for (i=0;i<100;i++) zz[i] = 1.1*sqrt(zz[i]); 
 [Library call to either PAPI or HPM Toolkit to stop the counters]

Figure 2.  SQRT (Loop) Micro-benchmark for the Power3 
 
On the Power3 the test suite is comprised of different versions of this benchmark. At the high level, they 

differ with respect to the number of iterations executed and, thus, the number of events generated. At the 

low level, they differ with respect to their compilation: one compilation causes SQRT instructions to be 

executed in hardware and the other causes them to be executed in software. The first uses the 03 

optimization level and the Power3 ISA (qarch=pwr3) to force the use of hardware SQRT instructions; the 

latter also uses the O3 optimization level, but uses the common Power ISA (i.e., the qarch flag not set) 

and links to the default math library included in AIX 4.3 to implement SQRT instructions. Tables 2 and 3 

report the results of running these benchmarks with PAPI library calls. On the Power4 the test suite is the 

same except for the addition of one more compilation, which produces code using the Power4 ISA by 

setting qarch to pwr4. These results, for benchmarks with both PAPI and HPM library calls, are shown in 

Tables 4, 5, and 6 (HPM is used to count the FP store event which is needed to accurately compute 

MFlops/Sec on the Power4). 

 

Table 2 shows that the reported number of FP instructions executed when SQRT is performed on the 

Power3 by hardware is about double the number of iterations, which indicates that the event count 

accurately accounts for the SQRT and the multiply instructions. Notice that in this case the multiply 

operation is implemented via an FMA instruction, which is reflected in the corresponding FMA event 

count. As for SQRT operations implemented on the Power3 in software, Table 3 shows an increase in the 

FP instructions, as compared to the hardware implementation, by a factor of 20. This is because each 

SQRT instruction is implemented by 20 FP instructions, out of which 14 are FMA instructions.  

 
Iterations 100 1000        10,000 100,000      1,000,000 
Mean FMA       100.0         1,000.0      10,000.0      100,001.4   1,000,012.8 
Mean FP       200.0         2,002.0      20,002.1      200,005.9   2,000,038.4 

                                                 
1  On the Power3 the PAPI SQRT event (PAPI_FSQ_INS) is not always triggered accurately. It was found 
through experimentation that the event is stable when a SQRT instruction is paired with a multiply 
instruction. 
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Mean Cycles   1,639.6       12,369.4    118,879.0   1,185,959.3 11,940,171.7 
Mean MFLOPs/sec      24.40            32.37           33.65             33.73             33.50 

Table 2.  SQRT Micro-benchmark—Hardware-implemented SQRT Instructions—Power3 
 

SQRT instrs 100        1000        10,000         100,000       1,000,000
Mean FMA     1,400.0   14,000.0    140,000.6    1,400,003.8  14,000,039.1
Mean FP     2,101.0   21,001.9    210,003.8    2,100,009.5  21,000,077.0
Mean Cycles    6,910.6   63,190.4    626,757.7    6,264,917.9  62,707,742.9
Mean MFLOPs/sec       60.81        66.47           67.01              67.04              66.98

Table 3.  SQRT Micro-benchmark—Software-implemented SQRT Instructions—Power3 
 
The difference in execution times on the Power3 indicates about a 5x performance improvement when 

SQRT instructions are implemented in hardware, rather than software. However, a misleading metric, in 

this case, is MFLOPs/sec: although the hardware implementation results in a better (smaller) execution 

time than the software implementation, the associated MFLOPs/sec rating is worse (smaller). 

 
Iterations          100         1,000      10,000 100,000 1,000,000 
Mean SQRT         0.00     0.00               0.00 0.00 0.00 
Mean FMA   1,241.12   12,409.00    124,021.00 1,240,135.50 12,400,064.00 
Mean FP   2,161.97   21,608.50    216,014.00 2,160,138.00 21,600,272.00 
Mean FP stores     200.00     2,000.00      20,000.00 200,000.00 2,000,000.00 
Mean Cycles 14,334.08 129,022.50 1,274,581.00 13,075,803.00 131,143,013.00 
Mean MFLOPs/sec      196.07    217.72      220.32 214.76 214.120 

Table 4. SQRT Micro-benchmark—Software-implemented SQRT Instructions—Power4 
 
Tables 4, 5, and 6 show the results, including data for the SQRT and FP store event counts, for the SQRT 

micro-benchmark executed on the Power4. The FP store event is monitored by the HPM Toolkit, not 

PAPI. This event is very important when evaluating FP counts on the Power4 because it was proven by 

experimentation, as well as confirmed by the vendor, that this event is included in the total FP instruction 

count, which is not the case on the Power3.  

 

The difference in execution times on the Power4 of the software- and hardware-implemented SQRT 

benchmarks increases with the number of iterations. The benchmark with qarch=pwr3 executes about 5x 

faster. In this case, the MFLOPs/sec rate is again misleading. First, the MFLOPs/sec rate for the software-

implemented SQRT benchmark is higher than that of the qarch=pwr3 benchmark even though it 

consumes a considerably larger number of cycles. Second, comparing the execution times and 

MFLOPs/sec rates of the software- and hardware-implemented benchmarks with qarch=pwr4, the 

difference in execution times grows while the MFLOPs/sec rates of the hardware-implemented 

benchmark overtakes that of the software-implemented benchmark after 1000 iterations but only by .4%, 

while the execution time is about 650%  smaller. 
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Iterations         100        1,000        10,000         100,000        1,000,000 
Mean SQRT    100.00   1,000.00   10,000.00    100,000.50   1,000,003.50 
Mean FMA        0.00         0.00            0.00               0.00                 0.00 
Mean FP    300.43   3,000.00   30,001.00    300,000.50   3,000,012.50 
Mean FP stores    100.00   1,000.00   10,000.00    100,000.00   1,000,000.00 
Mean Cycles 3,562.34 26,831.00 240,400.00 2,407,495.00 24,586,506.00 
Mean MFLOPs/sec    109.63      145.35        162.23           161.99             158.62 

Table 5. SQRT Micro-benchmark—Hardware-implemented SQRT Instructions—Power4 (qarch=pwr3) 
 
 
Iterations         100        1,000        10,000         100,000       1,000,000 
Mean SQRT    100.00   1,000.00   10,000.00    100,000.00   1,000,005.50 
Mean FMA        0.00          0.00            0.00               0.00                0.00 
Mean FP    300.00   3,000.00   30,000.00    300,000.00   3,000,013.50 
Mean FP stores    100.00   1,000.00   10,000.00    100,000.00   1,000,000.00 
Mean Cycles 3,105.58 18,982.50 170,126.00 1,720,597.00 17,877,625.50 
Mean MFLOPs/sec    125.58      205.45        229.24           226.66             218.15 

Table 6. SQRT Micro-benchmark --Hardware-implemented SQRT Instructions—Power4 (qarch=pwr4) 
 

Tables 5 and 6 also show that on the Power4 the PAPI SQRT event gives the correct number of SQRT 

instructions1 and that instead of the expected 200 total FP instructions executed (100 SQRTs and 100 

multiplications) there are actually 300. This is because store instructions are included in the FP 

instructions executed event count.  

  

4.4   Performance Degradation Due to Rounding Instructions  

The following examples demonstrate how performance counters, accessed through PAPI, can be used to 

understand why one version of a program, which uses single-precision floating-point variables, has a 

better MFLOPs/sec rate but poorer performance with respect to execution time than another version of a 

program, which is compiled differently. A set of micro-benchmarks, written in C, was designed and 

implemented to study the PAPI floating-point instructions executed (PAPI_FP_INS) event. The 

monitored code of each benchmark is comprised of only one type of floating-point instruction: add, 

multiply, or FMA (fused multiply-add instructions that combine multiply and add operations without an 

intermediate rounding operation  [5] ). Each benchmark was subdivided into single-precision (32-bits) and 

double precision (64-bits) operands. The monitored code consists of a for-loop with 50 instructions, (10 

replications of a template shown as an example in Figure 3).  Each of these micro-benchmarks represents 

a set of benchmark programs that differ at the high level only in granularity, i.e., the number of iterations 

of the for-loop executed and, thus, the number of FP instructions executed, and at the low level in how 

they are compiled (XLC with and without the compiler option –qarch=pwr3, and GCC with no flags).  
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4.4.1 Floating-point Additions – Power3 

Table 7 shows the HPM Toolkit results for the single-precision FP addition benchmarks on the Power3+. 

The expected number of floating-point instructions was estimated from the source code, rather than the 

assembler code. For the XLC –qarch=pwr3 compilation the predicted and hardware-reported counts for 

the floating-point instructions executed are essentially identical. In contrast, for both the GCC with no 

flags and XLC with no flags compilations the hardware-reported counts are approximately twice the 

predicted counts. This multiplicative difference is due to rounding instructions generated by the compiler. 

The Power3+ performs all FP operations in double precision, i.e., the operands fed into the FP unit are 

comprised of 64 bits. Accordingly, in the case of the GCC with no flags and XLC with no flags 

compilations, the addition is performed by the fa assembler instruction, which produces a double-

precision result; since the target variable for these benchmarks is single precision, before storing the result 

to memory, it must be converted to single precision. This is not the case for the XLC -qarch=pwr3 

compilation because the FP addition is implemented by the fadds assembler instruction, instead of the 

fa or equivalent fadd assembler instruction. The fadds instruction produces a single-precision result; 

thus, rounding (the frsp (FP round to single precision) instruction) is not necessary. These results 

demonstrate the effects of compiler optimizations on event counts. 

 

Of course, rounding is not necessary when double-precision operands are employed and the result is 

stored at a memory location associated with a double-precision variable. Hence, the hardware counts for 

the double-precision FP addition micro-benchmarks, regardless of compiler, agree with the predicted.  

 
Single-precision Floating-point Addition Micro-benchmark 

GCC no flags 
Iterations  1 10 100 1,000 10,000 100,000 1,000,000
Mean-Reported Count 100 1,000 10,000 100,000.1 1,000,001 10,000,007 100,000,073
Standard Deviation 0 0 0.1414 0.2398 0.7669 2.1093 7.8350
Predicted Count 50 500 5,000 50,000 500,000 5,000,000 50,000,000
XLC no flags               
Iterations  1 10 100 1,000 10,000 100,000 1,000,000
Mean-Reported Count 100 1,000 10,000 100,000 1,000,000 10,000,005 100,000,042

a = init_value; 
b = init_value; 
c = init_value; 
a = b + init_value; 
b = a + init_value; 
c = a + b; 
a = b + c; 
b = a + c; 

Figure 3.  Template Code Section from Floating-point Addition Micro-benchmark 
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Standard Deviation 0 0 0 0.100502 0.470087 2.236068 5.827450873
Predicted Count 50 500 5,000 50,000 500,000 5,000,000 50,000,000
XLC –qarch=pwr3       
Iterations  1 10 100 1000 10000 100000 1000000
Mean-Reported Count 50 500 5,000 50,000.04 500,000.3 5,000,004 50,000,050.6
Standard Deviation 0 0 0 0.244081 0.477282 2.066497 33.52976138
Predicted Count 50 500 5,000 50,000 500,000 5,000,000 50,000,000

Table 7.  Floating Point Instructions Executed—Power3+ 
 

4.4.2   Fused Multiply-Add (FMA) – Power3 

A similar situation to that discussed in Section 4.3 is associated with FMAs. Due to the use of rounding 

instructions to implement FMAs on single-precision variables, one version of a program has a better 

MFLOPs/sec rate but poorer performance with respect to execution time than another version of the 

program, which is compiled differently. As shown in Table 8, for the single-precision FMA micro-

benchmarks compiled with XLC –qarch=pwr3, the hardware-reported counts accessed via PAPI and 

expected counts are almost identical. As in the case of FP addition (discussed above), the compiler uses 

an instruction, the fmadds (FP multiply-add single), that produces a single-precision result, thus, requiring 

no rounding. In contrast, for either GCC with no flags or XLC with no flags, the hardware-reported event 

counts are significantly larger than the expected counts; in the case of GCC, the hardware-reported counts 

are about three times larger and in the case of XLC with no flags, twice as large. The reason for this is 

twofold.  In both cases a rounding instruction, in this case a frsp instruction, is needed since the arithmetic 

is done in double precision but the result is stored in single precision. Additionally, in the case of the 

GCC compilations an FMA in C generates one addition and one multiplication assembler instruction 

(rather than an FMA instruction), as well as the frsp assembler instruction. 

 
Single-precision FMA Micro-benchmark—Power3+  

GCC               
Iterations  1 10 100 1,000 10,000 100,000 1,000,000
Mean 150 1,500 15,000 150,000.1 1,500,002 15,000,019 150,000,184
Standard Deviation 0 0 0 0.322326 1.155069 4.620275 11.76643445
Expected Count 50 500 5,000 50,000 500,000 5,000,000 50,000,000
XLC (no flags)               
Iterations  1 10 100 1,000 10,000 100,000 1,000,000
Mean 100 1,000 10,000 100,000 1,000,001 10,000,007 100,000,074
Standard Deviation 0 0 0 0.244081 0.557446 2.695423 7.494215456
Expected Count 50 500 5,000 50,000 500,000 5,000,000 50,000,000
XLC –qarch=pwr3       
Iterations  1 10 100 1,000 10,000 100,000 1,000,000
Mean 50 500 5,000.0101 50,000.01 500,000.4 5,000,006 50,000,062.04
Standard Deviation 0 0 0.1005038 0.100504 0.553463 2.130919 6.12788874
Expected Count 50 500 5,000 50,000 500,000 5,000,000 50,000,000
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Table 8.  Floating-point Instructions Executed — 
Single-precision Multiply-add Micro-benchmarks—Power3+ 

 

In summary, the XLC with no flags and GCC with no flags compilations produce two and three times as 

many FP instructions, respectively, as the XLC –qarch=pwr3 compilation to execute the same code 

section. Does this mean that by using somewhat inferior code the MFLOPs/sec rate can be increased? 

This would be the case if the rounding instruction were inexpensive with respect to cycles. To answer 

this question we monitored the number of cycles associated with the execution of the FP addition code 

produced by each compilation. As Figure 4 illustrates, comparing the single-precision benchmark results, 

the XLC –qarch=pwr3 compilation produces the worst MFLOPs/sec rate, while the XLC no flags 

compilation produces the best even though its execution time is significantly greater.  More important is 

the fact that the XLC/single-precision has the greatest MFLOPs/sec rate, even though it affords less 

precision and has the greatest execution time. In addition, as Table 9 shows, since the frsp instructions 

in the GCC/single-precision compilation are inexpensive in terms of cycles, its MFLOPs/sec rate is 

higher than that of the GCC/double-precision compilation, which generates improved precision and 

executes in about the same amount of time.   

 

 
Figure 4.   MFLOPs/sec Rating for FMA Micro-benchmark 

 
 

FMA Micro-benchmark - Power3+ 
GCC single 
precision             
Iterations  1 10 100 1,000 10,000 100,000 1,000,000
FP ins 100.00 1,000.00 10,000.02 100,000.06 1,000,000.73 10,000,006.80 100,000,072.97

Cycles 1,597.66 11,090.55 106,441.55 1,059,742.69 10,590,825.65 105,902,284.13 1,059,016,381.89
MFLOPs/sec 23.47 33.81 35.23 35.38 35.40 35.41 35.41
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GCC double 
precision             
Iterations  1 10 100 1,000 10,000 100,000 1,000,000
FP ins 50.00 500.00 5,000.00 50,000.00 500,000.38 5,000,004.65 50,000,048.69

Cycles 1,520.86 10,065.82 94,552.04 939,587.10 8,930,967.21 89,302,191.10 893,014,694.01
MFLOPs/sec 12.32 18,62 19.83 19.95 20.99 20.99 20.99

Table 9. Floating-point Instructions Executed, 
Total Number of Cycles, and MFLOPs/sec– FMA Micro-benchmark – Power3+  

 
4.5    Event Count Calibration–Instructions Completed 

Several questions have arisen concerning discrepancies with respect to hardware-reported performance 

data. Accuracy problems arise when the overhead, in terms of the number of generated events, introduced 

by the counter interface dominates an event count or contributes significantly to an event count  [7] This 

overhead is also known as “measurement error”. Problems also exist with accurately attributing hardware 

events to individual instructions in out-of-order processors. Architecture manuals frequently include 

cautions in the discussion of hardware counters, warning that the counters may not be entirely accurate 

and are intended only as guides to performance tuning. These and other related issues need to be 

investigated and documented so that application developers can use hardware performance data with 

confidence and not be misled by inaccurate data. 

 

To determine the measurement error associated with the total instructions completed PAPI event, an in-

line micro-benchmark was designed and developed that is based on monitored code comprised of 10 

high-level (C programming language) instructions that initialize three integer variables and then perform 

interdependent addition operations. When compiled on the IBM Power3, the block of instructions 

translates into 34 assembler instructions. Different versions of the benchmark vary in the number of in-

line 10-instruction blocks included in the monitored code; the baseline version has zero blocks, while the 

largest version has 10,000 in-line blocks (i.e., 100,000 high-level instructions). From one version to 

another, the number of blocks grows by a factor of 10.  

 

Table 10 shows the results obtained from running these benchmarks on the IBM Power3. The direct count 

method was used to define predicted counts. As shown, for any particular version of the benchmark, all 

reported counts of the 100 runs are identical (the standard deviation is zero). Note that the baseline case of 

zero instructions gives a count of 139 instructions and the predicted and reported counts, in all cases, 

differ by 139. Thus, the measurement error for this event: 139, which is introduced by the PAPI routines 

to start, stop, and read the counters, can be used for calibration of the Total Instructions Completed PAPI 

event. 
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Number of C-level 
instructions 

0 
(base) 10 100 1000 10000 100000 

Predicted Count 0.00 34.00 340.00 3,400.00 34,000.00 340,000.00
Mean Reported Count 139.00 173.00 479.00 3,539.00 34,139.00 340,139.00
Standard Deviation 0.00 0.00 0.00 0.00 0.00 0.00
Reported – Predicted 139.00 139.00 139.00 139.00 139.00 139.00

Table 10.  Total Instructions Completed—Power3 
 

4.6 Instruction Cache Hits–Beware of Definition–A Better Cache Hit Rate May Not Mean Better 

Performance!  

The following investigation, which actually started as a study of instruction prefetching, illustrates how 

the lack of the exact definition or an incorrect interpretation of the definition of an event can mislead a 

user and result in misinterpretation of performance data for the event. In particular, it demonstrates how 

an unexpected definition of the level-one (L1) instruction cache (Icache) hit event can result in a lower hit 

rate and higher execution time! This can happen because on the Power3 an L1-Icache hit event is 

triggered when a block of instructions is fetched from the Icache into the instruction buffer, as opposed to 

an instruction is found in the cache. 

 

The Power3 has a 32-KB L1 Icache that is 128-way set associative and has 128-byte cache lines. Since 

Power3 instructions are four bytes long, a cache line stores 32 instructions. The Power3 fetches blocks of 

up to eight instructions into the instruction buffer per cycle. Up to four instructions are dispatched per 

cycle and up to eight instructions can be executing at any given cycle.  [11]  To exemplify how 

misinterpretation of the L1-Icache hit event count can mislead a user, consider a sequential benchmark 

(i.e., one with no instructions that change the flow of control) that it is known to execute 480 assembler 

instructions. Using the generally accepted definition of a cache miss, assuming L1-Icache line of 32 

instructions, and not considering prefetching, 15 misses should be generated, all of which are compulsory 

misses, one for each cache line. Accordingly, using the generally accepted definition of a cache hit, there 

should be 465 L1-Icache hits. Using performance counters to determine the actual number of L1-Icache 

hits, only 59 are reported. This represents around 12% of the expected number of L1-Icache hits! 

 

This is because, as stated above, for the Power3, the expected count cannot be based on the generally 

accepted definition of a cache hit. Instead, it must be viewed in terms of instruction blocks fetched into 

the instruction buffer. Providing a good estimate, however, is rather difficult. For instance, depending on 

the characteristics of an application, the Power3 may not be able to fetch a block of eight instructions and 

dispatch four instructions per cycle. Furthermore, depending on the instruction mix, the Power3 may not 
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be able to execute eight instructions per cycle either. As a result, the size of the instruction block fetched 

from the Icache into the instruction buffer per cycle may vary throughout the execution of a program. 

 

To study this event, we ran 14 benchmarks that use performance counters, accessed via PMAPI, to 

monitor three events: instructions completed, instruction cache hits, and instruction cache misses. The 

only difference between the benchmarks is the number of instructions executed—from 32 to 262,144 

instructions, increased by powers of two. Each benchmark is run 100 times to obtain the mean, standard 

deviation, minimum, maximum, mode and variance for each of the monitored events.  

 

The relevant results of running these benchmarks appear in Table 11; the metrics reported for each event 

are expected event count (Expected), mean hardware-reported event count (Counted), and standard 

deviation (Std Dev). As discussed in Section 4.5, a calibration factor has been defined for the PMAPI 

instructions completed event. Subtracting this calibration factor from the hardware-reported counts, 

results in agreement with the expected counts for instructions completed. This approach cannot be used 

for the cache-related events (e.g., Icache hits and Icache misses), since the cache state that exists at the 

time monitoring begins will not be the same and, thus, the number of cache events related to measurement 

error will be application dependent and, thus, will vary. 

 
  Hits Misses Prefetching 

Instructions Expected Counted Std Dev. Expected Counted Std Dev. Counted Std Dev.
32 3 4.32 6.58 1 2.65 3.90 0.76 1.42
64 6 9.58 7.43 2 3.63 3.37 1.83 1.42

128 12 14.69 6.30 4 3.82 3.78 3.30 1.38
256 24 30.86 7.09 8 8.51 3.32 6.03 3.27
512 48 65.51 7.27 16 16.92 3.24 14.89 1.71

1024 96 121.27 11.39 32 32.26 3.35 27.45 4.93
2048 192 240.53 22.08 64 65.26 4.35 54.02 11.90
4096 384 492.03 22.65 128 132.03 4.68 114.81 9.20
8192 768 936.47 44.65 256 261.21 8.28 201.14 23.66

16384 1536 1947.73 55.88 512 524.49 15.88 448.58 25.50
32768 3072 3866.57 87.86 1024 1039.84 20.26 867.92 45.99
65536 6144 6815.45 237.11 2048 2039.39 5.52 1113.52 154.66

131072 12288 13447.5 342.20 4096 4074.35 8.19 2098.68 229.32
262144 24576 27905.88 791.33 8192 8140.53 20.17 5070.47 500.31

Table 11. Instructions Completed, L1-Icache Hits and Misses, and Prefetching for the Micro-
benchmarks 

 
For the subject benchmarks, since the code prior to the monitored code is the same, we assume the same 

cache state at the time that monitoring begins and, thus, assume that the measurement error with respect 
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to cache events is the same for all benchmarks. The measurement error associated with Icache hits and 

Icache misses is around 94 hits and 11 misses, respectively. 

 

Results in Table 11 show that the expected number of L1-Icache hits is underestimated for all 

benchmarks. Figure 5 shows the percent difference between the expected number of L1-Icache hits and 

the mean of the hardware-reported L1-Icache hits. The first two benchmarks, 32 and 64 instructions, show 

a large difference: 30.56% and 37.37%, respectively. For the benchmarks with 128, 256, 512, 1024, 2048, 

4096, 8192, 16384, and 32768 instructions the difference drops to the range 17.99-26.73%. For the last 

three benchmarks, 65536, 131072, and 262144 instructions, the difference drops again significantly to 

9.85%, 8.62%, and 11.93%, respectively. 
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Figure 5. Percent Difference Between Expected Count of L1-Icache Hits and 

Mean of Hardware-reported L1-Icache Hits 
 

A likely reason for the difference between expected and hardware-reported L1-Icache hits is that that the 

assumption that eight instructions are fetched into the instruction buffer does not hold throughout the 

execution of the benchmark. For instance, two instructions per cycle may be fetched into the instructions 

buffer for some section of code, while five instructions per cycle are fetched for another section of code. 

Because fewer instructions per cycle may be fetched into the instruction buffer than assumed for these 

particular benchmarks, more instruction-block fetches, from a cache line to the instruction buffer, are 

being performed. Consequently, the number of L1-Icache hits increases. One would think this is good! 

However, a greater L1-Icache hit rate than expected is not necessarily an indication of good performance. 

Like in these particular benchmarks, the number of instruction-block fetches from the instruction buffer is 

greater than expected and, consequently, more CPU cycles are used to move smaller blocks of 

instructions between the Icache and the instruction buffer. 
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Ultimately, what causes an instruction block fetched into the instruction buffer to be less than eight 

instructions is a combination of the number of available slots in the instruction buffer, the instruction mix, 

and the functional units available to execute issued instructions. The benchmarks used for these 

experiments execute instruction blocks similar to that shown in Figure 6. For instance, at cycle n two of 

these instruction blocks (eight instructions) are fetched into the instruction buffer. At cycle n + 1, four 

instructions are issued, leaving room to fetch another block of four instructions into the instruction buffer. 

At cycle n + 2, a four-instruction block is fetched into the instruction buffer, the 4-instruction block issued 

at cycle n + 1 starts executing, and the second four-instruction block fetched at cycle n is issued. There 

are two loads executing at cycle n + 2 and two more loads waiting to execute in the reservation stations. 

The Power3 can only execute two loads per cycle, so the add (fa) instruction cannot execute until the 

loads execute, and the store instruction (stfd) cannot execute until the add executes. At some point this 

instruction mix fills the reservation stations with instructions waiting to execute, which makes the 

available room in the instruction buffer vary throughout the execution of the program. Dependences 

among the instructions being executed can exacerbate this situation. Therefore, the size of the block of 

instructions fetched into the instruction buffer may not be an eight-instruction block as initially assumed 

but a smaller size block, causing the number of L1-Icache hits to increase. 

 
 lfd 0,236(31) 
 lfd 13,244(31) 
 fa 0,0,13 
 stfd 0,268(31) 
 

Figure 6.  Common Block of Instructions Executed by  
L1-Icache Hit Micro-benchmarks 

 
5. Summary and Future Work 

As demonstrated in this paper hardware performance monitors can provide valuable data that can be used 

by the application programmer to identify causes of performance degradation and, thus, ways to enhance 

performance. Along these lines, hardware counters can be used to understand the effect of compiler 

options on the performance of a program or specific regions of code. This point was demonstrated with 

respect to IBM’s Power3 and Power4 microprocessors. Certain compiler options, that otherwise seem 

safe, can degrade performance because they target accuracy instead of performance. It was also illustrated 

that sometimes event counter data needs calibration or can be misleading. Thus, although hardware 

performance monitors can provide valuable data to the application programmer, the data must be 

understood! 
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This research effort will continue by focusing on other computing platforms, e.g., the Pentium III and 

Intel’s native compilers. Our objective in this research is to provide information to application 

programmers that will allow them to use and understand hardware performance counters to enhance the 

performance of their codes. 
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