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Abstract

We prove that a random 3-SAT instance with clause-to-variable
density less than 3.52 is satisfiable with high probability. The proof
comes through an algorithm which selects (and sets) a variable de-
pending on its degree and that of its complement.

1 Introduction

There is much interest in understanding “phase transitions” in mathematics,
computer science, and mathematical physics, and in particular the k-SAT
phase transition. In the standard model for random k-SAT, a random k-
CNF formula F (n, cn) with n variables and density c has m = cn random
clauses independently selected uniformly at random, with replacement, from
among the 2k

(

n
k

)

proper clauses of length k. The Satisfiability Threshold
Conjecture asserts that for each k > 2, there exists a constant ck such that
for all constants c < ck, F (n, cn) is a.a.s. (asymptotically almost surely)
satisfiable, while for c > ck it is a.a.s. unsatisfiable.

The case of 2-SAT is well understood, with Chvátal and Reed [CR92],
Geordt [Goe96], and Fernandez de la Vega [FdlV92] independently proving
that c2 = 1, and Bollobás, Borgs, Chayes, Kim, and Wilson [BBC+] deter-
mined the “scaling window” to be 1 + Θ(n−1/3). For k > 2, the conjecture
remains open. Friedgut proved that for any k and n there is sharp threshold
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ck(n), leaving open whether ck(n) has a limit ck. With the threshold be-
havior not understood, considerable attention has been devoted to proving
density bounds below which a formula is a.a.s. satisfiable (“lower bounds”
on the putative threshold) and bounds above which it is a.a.s. unsatisfiable
(“upper bounds”). For k = 3, it is conjectured that c3 ≈ 4.2, and the best
upper bound is 4.596 [JSV00].1

Existing lower bounds for 3-SAT are all algorithmically based. (By con-
trast, new lower bounds for k-SAT are based on the second-moment method
[AM02, AP03].) The earliest such bound of 1.63, due to Broder, Frieze and
Upfal [BFU93] was based on the “pure-literal rule”: successively setting to
True literals whose complement does not appear, “reducing” the formula,
and repeating. The next, 3.003, due to Frieze and Suen [FS96], used the
“shortest-clause rule”, setting True a random literal from a random short-
est clause. Skipping over a bound of 3.145 by Achlioptas [Ach00], a bound
of 3.14 due to Achlioptas and Sorkin [AS00] again selects a literal from a
shortest clause, but when the literal is from a 2-clause (the case of interest)
it sets the literal either True or False depending (optimally) on the num-
ber of other occurrences of the literal and its negation in 2- and 3-clauses;
[AS00] extends this to a version which optimally chooses to set one or two
literals at a time, and sets them optimally, for a bound of 3.26. [AS00]
suggests that better bounds may require looking at literal-degree informa-
tion, in some way harking back to [BFU93]. This approach was taken up
by Kaporis, Kirousis, and Lalas [KKL02], whose algorithm sets a variable
of largest degree (a “1-parameter heuristic”) to give a bound of 3.42. It was
clear that the same approach could be exploited further.

2 Result, significance, and open problems

In this paper, we choose a variable according to its degree and that of its
complement (a 2-parameter heuristic), to get a bound of 3.52. Kaporis
and Lalas [KL], using a similar but not identical heuristic, independently
obtained the same bound at around the same time. The purpose of this
short abstract is twofold.

First, since the bounds from all heuristics of this sort rely on numerical
calculations (notably, solutions to differential equations), it is important to
put on record that our calculations and those of [KL] independently justify
a value of 3.52, and that we reproduce the 3.42 bound of [KKL02].

1A bound of 4.506 due to Dubois, Boufkhad, and Mandler [DBM00] has not appeared
in journal-refereed form.
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Second, our heuristic (and that of [KL]) efficiently solves denser random
instances than any other theoretically justified algorithms; since solving 3-
SAT instances is of practical importance, our algorithm may be of practical
utility. In that regard, a few remarks. Our heuristic succeeds only with
a probability that is asymptotically bounded away from 0, but exploiting
a standard one-step backtracking trick brings the asymptotic probability
to 1. Also, the algorithms commonly used in practice are Davis-Putnam-
type backtracking procedures, quite different from the “greedy” approaches
taken in all the works described above. However, it is easy to imagine using
the present heuristic as a selection rule for a Davis-Putnam algorithm, pre-
serving the heuristic’s theoretically justified behavior on random instances,
while gaining the Davis-Putnam algorithm’s guarantee of a correct answer
on arbitrary instances.

Not present in this short abstract is a rigorous justification of our proof
methodology (fairly easy and familiar), nor of the numerical calculations,
which to be done rigorously would require theoretically derived Lipschitz
bounds on a derivative, and interval-arithmetic calculations employing those
bounds, along with a few other technicalities.

Future work could include consideration of a variable’s number of ap-
pearances and that of its complement separately in 2-clauses and 3-clauses
(a 4-parameter heuristic), which is analyzable in the same framework. In
at least the 2- and 4-parameter versions of literal-degree heuristics (as op-
posed to the 1-parameter version), it is not clear how best to select a next
literal: does a (2, 3) literal (2 positive appearances, 3 negative) trump a
(4, 5), or vice-versa? In the 4-parameter version, it is also not clear how
best to set a chosen literal; this was the question answered in [AS00] for the
non-degree-spectrum case. An optimal solution to these questions would be
a most interesting theoretical contribution, and could also give significant
improvements in the bounds.

3 Algorithm

We call a variable with i positive and j negative appearances an (i, j)-
variable. Our algorithm is defined as follows.

Algorithm A

Input: A 3-CNF formula.
begin

1 while there exists an unset variable
2 choose an (i, j)-degree variable using a selection rule
3 set v True if i < j and False otherwise
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4 while there exists a unit clause
5 set a literal of an arbitrary unit clause True.
6 if an empty clause is generated report failure; otherwise report success
end

The best selection rule we found was this. If there is a “pure” variable
(one with i = 0 or j = 0), select it. Otherwise, choose a variable with
maximum discrepancy |i− j|, breaking ties in favor of maximal i+ j. (This
identifies a unique unordered pair {i, j}, and all variables with those degrees
are indistinguishable to the algorithm.) This selection rule satisfies formulas
up to density 3.52. Other selection rules we tried were less good. Working
as above but breaking ties in favor of minimal i + j only worked up to
density 3.50. Selecting by maximum i/j instead of i − j only worked up
to 3.44. Selecting by maximum max{i, j} is equivalent to the approach of
[KKL02], and we reproduce their 3.42.

4 Analysis

In truth, the “natural” algorithm above is not the one analyzed. Rather than
making Θ(n) iterations, the analyzed algorithm makes a constant number
of iterations, in each of which it sets Θ(n) variables with common degree
{i, j}.

It is easily verified that during the algorithm, the formula remains uni-
formly random conditioned on its degree sequence. To make the calculations
finite, we truncate the degree sequence at some value h (h = 31 in our calcu-
lations). Then with n the original number of variables, for i, j < h we let ni,j

be 1/nth the current number of variables of degree (i, j); nh,j (and ni,h) the
similar value for variables with > h positive (negative) appearances; and
nh,h that for variables with > h positive and negative appearances. Set-
ting a single (i, j)-variable produces straightforwardly computable expected
changes ∆ (detailed in Appendix A) to the h2-dimensional vector S of val-
ues ni,j , and each element of ∆ has order only O(1/n), so the differential
equation method (see for example [Wor95]) can be used to prove that, as we
set Θ(n) variables with common degree (i, j), the vector ni,j almost surely
almost exactly follows a trajectory described by the solution of a differential
equation corresponding to ∆.

So instead of selecting an (i, j)-variable as in Algorithm A, we use the
same selection rule to select a pair (i, j), i, j 6 h, and we set n ·min{δ, ni,j}
(i, j)-variables at once. Here δ is a value of our choosing, which could vary
from round to round, but which we fixed at 10−6. Each such round (in-
cluding the unit-clause steps it implies) can be described by the differential
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equation method, and our analysis simply consists of simulating the differ-
ential equations for a constant number of rounds. It is clear that after some
number of rounds, all the values in S can be made arbitrarily small, and at
that point we apply the main theorem of Cooper, Frieze, and Sorkin [CFS02]
to show that the remaining formula is satisfiable a.a.s. (The positive side
of their result has a natural algorithmic interpretation, so our procedure
remains algorithmic to the end.)

5 Differential Equations

In this section, we describe the differential equations for the case in which
we have a 2-dimensional table for keeping the expected number of variables
with k < h positive appearances and l < h negative appearances. Since
dt (the “time parameter” described before) is very small, w.l.o.g. we can
assume all values of S remain fixed during a round. Using these values, we
obtain the new value of S after a round. Suppose we set a variable from cell
nk,l True (in other words, set a (k, l)-degree variable True). Then writing δ
to denote the expected increase to a parameter, for such a “free move” we
have:

δm3 = −k
3 ·m3

Σm
− l

3 ·m3

Σm
,

δm2 = −k
2 ·m2

Σm
− l

2 ·m2

Σm
+ l

3 ·m3

Σm
,

δm1 = l
2 ·m2

Σm
, and

δnij = −ψ(i, k)ψ(j, l) − k ·
2 · 1 ·m2 + 3 · 2 ·m3

Σm
·

·
(i+ j) · nij − (i+ 1) · ni+1,j − (j + 1) · ni,j+1

Σn
,

where Σm = Σn = 2 ·m2 + 3 ·m3 is the total density of appearances of all
variables and m1 is the expected number of unit clauses generated by this
free move. Here ψ(x, y) = 1 if x = y and zero otherwise. Note also that
since by definition m1 = 0 at the start of a round, at the end, m1 = δm1 as
given above.

After a free move, we have a number of “forced moves” in which the
literals in all m1 unit clauses must be set True to satisfy our formula. A
literal in a unit clause is a variable from cell (k + 1, l) with probability
(k+1)nk+1,l

Σn
, or the negation of a variable from cell (k, l + 1) with probability
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(l+1)nk,l+1

Σn
. In either case, in the rest of the formula (excepting the unit

clauses) that variable has degree (k, l). Thus the expected number ρ of new
unit clauses produced by one such forced move (the Malthus parameter in
our Galton-Watson process) is

∑

06k′,l′<h

(k′ + 1)nk′+1,l′

Σn
l′

2 ·m2

Σm
+

(l′ + 1)nk′,l′+1

Σn
k′

2 ·m2

Σm
,

where l′ 2·m2

Σm
(see parameter m1 defined above) is the density of new unit

clauses after setting a (k′, l′)-degree variable True (which happens with prob-

ability
(k′+1)nk′+1,l′

Σn
) and k′ 2·m2

Σm
is the density of new unit clauses after setting

a (k′, l′)-degree variable False (which happens with probability
(l′+1)nk′,l′+1

Σn
).

For such a forced move, the expected parameter changes are:

δ′m3 =
∑

06k′,l′<h

(k′ + 1)nk′+1,l′

Σn
δM3(k

′, l′,T) +
(l′ + 1)nk′,l′+1

Σn
δM3(k

′, l′,F),

δ′m2 =
∑

06k′,l′<h

(k′ + 1)nk′+1,l′

Σn
δM2(k

′, l′,T) +
(l′ + 1)nk′,l′+1

Σn
δM2(k

′, l′,F),

where δM3(k
′, l′,T) has exactly the same formula as δm3 defined above,

likewise for δM2(k
′, l′,T) and δm2, and where by symmetry δM3(k

′, l′,F) =
δM3(l

′, k′,T) and δM2(k
′, l′,F) = δM2(l

′, k′,T).
Finally, for each i and j,

δ′ni,j =
∑

06k′,l′<h

(k′ + 1)nk′+1,l′

Σn
(δNi,j(k

′, l′,T)

− ψ(i, k′ + 1) · ψ(j, l′))

+
(l′ + 1)nk′,l′+1

Σn
(δNi,j(k

′, l′,F) − ψ(i, k′) · ψ(j, l′ + 1)),

where

δNi,j(k, l,T) = −k ·
2 · 1 ·m2 + 3 · 2 ·m3

Σm
·

·

(

(i+ j) · ni,j

Σn
−

(i+ 1) · ni+1,j

Σn
−

(j + 1) · ni,j+1

Σn

)

and

δNi,j(k, l,F) = δNi,j(l, k,T).

We note that the formula for δ′ni,j can be obtained by considering the flow
which goes in or out for cell ni,j .
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Reasoning via the Galton-Watson process, we know that the expected
number of forced moves is m1

1−ρ . Thus the new expected value of S af-
ter setting a small fraction dt of variables from cell nk,l True is: S +
dt(δm2, δm3, δn) + dt m1

1−ρ(δ′m2, δ
′m3, δ

′n). If we set a variable from cell nk,l

False, the expected changes can be obtained by just swapping the role of k
and l in the above description.
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