
RC22951 (W0310-175) October 30, 2003
Computer Science

IBM Research Report

THREAD ARCS: An Email Thread Visualization

Bernard Kerr
IBM Research Division

T. J. Watson Research Center
One Rogers Street

Cambridge, MA 02142

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g. , payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
O. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home .

THREAD ARCS: An Email Thread Visualization
Bernard Kerr

 Collaborative User Experience Group
IBM Research

bernard_kerr@us.ibm.com

Abstract

This paper describes Thread Arcs, a novel interactive visualization
technique designed to help people use threads found in email.
Thread Arcs combine the chronology of messages with the
branching tree structure of a conversational thread in a mixed-model
visualization [Venolia and Neustaedter 2003] that is stable and
compact. By quickly scanning and interacting with Thread Arcs,
people can see various attributes of conversations and find relevant
messages in them easily. We tested this technique against other
visualization techniques with users’ own email in a functional
prototype email client. Thread Arcs proved an excellent match for
the types of threads found in users’ email and for the qualities users
wanted in small-scale visualizations.

CR Categories: H.5.2 User Interfaces, H.5.3 Group and
Organization Interfaces, I.3.6 Methodology and Techniques

Keywords: conversations, discussions, electronic mail, email,
information visualization, threads, tree structures, user interfaces.

1. Introduction

The importance of conversation threads in email and tools for
inspecting them has been well documented. The main advantages
are: allowing users to see a greater context of the messages they
are reading, reminding users that a conversation is in progress,
recording the state of a discussion, collating related messages
automatically, reducing messages displayed in inboxes, and
allowing users to perform actions such as reading or deleting on a
group of messages [Fisher and Moody 2001; Rohall et al. 2001;
Venolia and Neustaedter 2003; Whittaker and Sidner 1996].

Common terminology used to discuss threads is defined here
briefly. A thread is defined as a collection of individual messages
related to each other by the reply function in email. In a thread,
the message to which a reply is sent is called the parent of that
message. Any replies to a message are called children of that
message. The first message in a thread is called the root. The
generational depth of a message is the number of “reply to”
relationships between a message and its root. For example, all
messages that are replies to the root message have a generational
depth of one.

Email threads differ from public discussion threads, such as those
found in Usenet, in a number of ways. Public discussion threads
are often large [Smith and Fiore 2001]. In contrast email threads
are relatively small. Fisher and Moody [2001] found that threads
of greater than one message account for 35% of their users’
mailboxes, and that 87% had four messages or fewer.

Public discussions have a formal reply mechanism, while email
users often use the last message they received from correspondent
as a convenient way to start a new message. By using existing
messages and the reply function as a makeshift address book,
users are, in effect, breaking the formal use of the reply function.
This means that chronology is an important attribute to consider
for email threads.

Chronology is also important because email is often time-
sensitive; it is the way most users see messages arrive in their
inboxes. Email threads are often read backwards starting with the
most recent message because, in email, the last message sent often
determines the thread’s “conversational status” [Whittaker and
Sidner 1996] by summing up the current state of the conversation
or by containing questions or tasks that are still outstanding.

Large-scale visualization tools for public discussion threads such
as Netscan’s “visual dashboards” [Smith and Fiore 2001], Loom
[Donath et al. 1999] and Conversation Map [Sack 2000] consider
a different set of qualities when presenting thread information
than those needed for email. They contain social structures and
conversations that are very different from the egocentric nature of
email. For example, email users usually know all of the people
involved in an email thread, while Usenet is more public and
anonymous. Email threads have a different set of qualities to
consider.

We believe small-scale, compact visualizations embedded into
personal email clients could enhance the user experience of email.
In email, one of the challenges in displaying these conversational
threads is that they have two conflicting properties: the arrival
sequence of messages and their “reply to” relationship [Venolia
and Neustaedter 2003]. We describe a visualization technique that
can effectively communicate both of these properties at once and
can explain how we tested this design (in an email client
prototype) on real threads found in users’ own email.

2. Key Qualities

Outlined here are seven qualities we consider to be essential in
effectively visualizing threads found in email, along with a brief
discussion of their value.

1. Chronology: One must show the arrival sequence of

messages which create a thread. This illustrates the evolution
of a thread, including which messages came first, and which
is the most recent message.

2. Relationships: One should make all of the “reply to”
relationships visible at a glance. This allows the user to see

1

the direct relationships of a particular message to all others in
a thread. For example, one should be able to examine a
particular message, and should be able to trace back through
the chain of earlier messages which lead back to the root of
the thread. In addition, one should be able to see which
messages subsequently respond to a particular message
clearly. These relationships give important contexts for each
message in a thread.

3. Stability: As a thread grows, it is essential to have each
message appear in the same location. This allows one to
return to the thread in the future and find the same message,
or to see easily if any new messages have been added.

4. Compactness: Since the visualization will be competing
with other space required for email client functionality, it is
imperative that any visualization be small in size without
compromising clarity.

5. Attribute Highlighting: One must be able to highlight
specific message attributes in a thread, including all
messages sent by a particular person, unread messages, or all
messages sent on a particular day. This helps one find
particular messages or aids in assessing the state of a thread.

6. Scale: A visualization should work for small threads as well
as larger ones found in email. The clarity of the visualization
should degrade gracefully as more messages arrive. It must
still be clean when threads are large and complex. Since the
vast majority of email threads are typically between two and
twenty messages [Fisher and Moody 2001], the visualization
does not have to scale to hundreds or thousands of messages.

7. Interpretation/Sense: A visualization must give a sense of
the type of conversation present in a thread, i.e. whether a
thread is a back-and-forth reply chain between two people, or
a request for information and responses from a group.

The Thread Arc visualization was designed with these key
qualities in mind.

3. Visualization

Thread Arcs have a linear layout of message nodes connected by
relationship arcs. In Thread Arcs, each circular node represents a
message in the thread. Because the chronology of the thread is so
important, we encoded this by position. For example, for the six-
message thread in Figure 1, each node is equally spaced
horizontally in the order of its arrival with the first message on the
left. This layout also makes for a compact visualization that is
stable.

Figure 2 adds the relationship arcs between the messages. Here we
draw arcs connecting each message node to its parent in the thread.

The density of lines and the intersection of arcs make this image
hard to read. To alleviate this confusion, we draw some of the arcs
below the line, as shown in Figure 3 below.

Figure 4 shows the advantages of this technique for a variety of
threads with five messages.

From this visualization, one can see thread qualities such as the size
of the thread (number of nodes, which also corresponds to the length
of the visualization), and number of responses per message (the
number of arcs leaving a message node). Threads that have
messages which receive two or more replies are described as bushy,
while threads that have messages that get only one reply per
message are called narrow, as shown below in Figure 5.

The width of a Thread Arc is a linear function of the size of the
thread it portrays. We can make a more compact visualization if we
can constrain the height of the arcs so they are flattened out when
they are over a certain height, as shown in Figure 6. This means that
the visualization will only grow horizontally, and so, is easier to fit
inside the space constraints of an email client.

Figure 7 shows the effect of this technique on a larger thread
containing sixteen messages.

2

This technique creates some ambiguity when arcs overlap. This
problem is alleviated by the selection highlighting that is described
under Section 5, “Interaction”, later in this paper, along with the
other attribute highlighting schemes.

The technique to make Thread Arcs can be summarized by the
pseudo code shown in Figure 8.

Mathematically, for a thread of size n messages, the total number
of possible Thread Arcs ‘t’ that could be constructed from n time-
ordered messages is t(n) = (n-1)! (i.e. thread variations are due to
parent/child relationships only). Although the theoretical number
of possible threads is enormous, in practice, the actual number of
threads found in email is a small subset. Figure 9 shows all the
possible Thread Arcs that can be built with 2 to 5 messages.

Thread Arcs are designed to be optimal for bushy and narrow
threads of around two to twenty messages. For larger threads, the
visualization degrades gracefully because one can still see bushy and
narrow structures within the total thread. This helps one scan large
threads visually and interpret or get a sense of the conversations
taking place.

The time ordering sequence allows one to see the evolution of the
thread as it grows. For example, Figure 10 shows the growth of a
Thread Arc from one to eight messages. In addition, it keeps each
message in a stable position so that one can return to the exact
location where that message was last seen despite recent growth of
the thread.

When a new message is added, the height of its arc reflects how far
back in the thread its parent message is relative to the most recent
message. This helps one see any divergence from the most recent
branch of the discussion.

4. Existing Visualization Techniques

Figure 11 shows the evolution of a thread from one to six messages,
and compares the Thread Arcs (A) visualization to two other
visualization techniques, Tree Diagrams (B) and Tree Tables (C).
Tree Diagrams are a common way to represent threads. Unlike
Thread Arcs, Tree Diagrams do not show chronology and are not
stable. Instead, they emphasize the generational nature of a thread.
In a Tree Diagram, each row is a new generation of messages, and
message nodes are moved to pack the nodes more economically as it
grows. For example, as message 4 is added to the Tree Diagram (B),
message 3 is moved horizontally to make room for message 4. If one
did not return to this thread until it contained six messages, it would
be unclear which message was now message 3. Tree Diagrams are
also not very compact because they can grow very wide and/or tall,
making it hard to dedicate a fixed space for them in an email client.
The same problems apply to the Tree Table (C).

Tree Diagrams and Tree Tables also oversimplify the conversational
structure of threads because they do not show chronology. For
example, Figure 12 shows that the Tree Diagram (A) and the Tree
Table (B) are a simplification of eight potentially different
conversations which may have occurred. The Thread Arcs (C) show
all of the possible ways that the conversation may have occurred.
For example, the last message in the thread could have been
concluding “thank you” to the fifth message (top left Thread Arc
(C)), or someone could be trying to take the entire conversation in
another direction by responding to the first message (bottom right
Thread Arc (C)). This chronological information makes it much
easier to get a sense of the current state of the conversation.

3

Individual conversations shown as Thread Arcs are more likely to
be distinctive and, as a consequence, this makes it easier for one
to recall the content and the position of important messages from
the shape of the Thread Arc alone.

Tree Diagram [Smith and Fiore 2001] and Tree Table [Rohall et al.
2001; Venolia and Neustaedter 2003] techniques have been
modified to emphasize chronology. Unfortunately, both modified
techniques are not stable and can grow wide and/or tall depending
on the structure of the thread, thereby becoming less compact. As
shown in Figure 13 below, the Tree Diagram (B) sacrifices
compactness when modified (C). The modified Tree Table (E)
[Rohall et al. 2001; Venolia and Neustaedter 2003] attempts to stay
compact by its layout technique. It positions the first child of any
message directly below its parent. This spatial positioning gives a
disproportionate weight to the first children of any generation and
makes any other sibling relationships less obvious. As shown below
(E), the nodes down the left hand side (the first branch) of the thread
have a disproportionately strong visual presence compared to the
other two nodes.

When we visualize threads in email, we represent each message
node equally. Other visualization techniques such as Tree Rings,
Icicle Plots, and Tree Maps change the size of a message in
relation to other messages in the thread based on its position in the
tree structure, thereby putting a lot of visual emphasis on specific
messages [Barlo and Neville 2001]. These visualizations do not
show chronology, and are also limited in their ability to be
compact.

It should be noted that Thread Arcs are visually similar to Arc
Diagrams [Wattenberg 2002]. Thread Arcs, however, differ from
Arc Diagrams in three important respects. First, Thread Arcs
show tree structures of the reply relationship between a set of
messages, while Arc Diagrams show repeating sequences in a
linear list which contain the same sequence. Second, Thread Arcs
show message-to-message relationships with lines, while Arc
Diagrams show sequence-to-sequence relationships with area.
Third, Thread Arcs use arcs above and below the message nodes
to help reduce the number of crossovers, making it easier to see
conversation paths.

5. Interaction

Thread Arcs in the context of an email client also have interactive
components that allow one to highlight and inspect thread and
message attributes dynamically. This capability allows one to decide
which attributes are relevant to the task at hand, and to display them
when needed. For example, when one selects a message to read, the
unrelated messages fade out, and the selection is highlighted with a
bright blue hollow circle. Its parent appears in a lighter blue
highlight, and its children are a darker blue. In Figure 14 below, the
children of each selection (S1, S2, S11) are highlighted as dark blue
nodes. From this one can see that for the selected messages in S2
and S11, both have two children. This highlighting shows specific
relationships relative to the selection. By clicking on the selected
message, one can toggle between this selected state and the
highlighting scheme for the thread.

Highlighting schemes show other message attributes, such as
one’s own contribution to a thread, or the contributions of a set of
“important people” one has specified. These attributes can also be
derived from the thread as a whole. For example, all messages
received on the same day as the last message of the thread can be
shaded the same way. Other attributes that could be useful to
visualize include messages with alerts, positive search results,
drafts, calendar information, attachments, or unread messages.
Some of these attributes can be shown simultaneously, while
others conflict with each other. One can dynamically expose
different attributes depending on what one is looking for. For the
Remail prototype, we used two highlighting schemes: People
Highlighting and the Attribute Shading.

The People Highlighting scheme highlights, with hollow circles,
one’s own contributions, the contributions of a set of “important
people”, or any person from the list of the contributors in the
currently selected thread. From the Attribute Shading schemes,
one can choose shades to show the times when messages came in
and the generational depth of each message, or one can use colors
showing each contributor to the thread. These schemes can be
activated independently or in combination. If there is a conflict,
People Highlighting superceding the Attribute Shading. The
hollow circles, shades, and colors used for these schemes are
shown in Figure 15 below.

4

Figure 16 below illustrates some of these highlighting schemes for
the same thread. Personal highlights (P), shows one’s contribution to
the thread. This attribute is important because one’s own messages
often represent “to-do’s” that one expects from others [Bellotti et al.
2002; Whittaker and Sidner 1996].

Time shading (T) shows messages sent on the same day in the same
shade of gray. The last eleven messages in this thread were sent four
days after the thread started. This shading helps emphasize threads
that have large intervals between messages. This type of thread has
been characterized as one of the harder types of thread to keep track
of [Bellotti et al. 2002] because, in conventional email clients, the
older messages drift out of the inbox list view as other messages
arrive.

Contributor coloring (C) shows each contributor to the thread in a
different color. In this example, only four people were involved in
this discussion.

Generational shading (G) uses a different shade for each generation
of the thread, showing the generational depth of the conversation.
This helps users see the branching nature of the Thread Arcs, which
is less apparent from its linear layout. This shading scheme, with
black nodes as the deepest generation, emphasizes the end of
branches, which are the current state of the email conversations.

6. Study

The goal for our study was to learn about the usefulness and
effectiveness of email thread visualizations in users’ own email.
In particular, we investigated which qualities users considered
important in thread visualizations, as described in Section 2,
“Key Qualities”.

As part of this study, we gathered statistics on the size and shape
of threads found in users’ email to give us a better understanding
of the frequency and structure of threads that thread visualizations
need to accommodate.

6.1 Method

We recruited eight participants for our study, four male and four
female. The participants were all software knowledge workers,
and were recruited internally. The participants had intermediate to
advanced experience using the Lotus Notes email client, and had
been using it for three to ten years. Some had previous experience
with large email conversations and discussion databases. None
had any previous knowledge of the Thread Arc visualization.

At the beginning of each test, we used a Java program to traverse
each user’s email database, then collated all of his or her threads,
and output them as a set of XML files. This software implemented
an improved version of the complex Zawinski’s threading
algorithm [2002] originally developed for Netscape Messenger.
The XML files contained each thread’s structure, along with each
message’s basic email content, including the “to”, “from”, “
subject”, “time”, and the first 100 characters of the “body”. We
used this data as the content for the study where users experienced
a simulation of an email client with their own email content. In
addition, we used this information to get statistics on the size and
structure of their email threads.

At the conclusion of each user’s session, we created a series of
large scale posters of all of the threads found in their email
database. This allowed us to analyze quantitatively the entire
spectrum of threads present in a user’s real email. These posters
consisted of nine different attribute highlighting schemes for each
of the visualization techniques tested. Users were comfortable
with us taking this data away, as it showed only the structure,
sizes and shapes of the threads with no text content, thereby
ensuring their privacy.

6.2 Email Prototype

As part of the study, we let users explore their email threads in a
simulation of an email client built using Macromedia Director.
Users were able to switch between Thread Arcs, Tree Diagrams,
and Tree Tables during the test. Each visualization used the same
user controls, behaviors, colors and highlighting schemes, so
access to and manipulation of each visualization was controlled.

We encouraged subjects to switch between the different
visualizations and highlighting schemes to get a better
understanding of the type of information each visualization could
convey so they could assess which one they found most useful.
We asked the users to perform small tasks designed to get them to
think about the key qualities, and to test each visualization against
them. For example, they were asked to find the last message in a
thread, or to figure out how many responses a particular message
received. Another exercise involved letting users observe the
stability of a visualization as new messages were added to a
thread. The prototype allowed us to show the evolution of any of
the threads they encountered. We could demonstrate how the

5

visualization layouts changed as new messages were added from
the start of the thread up to its current state.

In the email prototype client shown in Figure 18, two areas were
dedicated to contextual information about threads, the preview
pane and the thread view pane. When a message was selected in
the inbox list, a thread visualization was displayed in both the
preview pane (A) and the thread view pane (B). In the preview
pane, there was only a limited amount of space (185x50 pixels),
so, when the Thread Arcs were shown here, they were
constrained. The visualization in the preview pane showed a
selection highlighting scheme, while the thread view pane showed
the current attribute highlighting scheme. Combined, this gave the
users more information about the entire thread than one scheme
alone. These were also linked interactively so that if a node in the
thread view pane was selected, this new selection would be seen
in the preview pane, along with a preview of that message.
Message nodes were 8 pixels in diameter, and when users hovered
over them with the mouse, they would see the author, time, and
subject for that message.

In the thread view pane the space allocated to the visualization
(C) was larger (185x185 pixels). When any visualization was
larger than its allocated space, scrolling was provided. In addition,
there were two drop-down menus (D) which allowed users to
apply attribute highlighting schemes. Other contextual
information below this area showed all the participants in the
thread, both the contributors and the recipients (E). The
contributors were defined as the authors of messages in the
thread, while the recipients were people who received the
messages but were not contributors. This list was a legend for the
visualizations which changed dynamically when an attribute
highlighting scheme was activated. For example, the
“contributors” highlighting scheme shows colored nodes to the
left of each name (E). At the bottom, there was also a list of all the
messages in the thread with author and subject (F). Typically, the
subject lines of a thread were identical to the first message’s
subject line, or they had a “RE:” followed by the subject of the
first message. Instead of repeating this redundant information,
these subject lines contained a “+” and the first line of the body
text of that message. The lifespan of the thread was shown at the
bottom (G).

6.4 Results

We surveyed a total of 42,000 messages in our users’ email
databases, which included “sent” as well as “received” messages.
Figure 19 below shows the percentage of users’ email messages
for each size of thread from 1 to 20.

From this, we see that only 38% of messages were singles or
unthreaded (size 1 thread). The next most common thread size
was 3 (16%), and, as the size of the thread increased, its
percentage decreased. We did find a handful of threads larger than
20 for each of the users; the biggest was a thread of 483 messages.
Plotting this data cumulatively, we see from Figure 20 below, that
50% of our users’ messages are contained in threads of size 2 or
less, and that 80% of all the messages in the study were of size 5
or less.

The percentage of distinct thread structures found in users’ email
for each thread of size 2-5 is shown in Figure 22 below. Other
studies have suggested that email threads tend to be “narrow
rather than bushy – that is to say that a message is much more
likely to get one reply than two or more” [Venolia and
Neustaedter 2003]. From this data, it appears that there is a high
percentage of threads that are bushy, and there are similarly a high
percentage of threads that are narrow. For example, of threads of
size five, 26% were bushy and 20% were narrow.

6

6.5 Discussion

Thread Arcs proved to be a better technique for showing
chronology, and were both more stable and more compact than
either Tree Diagrams or Tree Tables. On balance, Thread Arcs did
a better job at satisfying all of the key qualities that users valued.

As mentioned in the introduction of this paper, one of the
challenges in displaying these conversational threads is that they
have two conflicting properties: the arrival sequence of messages
and their “reply to” relationship. This study has confirmed that
users find both of these qualities important. Showing the
chronology as part of the visualization came through as a strong
theme. In addition, we found that for small-scale visualizations in
the context of an email client, there are other important qualities
to be considered, specifically the compactness and the scale of
visualizations needed for the size and structure of threads found in
users‘ real email.

Compactness was a big issue for all users whenever the
visualization extended outside of its dedicated area. Thread Arcs
could accommodate sixteen messages (97% of all threads as seen
in Figure 20) without the need to scroll in the preview pane or the
thread view pane. In contrast, the Tree Table needed to be
scrolled in the preview pane for any threads with more than five
messages. The Tree Diagram performed better than the Tree
Table for bushy threads but suffered if the threads were narrow.

The need to see the relationships in larger threads (greater than
five messages) should not be discounted as many of the larger
threads encountered in this study were important conversations,
and the visualization became an even more valuable tool to give
context to users.

For our users’ data, we saw that the polarity of bushy and narrow
threads discussed above in Figure 21 continues as threads get
larger. From the posters that were generated at the end of tests, we
saw that the biggest threads found were either bushy or narrow.
This means that visualizations and the space dedicated for them
need to accommodate both bushy and narrow threads for small
and large numbers of messages. The compact linear nature of
Thread Arcs makes it particularly good at achieving this goal.

The posters also revealed a number of threads that had empty or
missing messages caused by the Zawinski [2002] algorithm. This
algorithm, used to find the threads in users’ email, tends to be
aggressive in threading messages in a bushy fashion. It does this
by creating empty messages for any missing messages. The
algorithm takes two passes through a user’s databases. The first
pass uses the message’s reply reference to join related messages.
The second pass then collates any of these threads which have
matching “RE:” based subject lines at their roots. Empty
messages will be created for one of two reasons. An empty
message is created on the first pass if a message, referred to by
another message in a thread, is missing – either deleted or not
saved when sent. Alternatively, on the second pass, if two threads
found on the first pass have the same “RE:” based subject line,
they are considered to be part of the same thread, and, if no root
node is found, an empty message is created. In this case, the
algorithm treats both messages as siblings of the newly created
empty message. See Zawinski [2002] for more details of this
method.

However, the overall thread distribution is consistent with other
studies like that of Fisher and Moody [2001]. It should be noted
that their threading algorithm did not have a second pass subject-
matching scheme and, therefore, their results would increase the
number of size 1 threads, and would undercount longer threads by
not taking into account any missing messages. More research into
the appropriateness of these empty messages and their
interpretation by users is required.

The participants list was also seen as extremely useful because it
allowed people to identify all the people involved in the
conversation quickly, and to get a better sense of the context of
the thread easily.

Users liked the subject line modification in which the first line of
the body replaces the subject line if the subject is identical to the
first message. Some users observed that arranging the nodes in a
line in Thread Arcs made it much easier to hover over the entire
set of messages in a single horizontal motion compared to a
branching structure where users had to “hunt around” to find
messages.

Perhaps one of the most useful aspects of the visualization’s
interactions is the ability of users to navigate quickly to other
messages in the thread by clicking on nodes without having to use
their inbox list.

All but one of the users said that they would like a thread
visualization in their future email clients.

7. Future Research

Further user studies could provide insights into the types of tasks
users want to perform with threads and could modify some of the
design criteria for thread visualizations. For example, text analysis
of a message’s contents could help to expose other attributes of a
thread. We also predict that different users with different work
practices would produce different thread structures.

Designs for a thread reading pane are also being explored which
would give more contextual thread information when reading a set
of thread messages.

7

Improvements in the Zawinski [2002] algorithm are being
considered to improve the accuracy of the threads that are built on
the second pass of the algorithm. Another issue to resolve is what
users would prefer to see when the algorithm joins threads with
missing messages and/or encounters empty nodes.

Different message sort orders for the layout of the messages in
Thread Arcs have potential benefits. Instead of laying out the
message nodes in strict time sequences, we have placed them in
hierarchical and generational orders, as shown in Figure 22. This
removes the strong chronological characteristics of the Thread
Arc but reveals other attributes of the thread, such as the sub-
branches or the generational depth. We have found that, when
testing Thread Arcs on large discussion conversations (greater
than 100 messages), chronological sorting becomes less useful,
and that these other types of sorts may reveal useful properties of
the thread. The hierarchical sort emphasizes the same relationship
qualities of Tree Tables, while the Generational sort emphasizes
the generational depth in a similar way to Tree Diagrams.

8. Conclusion

This paper describes Thread Arcs, a visualization technique that
can display chronological and relationship properties
simultaneously. Thread Arcs show the “reply to” relationship with
an emphasis on the chronology of messages. The relationships
between messages are shown with arcs that connect each message
to its parent. By laying out the message nodes in a linear fashion,
the visualization not only emphasizes chronology, but also renders
it compact and stable. This stability allows one to observe the
evolution of a thread over time. Other useful properties of Thread
Arcs include the ability to see the size of a thread and the number
of responses to any specific message in it at a glance.

There are a number of attribute highlighting schemes that can be
applied to Thread Arcs to help one find important messages, or
predict the types of conversations present. We have also
compared Thread Arcs to existing techniques and described the
key qualities that we consider important to thread visualizations in
email. Our user study has confirmed the importance of showing
chronology in email thread visualizations. The study also showed
that Thread Arcs are well suited for the size and structure of
conversations found in users’ real email.

Thread Arcs provide a unique tool for interpreting email threads
by elucidating the context of each message and by offering insight
to the structure and evolution of email conversations. Thread Arcs
illustrate these complex relationships in an elegant and concise
form.

Acknowledgements

I would like to thank all the people in my research group. In
particular Steven Rohall, Martin Wattenberg, Kushal Dave, Li-Te

Cheng, Eric Wilcox and Maida Eisenberg. I would also like to
thank Deb Maurer and Sandra Kogan for their assistance with the
user testing.

References

BARLO, T. AND NEVILLE, P. 2001 A Comparison of 2-D Visualizations of

Hierarchies, Proceedings of the IEEE Symposium on Information
Visualization.

BELLOTTI, V., DUCHENEAUT, N., HOWARD, M., SMITH, I. 2002

Taskmaster: recasting email as task management, Workshop:
Redesigning Email for the 21st Century, CSCW.

DONATH, J., KARAHALIOS, K., VIEGAS, F. 1999, Visualizing

Conversation, Proceedings of the Hawaii Internationals Conference on
System Sciences 32.

FISHER, D AND MOODY, P. 2001, Studies of Automated Collection of

Email Records. University of Irvine, Technical Report, UCI-ISR-02-4

ROHALL, S.L., GRUEN D., MOODY P., AND KELLERMAN S. 2001, Email

Visualizations to Aid Communications, Late Breaking, Hot Topic
Proceedings of the IEEE Symposium on Information Visualization, San
Diego, CA, pp. 12-15.

SACK, W. 2000, Conversation Map: A Content-Based Usenet Newsgroup

Browser, Proceedings of IUI’00, New Orleans, LA, pp. 233-240.

SMITH, M. A., FIORE, A. T. 2001, Visualization Components for Persistent

Conversations, Proceedings of CHI 01, AMC Press, pp. 136-143

VENOLIA, G. AND NEUSTAEDTER, C. 2003, Understanding Sequence and

Reply Relationships within Email Conversations: A Mixed-Model
Visualization, Proceedings of CHI, pp. 361-368

WATTENBERG, M. 2002, Arc Diagrams: Visualizing Structure in Strings,

Proceedings of the IEEE Symposium on Information Visualization,
Boston, MA, pp. 110-116.

WHITTAKER, S. AND SIDNER C. 1996, Email Overload: Exploring Personal

Information Management of Email, Proceedings of CHI’96, Vancouver,
B.C., pp. 276-283.

ZAWINSKI, J. 2002, http://www.jwz.org/doc/threading.html.

8

