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CORRELATED POPULATIONS WITH FIXED AND  

NON-NORMAL LATENT VARIABLES1 

BY SAVAS PAPADOPOULOS AND YASUO AMEMIYA 

Bank of Greece, University of Indianapolis at Athens, 

and IBM T. J. Watson Research Center 

Latent variable or structural equation modeling (SEM) is used widely in applications, 

especially in social and behavioral sciences. Since the normality based model fitting procedures 

are simple and broadly available, and since such procedures are often applied to non-normal data 

or non-random samples, it is important to investigate the appropriateness of such practice and to 

suggest simple remedies. This paper addresses these issues for the analysis of multiple 

populations. For a very general class of latent variable models, a particular parameterization is 

proposed for meaningful and interpretable analysis of several populations. It is shown that under 

this parameterization the large-sample statistical inferences based on the assumption of normal 

and independent populations are valid for non-normal and dependent populations. This result is 

also shown to be valid when some latent variables are treated as fixed instead of random, or when 

a group of individuals is measured over several time points longitudinally. More precisely, the 

paper shows how to get robust asymptotic standard errors (a.s.e’s) and overall-fit measures. The 

proposed a.s.e’s are shown to have less variability than the robust a.s.e’s computed by the so-

called sandwich estimator. Simulation studies are conducted to verify the theoretical results, 

assess the use of asymptotic results in finite samples, show the robustness of the power for tests, 

and demonstrate the efficiency of the method relative to the full-likelihood estimation method 

that includes all the covariances of the variables over populations.  

 

                                                           
1 KEY WORDS: Structural Equation Modeling SEM, asymptotic robustness, multivariate analysis, panel 
data, repeated measures, nonlinear in parameters. 
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1. Introduction. Latent variable analysis has been used widely in social and behavioral sciences 

as well as in economics, and its use in medical and business applications is becoming popular. 

Structural equation modeling, confirmatory factor analysis, and errors-in-variables regression are 

examples of latent variable analysis.  In latent variable models, underlying subject-matter 

concepts are represented by unobservable latent variables, and their relationships with each other 

and with the observed variables are specified. The models that express observed variables as a 

linear function of latent variables are extensively used, because of their simple interpretation and 

of the existence of computer packages such as EQS (Bentler (1989)), LISREL (Jöreskog and 

Sörbom (1989)), and SAS (PROC CALIS (1990)).  The standard procedures in the existing 

computer packages assume that all the variables are normally distributed. The normality and 

linearity assumptions make the analysis and the interpretation simple, but their applicability in 

practice is often questionable. In fact, it is rather common in many applications to use the 

normality-based standard errors and model-fit test procedures when observed variables are highly 

discrete, bounded, skewed, or generally non-normal. Thus, it is of practical and theoretical 

interest to examine  the extent of the validity of the normality-based inference procedures for 

non-normal data, and to explore possible ways to parameterize and formulate a model to attain 

the wide applicability.  In the structural equation analysis literature, this type of research is often 

referred to as asymptotic robustness study. Most existing results on this topic have been for a 

single sample from one population. This paper addresses the problem for multiple samples or 

multiple populations, and provides a unified and comprehensive treatment of the so-called 

asymptotic robustness. The emphasis here is the suggestion of proper parameterization and 

modeling leading to practical usefulness and to a meaningful interpretation. It is the first study 

that shows robust asymptotic standard errors (a.s.e’s) and overall-fit measures for correlated 

samples with fixed factors for models with latent variables. Novel formulas are provided for the 
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computation of the a.s.e’s for the means and variances of the fixed correlated factors. Also, in the 

case for random correlated factors we proved that the a.s.e’s of the means for the factors are 

robust. It is shown numerically the superiority of the suggested a.s.e’s to the existing robust 

a.s.e’s that involve the computation of 3rd and 4th moments. The computation of such moments 

increases the variability of the a.s.e’s.    

       A general latent variable model for a multivariate observation vector )i(
jνννν with dimension 

1×)i(p  that is an extension of those models considered by Anderson (1987, 1989), Browne and 

Shapiro (1988), and Satorra (1992, 1993, 1994, 1995, and 1997), is 

(1)   (i)
)i(

j

)i(
j)i(

j
(i)
j

(i)(i)(i)
j ,n,,I; j, i, KK 11and  with ==










=+=

εεεε
ζζζζ

ξξξξξξξξΒΒΒΒββββνννν   .             

under the following set of assumptions. The model is extended with fixed and correlated-over-

populations latent variables. 

 

ASSUMPTION 1 

i) Case A:  )i(
jζζζζ  is  

  a) random with vector mean )i(ζζζζ
µµµµ  and covariance matrix )i(ζζζζ

ΣΣΣΣ  

  b) correlated over i (that is, the measurements of the j-th individual of the i1-th population are 

correlated with the corresponding measurements of the j-th individual  of the i2-th population). 

  c) independent over j (for each population the measurements of the observed individuals are 

indepoendent) 

or Case B: )i(
jζζζζ  is  

  a) fixed with limiting vector mean )i(ζζζζ
µµµµ  and limiting covariance  
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      matrix )i(ζζζζ
ΣΣΣΣ   

  b) correlated over i (see comments in Case A-b)) 

ii) ( )′= ',',' )i(
jL

)i(
j

)i(
j

)i(
j )i(εεεεεεεεεεεεεεεε K10 where  

  a)  ),(~ )i(
)i(

j
0

00 εεεε
ΣΣΣΣΝΝΝΝεεεε   

  b) )i(
jlεεεε  )i(L,,Kl 1=  are independent over i, l and j with mean 0 and covariance matrix )i(

lεεεε
ΣΣΣΣ . 

iii) The intercepts (i)ββββ , the coefficients (i)ΒΒΒΒ , and the variance matrices of the normally 

distributed errors )i(
0εεεε

ΣΣΣΣ can be restricted. Thus, they are assumed to be functions of a vector ττττ .  

iv) The mean vectors )i(ζζζζ
µµµµ , the variance matrices )i(ζζζζ

ΣΣΣΣ of the correlated factors, and the 

variance matrices of the non-normal vectors )i(
lεεεε

ΣΣΣΣ , )i(L,,Kl 1=   are assumed to be 

unrestricted. 

        A common approach to verifying the identification and fitting the model is to assume 

hypothetically that all  s '(i)
jξξξξ  are normally distributed and to concentrate on the first two 

moments of the observed vector (i)
jνννν . The issue for the so-called asymptotic robustness study is to 

assess the validity of such procedures based on the assumed normality, in terms of inference for 

unknown parameters, for a wide class of distributional assumptions on (i)
jξξξξ . It turns out that the 

type of parameterization used for model , restricting the coefficient  )()i( ττττΒΒΒΒ  but keeping the 

variances  )i(
lεεεε

ΣΣΣΣ  of the non-normal latent variables )i(
jlεεεε  unrestricted, plays a key role in the 

study. 

     The model, the notation, and the assumptions are explained by the following example, 

 



 
 
 
 
 

CORRELATED POPULATIONS AND SEM 
 

 5

EXAMPLE 1. A two-population (I=2) recursive system of simultaneous equations with errors in 

the explanatory variables is considered. The model is shown in (2). The system in (2) can be 

written in the following matrix form (i)
j

)i(
j

)i()i(
j

)i()i()i(
j e+++= ζζζζ∆∆∆∆ννννΓΓΓΓαααανννν  which has the form 

of model (1) with, )i()i()()i( )( ααααΓΓΓΓββββ 1−−= iI , ],[)( )()i()i()()i( ii II  1 ∆∆∆∆ΓΓΓΓΒΒΒΒ −−= , and 

)i(
j

)i(
j e=εεεε . The model is also a special case of the LISREL model with no latent variables in the 

dependent variables )i(y , that is )i()i( ηηηη=y , in the LISREL notation. The latent variables 

)(
j
1ζ and )(

j
2ζ  are correlated for each 5001 ,,j K= , with correlation 0.4. That is, the 

measurements of each individual from the second population are correlated with the 

measurements of one individual from the first population. The first population also has 500 

individuals that are independent from all the individuals of the second population. Note that the 

number of observed variables is different for the two populations. Four measurements 

)(
j
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j
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For )i(n,j K1= , with n(1)=1000 and n(2)=500. 
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       The parameters 21121   and       δδγββ ,,,,  do not depend on i. That is, they are common for 

the two populations. These parameters belong to the vector ττττ . The variables )(
j
1ζ and )(

j
2ζ  can 

be fixed or non-normal according to Cases A and B of Assumption 1. If all the errors are normal 

in accordance of the notation of Assumption 1 we have )i(
j

)i(
j e=0εεεε , while if )i(

j0e  is normal and 

all the other errors are non-normal then )i(
j

)i(
j e00 =εεεε , )i(

j
)i(

j ell =εεεε , for 

(i),L,  ;;,i KlK 1n,1,j 21 (i) ===  with 31 =)(L  and 22 =)(L . According to Assumption 1 

only the variances of the normal errors can be restricted to be the same over populations and these 

variances belong to the vectorττττ .  

Further discussion about the model in (1) is given in Section 2. The model in (2) of Example 1 is 

simulated in Section 4 and used as an example in this paper to explain the theory.   

     Latent variable analysis of multiple populations was discussed by Jöreskog (1971), Lee and 

Tsui (1982), Muthén (1989), and Satorra (1993a, 1993b). Consider multiple samples from several 

populations, as the model in (1)  holds for each population. Then, the interest may be in making 

inferences about the similarities and differences among populations. If similar variables are 

measured from each population, then the parameters or characteristics associated with a 

measurement process are assumed to be common over the samples. Even in such a case, some of 

the latent variables being measured can have different characteristics (in terms of different 

distributional parameters) over populations. The existing computer packages, LISREL and EQS, 

can analyze multiple populations simultaneously under the assumption that the populations 

(samples) are independent. Another type of the multi-population problem is concerned with the 

so-called correlated populations. The multiple samples may in fact come from the same 

population over different time periods (multivariate repeated measures) or may be spatially 

correlated. See, e.g., Papadopoulos and Amemiya (1995). Such correlated or dependent 
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population (or sample) cases have not been fully discussed in the literature, but are treated in this 

paper. For both types of multi-population problems, this paper considers simple model fitting and 

robust procedures that can be readily carried out using the existing packages and provides 

asymptotic standard errors (a.s.e’s) that have less variability than the existing robust a.s.e’s. We 

discuss a general multi-population model possibly containing fixed, non-normal, and normal 

components, and introduce a way to formulate and parameterize the model so that the multi-

population analysis can be conducted and interpreted meaningfully in practice, and so that the so-

called asymptotic robustness is achieved for inferences concerning parameters. 

     The so-called asymptotic robustness of normal-based methods for the latent variable analysis 

has been extensively studied in the last fefteen years. For, exploratory (unrestricted) factor 

analysis, Amemiya, Fuller, and Pantula (1987) proved that the limiting distribution of some 

estimators is the same for fixed, non-normal, and normal factors under the assumption that the 

errors are normally distributed. Amemiya (1986) treated functional and structural relationships 

with error covariance matrix as a function of an unknown parameter vector. The robustness of 

goodness-of-fit tests was studied by Amemiya (1985). Browne (1987) showed that the above 

results hold for a more general class of latent variable models assuming finite eighth moments for 

the factors and normal errors. Anderson and Amemiya (1988), and Amemiya and Anderson 

(1990) extended the above results to confirmatory factor analysis and non-normal errors; they 

assume finite second moments for the factors and errors. Browne and Shapiro (1988) introduced a 

general linear model, and used an approach based on the finite fourth moments that differs from 

that of Anderson and Amemiya. Considering the model of Browne and Shapiro, Anderson (1987, 

1989) included non-stochastic latent variables, and assumed only finite second moments for the 

non-normal latent variables. Latent variable models with mean and covariance structures were 

studied by Browne (1990) and Satorra (1992).  Satorra (1993a, 1993b, 1993c, 1994, 1995, 1997) 
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considered the multi-sample analysis of augmented-moment structures. Additional studies on the 

asymptotic robustness of latent variable analysis were conducted by Shapiro (1987), Mooijaart 

and Bentler (1991), and Satorra and Bentler (1990). 

     For the one-sample problem, asymptotic distribution-free (ADF) methods for the latent 

variable analysis were proposed to deal with non-normal data. See, e.g., Bentler (1983), Browne 

(1984), and Muthén (1989). The ADF methods turned out to be problematic in practice, since the 

fourth-order sample moments are very variable. See, e.g., Chou, Bentler, and Satorra (1991) and 

Muthén and Kaplan (1992). Robust estimation procedures resistant to outliers and contaminated 

model distributions were examined for structural models from one population. Krishnakumar and 

Ronchetti (1977) used a robust estimator that is a generalization of MLE for linear and non-linear 

simultaneous equations. Zamar (1989, 1992) defined orthogonal regression S and M estimates for 

error-in-variables models. Huggins (1996) also considered robust estimators for the parameters 

from a bifurcating autoregressive process for cell lineage data. 

     In this paper, mean and covariance structures are considered for a general multi-population 

model which contains fixed, normal and non-normal variables; some of the non-normal variables 

are allowed to be correlated over populations. We use the approach of Anderson and Amemiya 

(1988) to show that the normal-based methods are applicable for non-normal and non-random 

data assuming finite second-order moments. 

     Section 2 explains the suggested parameterization and the estimation procedure. The 

theoretical results are derived and discussed in Section 3. Section 4 reports results from 

simulation studies. 

 

2. Model, parameterization, and procedure. In this paper we study the model in (1) introduced 

in Section 1. We consider I populations and we assume that )i(n  individuals are sampled from 
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the ith population, I,,i K1= , and that  )i(p  measurements  are taken from each sampled 

individual in the  ith population. Denote the multi-sample data set by 

(i)(i)
j ,n,,I; j,  i: KK 11 ==νννν  where (i)

jνννν  is the 1×)i(p measurement vector from the j-th 

individual in the i-th  population. We consider a very general latent variable model that includes 

models widely used in single population cases and covers a large class of distributional situations 

in one form. To cover various distributional settings, it is convenient  to assume that the observed 

vector   (i)
jνννν  can be written as a linear combination of 2+)i(L  independent latent vectors, and 

that the latent vectors can be divided into three groups; a fixed or non-normal vector that is 

correlated over populations )i(
jζζζζ ,a random vector )i(

j0εεεε assumed to be normally distributed, and 

)i(L  non-normal vectors )i(
jlεεεε  )i(L,,Kl 1= . Note that the sample size  )i(n , the number of 

measured variables  )i(p , and the number of latent vectors )i(L  generally differ over populations 

(depend on i). This generality of the model allows us to deal with cases where slightly different 

variables are measured from different populations with possibly different structures. 

     All normally distributed latent variables are included in )i(
j0εεεε , and their distribution may 

possibly be related through ττττ  over populations, I,,i K1= . Other unspecified or non-normal 

random latent variables are divided into independent parts )i(L,,Kl 1= with unrestricted 

covariance matrices. In case A of Assumption 1 with fixed )i(
jζζζζ  can represent a situation where 

the interest is in the model fitting and estimation only for a given set of individuals and not for the 

populations. In addition, the fixed )i(
jζζζζ  can be used in an analysis conducted conditionally on a 

given set of )i(
jζζζζ  values. Such a conditional analysis may be appropriate when the individuals 

(i),n,j K1= do not form a random sample from the i-th population and/or when a component of 
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(i)
jνννν  represents some dependency over I populations. For example, the I populations may actually 

correspond to a single population at I different time points. With )i(
jζζζζ  being latent and fixed, the 

limits of the unobservable sample mean, )i(ζζζζ
µµµµ , and of the sample covariance matrix, )i(ζζζζ

ΣΣΣΣ , are 

assumed to be unknown and unrestricted. All )()i( ττττββββ  and )()i( ττττΒΒΒΒ  are expressed in terms of 

ττττ   representing known or restricted elements and allowing functional relationships over I 

populations. Even though ττττ  also appears in )()i( ττττΣΣΣΣ εεεε 0
, the elements of ττττ  are usually divided 

into two groups; one for )()i( ττττΣΣΣΣ εεεε 0
 and another for )()i( ττττββββ  and )()i( ττττΒΒΒΒ . Assumptions 1 iii) 

and iv) provide a particular identifiable parameterization for the model in (1). For a single 

population case with I=1, various equivalent parameterization have been used in practice. Some 

place restrictions on covariance matrices, e.g., by standardizing latent variables, and leave the 

coefficients unrestricted. The parameterization that leaves the covariance matrices (and possibly 

some mean vectors) of latent variables unrestricted and that places identification restrictions only 

on the coefficients and intercepts is referred to as the errors-in-variables parameterization. For the 

single population case, a parameterization with restricted covariance matrices generally has an 

equivalent errors-in-variables parameterization, and the two parameterizations with one-to-one 

correspondence lead to an equivalent interpretation. The one sample asymptotic robustness results 

have shown that the asymptotic standard errors for the parameters in the errors-in-variables 

formulation computed under the normality assumption are valid for non-normal data, but that the 

same does not hold under parameterization with restricted covariance matrices. For the multi-

sample the model in (1), we will show that the errors-in-variables type parameterization, given in 

Assumption 1, provides the asymptotic robustness. However, for the multi-sample case, there are 

other reasons for considering the parameterization specified in Assumptions 1 iii) and iv). As 
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mentioned earlier, a multi-population study is conducted because the populations are thought to 

be different, but certain aspects of the structure generating data are believed to be common over 

populations. Suppose that the same or similar measurements are taken from different populations. 

For example, a similar set of psychological tests may be given to a number of different groups, 

e.g., two gender groups, groups with different occupations or educational backgrounds, groups in 

varying socio-economic or cultural environments, or different time points in the growth of a 

group. The subject matter or scientific interest exists in making inferences about some general 

assertion that holds commonly for various populations. Such interest is usually expressed as 

relationships among latent (and observed) variables that hold regardless of the location and 

variability of the variables. Then, a relevant analysis is to estimate and test the relationships, and 

to explore the range of populations for which the relationships hold. The parameterization in 

Assumptions 1 iii) and iv)  with 

unrestricted )i(
lεεεε

ΣΣΣΣ  and generally structured )()i( ττττΒΒΒΒ  corresponds very well with the scientific 

interest of the study, and allows the interpretation consistent with the practical meaning of the 

problem. Note that )i(
lεεεε

ΣΣΣΣ , I,,i K1= , )i(L,,Kl 1= , are unrestricted covariance matrices and do 

not have any relationships over i or l , and that )()i( ττττββββ  and )()i( ττττΒΒΒΒ can have known elements 

and elements with relationships over i and l . On the other hand, the covariance matrix )i(
0εεεε

ΣΣΣΣ  of 

the normal latent vector )i(
j0εεεε  can have restrictions or equality over populations through ττττ . This 

gives the generality of the model in (1) with only one normal latent vector, because a block 

diagonal )i(
0εεεε

ΣΣΣΣ  corresponds to a number of independent sub-vectors in the normal )i(
j0εεεε . In 

addition, the possibility of restrictions on )i(
0εεεε

ΣΣΣΣ  over populations can also be important in 

applications. For example, if the same measurement instruments are applied to different samples, 
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then the variances of pure measurement errors may be assumed to be the same over the samples. 

However, the normal assumption for pure measurement errors is reasonable in most situations, 

and such errors can be included in )i(
j0εεεε .  Assumptions 1 iv) and v) do not rule out latent variable 

variances and covariances with restrictions across populations, but does require the latent 

variables with restricted variances to be normally distributed. This requirement is not very 

restrictive in most applications, as discussed above, but it is needed to obtain the asymptotic 

robustness results given in the next section. The general form of )()i( ττττββββ and the inclusion of 

fixed latent vector allow virtually any structure for the means of the observed (i)
jνννν . Hence, the 

errors-in-variables type parameterization in Assumption 1 iii) can solve the identification 

problem, provides a general and a convenient way to represent the subject-matter theory and 

concepts, and produces asymptotic robustness results presented in the next section. 

     For the multi-sample data (i)
jνννν in (1), let )i(νννν  and )i(

ννννS  be the sample mean vector and sample 

covariance matrix (unbiased) for the i-th population I,,i K1= . It is assumed that the sample 

covariance matrices )i(
ννννS  are non-singular with probability one. Define 

(3)                         







=

)(vec )i(

)i(
)i(

νννν

νννν
S

c ,         
















=
)I(

)(

c

c
c M

1

.                           

       We consider model fitting and estimation based only on c, because such procedures are 

simple and have some useful properties.  Also note that Assumption 1 does not specify a 

particular distributional form of observations beyond the first two moments, and that no particular 

correspondence or relationship between samples is specified in Assumption 1. Let θθθθ  be a 1×θθθθd  

vector containing all unknown parameters in )()(E θθθθγγγγ=c  under the model in (1) and 

Assumption 1, and let ),( ′′′= υυυυττττθθθθ  where ττττ  and υυυυ  contain the parameters mentioned in 
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Assumptions 1 iv) and 1 v), respectively. That is, ττττ  contains parameters that can be restricted 

while υυυυ  contains that parameters that can not be restricted over populations.  Under the model in 

(1) and Assumption 1, we compute the following expected means,  

                      )(E)( )i()i( ννννθθθθµµµµνννν =  and )(E)( )()i( iSνννννννν θθθθΣΣΣΣ = . 

     For the estimation of θθθθ , we consider an estimator θθθθ
)

 obtained by minimizing over the 

parameter space 

(4)       ∑
=

−− +−−=
I

i

)i()i()i()i()i()i( p|)(|log)]([tr{n)(Q
1

11 θθθθΣΣΣΣθθθθΣΣΣΣθθθθ νννννννννννννννν SS   

                        )]()[(])([ )i()i()i()i()i( θθθθµµµµννννθθθθΣΣΣΣθθθθµµµµνννν νννννννννννν −′−+ −1              

The obtained estimator θθθθ
)

 is a slight modification of the normal maximum likelihood estimator 

(MLE). The exact normal MLE can be obtained if )i()i()i( ]n/)n[( ννννS1−  is used in place of 

)i(
ννννS . Asymptotic results are equivalent for the two estimators. We consider θθθθ

)
 because it can be 

computed by the existing computer packages. The form of )(Q θθθθ corresponds to the so-called 

mean and covariance structure analysis. But, the existing covariance structure computer packages 

without mean structure can be used to carry out the minimization of )(Q θθθθ using a certain 

technique. See, e.g., the manuals of EQS and LISREL. In the next section, asymptotic distribution 

results for θθθθ
)

  are derived for a broad range of situations. 

 

3. Theoretical results. The main results of this paper are presented in Theorem 1. We now define 

the following set of assumptions for the model in (1) that assumes normal and independent 

variables over populations under the same parameterization as in Assumption 1, 
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ASSUMPTION 1B) 

i) ),(~ )i()i(
)i(

j ζζζζζζζζ
ΣΣΣΣµµµµζζζζ N and independent for all i and j (i),n,,I; j,i KK 11 ==  

ii) ),,(~ )i(
)i(

l
l εεεε

ΣΣΣΣεεεε 0N  for all )i(L,,, Kl 10= . 

iii) (i)ββββ , (i)ΒΒΒΒ , and )i(
0εεεε

ΣΣΣΣ can be restricted and they are assumed to be functions of a vector ττττ .  

iv) )i(ζζζζ
µµµµ , )i(ζζζζ

ΣΣΣΣ and )i(
lεεεε

ΣΣΣΣ , )i(L,,Kl 1=   are assumed to be unrestricted. 

 

      Theorem 1 shows similarities and differences of the limiting results for the two different sets 

of Assumptions 1 and 1B). 

 

THEOREM 1. Assume that the model in (1) holds under Assumption 1, in addition we assume 

that  

ASSUMPTION 2. )i(
)i(

n r
n

nlim
m

=∞→ , where }n,,nmin{n )I()(
m K1=  and 

∑
=

=
I

i

)i(nn
1

, 

ASSUMPTION  3. ))(( 00 >∃>∀ δε |)()(| 0θθθθγγγγθθθθγγγγ −∋ ⇒< δδδδ 0θθ −  ε<  

where xxx ′=  and 0θθθθ  is the limiting true value of θθθθ . 

ASSUMPTION 4. For all I,,i K1= , )((i) ττττββββ , )((i) ττττΒΒΒΒ , and )()i( ττττΣΣΣΣ εεεε 0
 are twice continuously 

differentiable in the parameter space of ττττ . The columns of the matrix ττττθθθθγγγγ ′∂∂ /)( 0 are linearly 

independent. Then, 

       i)                )(
NI

)(
G

ττττττττ VV =   
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where )(
G
ττττV  and )(

NI
ττττV  the asymptotic covariance matrices of ττττ)   under the general Assumption 1 

and under the standard Assumption 1B), respectively, (the initials NI stand for Normality and 

Independence over populations and G for the general set of Assumptions 1). The matrix )(
G
ττττV is a 

part of the matrix )(
G
θθθθV that is the asymptotic covariance matrix for the estimated vector θθθθ . 

     ii) for the asymptotic covariance matrices for the vector means )i(ζζζζ
µµµµ) it holds that 

          1) In Case A of Assumption 1 with fixed )i(
jζζζζ it holds that  

     (5)           )i(

)i()i( )(

NI

)(

G ζζζζ

µµµµµµµµ
ΣΣΣΣζζζζζζζζ −=VV   

    2) In Case B of Assumption 1 with random )i(
jζζζζ it holds that 

     (6)            
)(

NI

)(

G
)i()i( ζζζζζζζζ

µµµµµµµµ
VV =   

iii) for the asymptotic covariance matrices for the vector  )(vec )i(ζζζζ
ΣΣΣΣ
)

 

    1) In Case A of Assumption 1 with fixed )i(
jζζζζ it holds that   

     (7)         )(
n

)i()i(

)i()i(

)i(

))(vec(

NI

))(vec(

G ζζζζζζζζ

ΣΣΣΣΣΣΣΣ
ΣΣΣΣΣΣΣΣζζζζζζζζ ⊗−= 2VV   

   2) In Case B of Assumption 1 with random )i(
jζζζζ , and assuming that )i(

jζζζζ  have finite fourth 

moments, it holds that      

    (8)      )(
n

)](vec[Var
n

)i()i(

)i()i(

)i(
)i()i(

)i(

))(vec(

NI

))(vec(

G ζζζζζζζζ

ΣΣΣΣΣΣΣΣ
ΣΣΣΣΣΣΣΣζζζζζζζζζζζζζζζζ ⊗−′+= 21VV  

iv) The function )(Q θθθθ , defined in (4), evaluated on its minimum θθθθ
)

 converges to a chi-square 

distribution, 2
q

d)(Q χχχχθθθθ →
)

, with ∑
=

−++=
I

i

)i()i()i( d]/)p(pp[q
1

21 θθθθ . 
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PROOF OF THEOREM 1. For the proof we need the following three lemmas. 

 

LEMMA 1. Assume that the model in (1) holds. If Assumptions 1, 2 and 3 hold then as ∞→mn  

(9)                                          0θθθθθθθθ →p)
.  

PROOF OF LEMMA 1: From Assumption 1 and the law of large numbers it holds that 

)(p
0θθθθγγγγ→c  which implies .)(Q p 00 →θθθθ  Since , 0 θθθθθθθθ ∀>)(Q and θθθθ

)
 minimizes Q, we 

have .)(Q p 0→θθθθ
)

From the last result and Assumption 2 we get )()( 0
p θθθθγγγγθθθθγγγγ →

)
and (9) 

holds from Assumption 3.  

 

LEMMA 2. Let ( )′= ',' nn υυυυττττθθθθ 0 where 0ττττ is the true value of ττττ , nυυυυ contains the vectors )i(ζζζζ ,  

)(vec )( iSζζζζ
, and )(vec )i(

lεεεε
S , (i)L,1,= Kl , for all I,K1,=i . Then, under the model and 

assumptions considered in Lemma 1, and under Assumption 4 it holds that 

(10)                    )1(o)]([n)(n pn0n +−=− θθθθγγγγθθθθθθθθ cA
)

                                                                 

where A0 is free of )i(n , and equal to  

(11)                            1
00

1
0

1
00 ΩJ)JΩ(JA −−− ′′=0 ,  

where ))(( 00 θθθθγγγγJJ =   is the Jacobean of  )(θθθθγγγγ evaluated at 0θθθθ ,                                  

)](r[)](r[)( )I()I()()(
0

1
0

111
0

11
0   θθθθΩΩΩΩθθθθΩΩΩΩθθθθΩΩΩΩΩΩΩΩ −−−− ⊕⊕== L , and                                     

)]}()([{)()( )i()i()i()i( θθθθΣΣΣΣθθθθΣΣΣΣθθθθΣΣΣΣθθθθΩΩΩΩ 1111

2
1 −−−− ⊗⊕= .  

Recall that the ratios r(i)  were defined in Assumption 2 and c in (3).  The symbol ⊕  is the direct 

sum for matrices. 
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ii)   Also, it hold that  

(12)            )(o)](])([n)(Q pnn 10 +−′−= θθθθγγγγΜΜΜΜθθθθγγγγθθθθ [cc
)

 

with )( 0
1

00 ΑΑΑΑΙΙΙΙΩΩΩΩΜΜΜΜ −= − . 

PROOF OF LEMMA 2. i) From Taylor’s expansion and Lemma 1 it turns out that there exists 

*θθθθ  on the line segment between θθθθ
)

 and nθθθθ such that  

(13)            ))]((Q[)](Q[)](Q[ n
*

n θθθθθθθθθθθθΗΗΗΗθθθθθθθθ −+=
))

JJ                                                                            

where J and H are the Jacobean and Hessian matrices, respectively. 

Now for the Jacobean and Hessian matrices we proved that, 

(14)           )n(o)]()](Q[ /
mpnn

211
02 −− +−′−= θθθθγγγγΩΩΩΩθθθθ [cJJ 0                                                                      

(15)              00 JJ 1
02 −′→ ΩΩΩΩθθθθΗΗΗΗ p* )](Q[                                                                                                        

The result in (10) follows if we use (14), (15), and the fact that  0=)](Q[ θθθθ
)

J  in (13). 

          ii) After doing several matrix modifications we get the following quadratic form, 

(16)       )(o)]()[(])([n)(Q p 11 +−′−= − θθθθγγγγθθθθΩΩΩΩθθθθγγγγθθθθ
))))

cc .                                                                           

Also, there exists *θθθθ  on the line segment between θθθθ
)

 and nθθθθ such that  

(17)                ))](([)()( n
*

n θθθθθθθθθθθθγγγγθθθθγγγγθθθθγγγγ −=−
))

J .                                                                                            

From equations (17) and (10) we get that 

(18)          )
n

(o])([][)( pn
1

00 +−−=− θθθθγγγγΙΙΙΙθθθθγγγγ cAJc
)

.                                                                           

and the result follows from (16) and (18).  

 

LEMMA 3. For the model in (1)  under Assumption 1 it holds that  
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i)      

(19)     wc  ΕΕΕΕθθθθγγγγ =− )( n                                                 

where ΕΕΕΕ  is a constant matrix, w  consists of the subvectors I,,)i( K1,=i w , and )i(w  consist 

of the subvectors )i(εεεε , )(vec )i()i(
00 εεεεεεεε

S , )(vec )i()i( yxS ,  for all )i(x and  )i(y such that 

)i()i( yx ≠ ,  1 ,I;, i K=  )i(
L

)i()i()i()i()i(
)i(,,,,, εεεεεεεεεεεεζζζζ K10=yx . 

ii) The limiting distribution of wn  is the same under Assumptions 1 and under 1B). 

PROOF OF LEMMA 3. i) We proved that the components of )( nθθθθγγγγ−c are written in the 

following form 

(20)                         







=− )i(

)i(
n

)i()i( )(
εεεε

ΒΒΒΒθθθθµµµµνννν νννν
0

 

(21)            
′












−=− )i()i(

n
)i()i()i()i()i(

)i()i(

)i()i( )( ΒΒΒΒΒΒΒΒθθθθΣΣΣΣ
εεεεεεεεεεεεζζζζεεεε

εεεεζζζζ
νννννννν DSS

S0
S  

where )i(
)i(L

)i()i( εεεεεεεεεεεε SS0D ⊕⊕⊕= K
1

. The result in (19) follows by noting in equations (20) 

and (21) that the components of )( nθθθθγγγγ−c  are products of constant matrices (functions of )i(ΒΒΒΒ ) 

and the subvectors of )i(w . 

     ii) Note that the matrix )i()i()i( εεεεεεεεεεεε DS −  does not depend on )i()i(
ll εεεεεεεε

S  for )i(L,,Kl 1= . Also 

note that within the populations for each (i) the subvectors of  )i(nw  are independent and their 

limiting distributions do not depend on the non-normality of the latent variables and on the fixed 

latent variables in Case A (See Anderson (1989), Theorem 5.1). Now between the populations, 

the limiting covariance between )i(w and )m(w for mi ≠  is 0 despite the correlation of )i(
jζζζζ  and 
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)m(
jζζζζ  for each j. That holds because the limiting covariance between )(vecn )i()i( εεεεζζζζ

S  and  

)(vecn )m()m( εεεεζζζζ
S is 0 since the errors are assumed to be independent over populations.   

       Now, we return to the proof of Theorem 1. For, 

i)Lemmas 2i) and 3i) show that )(n 0ττττττττ −) is a linear combination of wn and thus the result 

follows from Lemma 3ii). 

     ii) and iii) For cases ii) and iii) we use the following two equations, respectively, 

(22)           )(n)(n)(n )i()i()i()i(
)i()i( 00

ζζζζζζζζζζζζζζζζ
µµµµζζζζζζζζµµµµµµµµµµµµ −+−=− ))  

(23)           )(vecn)(vecn)(vecn )i()i()i()i()i()i(
00
ζζζζζζζζζζζζζζζζζζζζζζζζ

ΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣΣ −+−=− SS
))

 

where 0
)i(ζζζζ

µµµµ  and 0
)i(ζζζζ

ΣΣΣΣ  are the true values of the corresponding parameters. In both ii) and iii), for 

Case A, with fixed factors, we need the limiting distributions of the first vectors in the second 

parts of equations (22) and (23). For Case B with random factors we need the limiting 

distributions of the vectors in the first parts of equations (22) and (23). Since the procedure is the 

same for ii) and iii) we are going to explain the proof only for part iii). So for Case A in (23) we 

compute the limiting covariance matrices of all three vectors under the Assumption 1B), 

(24)                     )(
n

)i()i(

)i(

)i(

))(vec(

NI ζζζζζζζζ

ΣΣΣΣ
ΣΣΣΣΣΣΣΣζζζζ ⊗+= 2

2VV . 

From Lemmas 2i) and 3 it follows that the first vector of the second part of equation (23) has the 

same limiting distribution under Assumption 1, with fixed factors, and under Assumption 1B). 

Thus 
))(vec(

G
)i(ζζζζ

ΣΣΣΣ
VV =2 , and the result follows by solving (24) for 

))(vec(

G
)i(ζζζζ

ΣΣΣΣ
V . 

      Now for Case B in iii) we compute the limiting covariance matrices under Assumption 1B) 

and under Assumption 1 and we get, respectively, 
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(25)                     )(
n

)i()i(

)i(

)i(
*
NI

))(vec(

NI ζζζζζζζζ

ΣΣΣΣ
ΣΣΣΣΣΣΣΣζζζζ ⊗+= 2VV  

(26)                     )](
n

)i()i(
)i(

*
G

))(vec(

G
)i( ′

+= ζζζζζζζζζζζζ
ΣΣΣΣ

Var[vec1VV  

Again, from Lemmas 2 and 3 it follows that *
NI

*
G VV = . The result follows by solving (25) for 

*
NIV  and substituting the result in (26). 

        iv) Lemmas 2ii) and 3i) show that )(Q θθθθ
)

is a quadratic function of wn and the result 

follows from Lemma 3ii) and the known result that 2
q

d)(Q χχχχθθθθ →
)

 under Assumption 1B).  

      To derive large sample results for θθθθ
)

 minimizing (4) under the model in (1) and Assumption 

1, we consider the case where all )i(n  increase to infinity at a common rate, and use mn  as the 

index for taking a limit in Assumption 2. Assumption 3 is a standard identification condition used 

in Lemma 1. Note that the true value of θθθθ  in Case A of Assumption 1 with fixed variables 

depends on )i(n , since it contains )i(ζζζζ  and )i(ζζζζ
S . Thus, we denote the limit of the true value as 

0θθθθ . Lemma 1 gives the consistency of the estimator θθθθ
)

 minimizing (4) for the model in (1). 

Hence, under very weak distributional specifications in Assumption 1, the estimator θθθθ
)

 is 

consistent for the limiting true value 0θθθθ . In fact, it is clear from the proof that the consistency of 

θθθθ
)

 holds for any general mean and covariance structure model )(E)( c=θθθθγγγγ  

satisfying )(p
0θθθθγγγγ→c  . To characterize the limiting behavior of θθθθ

)
 in more detail, especially 

for the assessment of the so-called asymptotic robustness properties, it is convenient to consider 

an expansion of θθθθ
)

, not around the true value or the limiting true value 0θθθθ  but around some other 

quantity nθθθθ  defined in Lemma 2, that depends on the unobservable sample moments of the non-
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normal latent variables )i(ζζζζ  and )i(
lεεεε  )i(L,,Kl 1= .  Thus, the limiting true value 0υυυυ  consisting 

of the true covariance matrices of the random latent variables is replaced in nθθθθ  by nυυυυ  consisting 

of the unobservable sample moments. While statistical inference is to be made for the true value 

of θθθθ , nθθθθ  with an artificial quantity nυυυυ  plays a useful role in assessing the property of ττττ)  in  θθθθ
)

, 

as well as in characterizing the limiting distribution of the whole θθθθ
)

 without specifying any 

moments for )i(ζζζζ  and )i(
lεεεε  )i(L,,1Kl = ,  higher than the second order. To obtain an expansion 

of θθθθ
)

 around nθθθθ , we need some smoothness conditions for )((i) ττττββββ , )((i) ττττΒΒΒΒ , and )()i( ττττΣΣΣΣ εεεε 0
,  

and the full column rank of the Jacobean matrix )]([ 0θθθθγγγγJ  that are stated in Assumption 4.  

Since the linear independency of the columns of )]([ 0θθθθγγγγJ  associated with the υυυυ  part of θθθθ  is 

trivial, we need to assume only that the ττττ  part of the model is specified without any redundancy. 

Thus in Assumption 4 we just assume that  ττττθθθθγγγγ ′∂∂ /)( 0  is of full-column rank, Lemma 2 

expresses the leading term of )(n nθθθθθθθθ −
)

 in terms of )( nθθθθγγγγ−c . Note that the use of nθθθθ  in  

Lemma 2 produced an expansion of θθθθ
)

 around nθθθθ   with the existence of only second moments of 

)i(ζζζζ  and )i(
lεεεε  )i(L,,Kl 1= . It can be shown from the proof that the expansion in  Lemma 2 

holds for the general model )(E)( c=θθθθγγγγ  and for any nθθθθ  with 0θθθθθθθθ →p
n  provided that 

)]([n nθθθθγγγγ−c  converges in distribution. But, the special choice of nθθθθ   for the model in (1) 

makes the result of Lemma 2 practically meaningful. Lemma 3 is actually the key tool in the 

proof that shows asymptotic robustness. It expresses )]([n nθθθθγγγγ−c  in terms of wn  which 

has the same limiting distributions under Assumptions 1 and 1B). Thus, the main difficulty in the 

proof of Theorem 1-i) is to express )(n 0ττττττττ −)  in terms of a vector wn that its limiting 
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distribution does not depend on the existence of fixed, non-normal, and correlated-over-

population variables. Similarly, we proved Theorem 1 iv) by expressing )(Q θθθθ
)

 as a quadratic 

function of wn . The formulas in (5) and (7) in Theorem 1 show what corrections should be 

made when we have fixed variables in order to get correct asymptotic standard errors for 

)i(ζζζζ
µµµµ) and )(vec )i(ζζζζ

ΣΣΣΣ
)

. These results are novel even for the case with one population. The formula 

(6) in Theorem 1-ii)-2) shows that the asymptotic standard errors for )i(ζζζζ
µµµµ) are robust. Equation 

(8) in Theorem 1-iii)-2) gives the limiting covariance matrix for )(vec )i(ζζζζ
ΣΣΣΣ
)

 when )i(ζζζζ  are 

random. The formula (8) involves the computation of 4-th order cumulants of the latent variables 

)i(ζζζζ in practice. This is possible in practice and we obtain satisfactory results when we use the 

errors-in variables parameterization and have normal errors. For instance in Example 1, the model 

in (2) with normal errors the 4th order cumulants for )i(ζζζζ  equal to 4th order cumulants of the 

observed variables for )i(x , since the 4th order cumulants of the normal errors are equal to 0. This 

technique was used in our simulation study and the results are illustrated in the next section. Note 

that in most practical cases the measurement errors follow a normal distribution.  

     Although the paper is referred to the multi-sample case the same theory and methodology can 

be applied to longitudinal data. That is, two different applications, correlated populations and 

panel data, can be considered by fitting the same kind of modeling and applying the results 

presented in this paper. A similar method developed for longitudinal data, known as the General 

Estimating Equation (GEE) method, was proposed by Liang and Zeger (1986). The GEE method 

was proposed for generalized linear models with univariate outcome variables. In this paper, 

several response variables are observed and their relationships are explained by a few latent 

variables within the time points. It can be shown that a special case of the GEE method, using the 
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identity matrix as the 'working' correlation matrix, is a special case of the model considered in 

this paper. This can be done by treating the outcome variable and the covariates of the 

generalized linear models as observed variables in the model considered in this paper and setting 

latent variables equal to covariates by fixing error variances equal to zero. Thus, the results 

presented in this paper can be also applied to simpler models such as generalized linear models 

for longitudinal data. On the other hand, the use of a 'working' correlation matrix as the one used 

in the GEE method, could be also used in this methodology in order to increase the efficiency of 

the method.  

       Now we define a generalized version of the so-called sandwich estimator used by the GEE 

method for generalized linear models with the identity matrix as the 'working' correlation matrix, 

and also used by Satorra (1992, 1993A,B, 1994, 1997) for latent variable models. We generalize 

this matrix for correlated populations and we are going to compare it with our proposed matrix 

)(
G
θθθθV  defined in Theorem 1 theoretically and numerically. A generalized version of the sandwich 

(S) estimator is 

(27)                                ′= 00 ΑΑΑΑΑΑΑΑθθθθ )(E)(
S dSV                                     

where 0ΑΑΑΑ  is defined in (11) and )(E dS  is the expected mean of the sample matrix dS that 

involves 3-rd and 4-th order sample moments defined as, 

                        





















=
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′−−

=
]))([(vec )i()i(

j
)i()i(

j

)i(
j(i)

j νννννννννννννννν
νννν

d , where (i),n,j;I,,k,i KK 1 1 ==  and 

=(ik)n # of correlated individuals between the i-th and the k-th populations. Note the form of the 

matrix )(
S
θθθθV  in (27) can be derived from Lemma 2. The equation (12) in Lemma 2 also holds if 

we replace nθθθθ  by the true value of θθθθ  and the result follows by noting that 

)(E)]([Var dSc =− 0θθθθγγγγ . Theorem 1 actually gives an alternative form of some of the parts 

of the matrix )(
S
θθθθV . The parts of the matrix )(

G
θθθθV  defined in Theorem 1 are actually theoretically 

exactly the same as the corresponding parts of the matrix )(
S
θθθθV . In practice the matrix 

)( 00 θθθθΑΑΑΑΑΑΑΑ =  is estimated by )(θθθθΑΑΑΑΑΑΑΑ
))

=0  and the matrix )(E dS  is estimated by dS . Despite 

the two matrices )(
G
θθθθV  and )(

S
θθθθV  are theoretically equal in practice the asymptotic standard errors 

(a.s.e.’s) computed by the matrix )(
G
θθθθV  have less variability than the a.s.e.’s computed by the 

matrix )(
S
θθθθV . This happens because the estimation of )(

S
θθθθV  involves third and fourth order 

moments that are more variable than the second moments of the matrix )(
G
θθθθV . The matrix )(

G
θθθθV  

involves 4-th moments only in the formula of Theorem 1-iii)-2 but these moments do not affect 

the computation of the other a.s.e.’s. This advantage of using the matrix )(
G
θθθθV  is shown in the 

simulation study in the next section.  

 

4 Simulation Study. We simulate the model in (2) of Example 1. A sample from both 

populations was generated 1,000 times. The simulation was done twice, one time with fixed )i(ζ  

and the other time with random )i(ζ , Cases A and B of Assumption 1, respectively. In both cases 

)(
j
1ζ  and )(

j
2ζ  are related (correlated over populations), and were generated as linear 
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combinations of chi-square random variables with 10 degrees of freedom. In Case A, a sample of 

),( )(
j

)(
j

21  ζζ  was generated with sample means, variances, and covariance: 9541 .)( =ζ , 

9592 .)( =ζ , 9712
1 .s )( =ζ , 9512

2 .s )( =ζ , and 36121 .s )()( =ζζ , respectively, and the set 

of ),( )(
j

)(
j

21  ζζ  was used in all 1,000 Monte Carlo samples. In Case B, 1,000 independent 

samples were generated for },5001,j ,  ,1000;1,j ,{ )2(
j

)1(
j KK =ζ=ζ . The true means, 

variances, and covariance of )(
j
1ζ  and )(

j
2ζ  are 51 =)(ζµ , 102 =)(ζµ , 22

1 =)(ζσ  , 22
2 =)(ζσ , 

and ..)()( 4121 =ζζσ  Note that the above means and variances are estimated but not the covariance 

)()( 21 ζζσ , according to the estimation method that we suggest. Note that we suggest this method 

for several populations with quite unbalanced data. In this study, it is easy to use the full 

likelihood and estimate the covariance )()( 21 ζζσ , but this is not always true in more complicated 

studies. By not estimating some of the covariances between the two populations we loose some 

efficiency, e.g., larger asymptotic standard errors (a.s.e.’s). We discuss the efficiency of the 

method in more detail later in this section. 

      In both Cases A and B, 1,000 samples were generated for independent 

)i(el , (i),L,,;  , i Kl 1021 ==  with 31 =)(L  and 22 =)(L . The errors )i(
je0 , i=1,2, are normally 

distributed with mean 0 and unknown variance 2

0
)i(e

σ  while all the other errors )i(
jel  for 

(i),L,;  , i Kl 121 ==  were generated from a chi-square distribution with 10 degrees of freedom, 

2
10χ , with adjusted mean 0 and variance 2

)i(el
σ . The variance for )i(

je0  is common for the two 

populations, 222
2

0
1

00
)()( eee

σσσ == .  The true values, in both cases with fixed and random )i(
jζζζζ , for 

the error variances are 1022

10
.o

e
o
e )i()i( == σσ  and 2022

132
.o

e
o
e )i()i( == σσ  and for the vector ττττ  is, 
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0.1) 1, 1,00 0.1, .1,0 1, 2, 1,0 .( −−−=ττττ . The parameters of ττττ  are shown in the first column of 

Table 1. In accordance with the notation of this paper, the vector ),( ′′′= υυυυττττθθθθ  where υυυυ  contains 

2
)i(el

σ  (i),L,;  , i Kl 121 ==  and the means and variances of )i(
jζζζζ  21, i = . To estimate θθθθ  we 

use normal MLE by minimizing (4) despite the appearance of fixed and non-normal variables and 

when we estimate the parameters we are pretending that we do not know the true values of the 

parameters.  

      Some of the results in the simulation study are shown in Table 1. Columns 2, 4, and 6, show 

results from Case A with fixed )i(
jζζζζ  while Columns 3, 5, and 7, show results from Case B with 

random )i(
jζζζζ .  Columns 2 and 3, of Table 1 compare the a.s.e.’s, G-se, computed by the matrix 

)(
G
ττττV  in Theorem 1-i), with the Monte Carlo standard errors, MC-se. All the ratios are 1 or very 

close to 1 and that means that the proposed a.s.e.’s have very small bias. Bias exists because we 

use the a.s.e.’s as estimates for the true s.e.’s of the parameters in finite samples. Actually Lemma 

1 proves that the bias converges to 0 as the sample sizes increase to infinite. In this study for 

sample sizes 00011 ,n )( =  and 5002 =)(n  the bias is negligible.  

      Now we compute Monte Carlo standard errors for the a.s.e.’s computed by the matrix )(
G
θθθθV , 

(G-MCse), and for the a.s.e.’s computed by the matrix )(
S
θθθθV , ( S-MCse), defined in (27). The 

ratio ( S-MCse)/(  G-MCse) compares the variability of the two different estimates of the a.s.e.’s. 

This ratio is computed for the parameters in ττττ  and the results are shown in Columns 4 and 5 of 

Table 1 for both cases with fixed and random )i(
jζ . All the ratios are significantly larger than 1 

and this fact indicates that the a.s.e.’s computed by the sandwich estimator )(
S
θθθθV  have larger 

variability than the a.s.e.’s computed by our suggested estimator )(
G
θθθθV .   
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       Now, as to the efficiency of the method, we computed the a.s.e.’s under the full likelihood 

(FL) and under the reduced likelihood (RL) given in (4). The ratio of the two a.s.e.’s, 

(28)                            
MCse-FL
MCse-RLefficiency =                                                

is given for all the parameters in ττττ  in the last two columns of Table 1. These ratios actually show 

the efficiency of the method relative to the FL. In both cases the efficiency is very satisfactory 

since the ratios are close to 1. The efficiency loss is very small for Case A with fixed )i(
jζζζζ  and 

relatively small for Case B with random )i(
jζζζζ . 

       For the parameters )( 1ζµ )( 2ζµ
2

1 )(ζσ
2

2 )(ζσ  we used the formulas in (5), (6), (7), and (8) 

provided in Theorem 1-ii) and -iii) and we derived similar results to the previous ones. It should 

be pointed out that the sandwich estimator does not provide correct a.s.e.’s for Case A with fixed 

)i(
jζζζζ  for the parameters )( 1ζµ )( 2ζµ

2
1 )(ζσ

2
2 )(ζσ . Our novel formulas in (5) and (7) show what 

corrections should be made in order to obtain correct a.s.e.’s in this case. The a.s.e.’s are 

evaluated at the estimated value of θθθθ , θθθθ
)

. Note that all the a.s.e.’s are functions of θθθθ  except the 

ones for 2
1 )(ζσ

) 2
2 )(ζσ

) (elements of the matrix )i(ζζζζ
ΣΣΣΣ
)

 in Theorem 1) that require 4-th moments (or 

cumulants) for )i(
jζζζζ . In general, the fourth order cumulants, ψ , follow the following property: if 

zyx += , with y and z  independent random variables, then zyx ψψψ += . Thus, in the model 

used in the simulation it holds that 0+= )i()i(x ζψψ  , since the errors, )i(
je0 , are assumed to be 

normal having 4th order cumulants equal to 0. Thus, the sample 4th order cumulants of )i(x  used 

for the computation of the a.s.e.’s for 2
1 )(ζσ

) 2
2 )(ζσ

) .  
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     The a.s.e.'s can be used for hypothesis testing of the parameters. The power of the tests is also 

robust when the sample sizes are quite large due to the applicability of the multivariate central 

limit theorem. In the above simulation study we use, as an example, H0: 01 ====δ   versus H1: 

01 <<<<δ     in Case A with fixed )i(
jζζζζ . Using level of significance 050.====α ,  H0 is rejected when z 

< -1.645 where  2
1 1δσδ ))

/z ==== . Thus, the expected power (EP) is approximately 

(29)              EP( *
1δ )= 9560

for  seMC
6451

1

1 .).(
*

=
−

+−
δ

δΦ , 

where theΦ  function gives the standard cumulative normal distribution and we compute the 

power for the actual value of 1δ , *
1δ =-0.01. We also compute the simulated power (SP) as  

(30)               SP = 9670
0001

6451)] of (a.s.e.[ that  timesof # 11 .
,

./
=

−<δδ
))

.   

Thus, the results support the robustness of power for non-normal and correlated populations. 

      The robustness of the chi-square test statistic is shown in Table 2 for Case A with fixed )i(
jζζζζ .  

The mean and the variance of the 1,000 simulated values of )(Q θθθθ
)

in (4) are close to the expected 

6 and 12 respectively. Also, the simulated percentiles, in the second row, are close to the expected 

ones given in the first row of Table 2. For similar studies using simper models, see Satorra 

(1993b, 1997) and Papadopoulos and Amemiya (1994). 

      In summary, the model in (1) with the errors-in-variables parameterization can formulate the 

multi-population analysis in a meaningful fashion. The corresponding statistical analysis under 

the pseudo normal-independence model gives a simple and correct way to conduct statistical 

inferences about the parameter vector ττττ  without specifying a distributional form or dependency 

structure over populations. In practice, ττττ  contains all the parameters of direct interest. The 

asymptotic covariance matrix and standard errors can be readily computed using the existing 
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procedures, and provide a good approximation in moderately sized samples. The proposed a.s.e.’s 

have smaller variability than the variability of the robust sandwich estimator, provide high 

efficiency relative to the full-likelihood method, and can be used for hypothesis testing with 

robust power. For instance, in the simulation study for one of the most important parameters 1δ , 

in Case A with fixed )i(
jζζζζ , the variability ratio is 1.65 (see Table 1), the efficiency ratio is 1.00 

(see Table 1), and the power of the test H0: 01 ====δ  versus H1: 01 <<<<δ is 0.967. That is, if the 

standard deviation of our proposed a.s.e. for 1δ  is 1 then the standard deviation of the a.s.e. for 

1δ  computed by the robust sandwich estimator is 1.65. Also, our proposed a.s.e. for 1δ  is close 

enough to the a.s.e. for 1δ  using the full likelihood, and the power of the test is very high, 0.967, 

and very close to the expected power, 0.960.  
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TABLE 1. Monte Carlo standard errors (MCse) for the estimated parameters in ττττ  versus the 

proposed asymptotic standard errors (a.s.e.’s) (Gse) of ττττ) , computed by )(
G
ττττV  defined in Theorem 

1.  Comparison between the MCse for Gse, ( MCse−G ), and the MCse for the a.s.e.’s computed 

by the sandwich estimator, )(
S
θθθθV ,  given in (27), ( MCse-S ). MCse computed under the full-

likelihood (FL) and under the reduced likelihood (RL). Results are shown for Cases A and B of 

Assumption 1 with fixed and random )i(
jζζζζ  . 

Para 
meters 

Bias of Gse Variability of Gse Efficiency of the method 
relative to the full-

likelihood (FL) 
 Fixed Rando

m 
Fixed Random Fixed Random 

ττττ  

MCse
Gse

 
MCse
Gse

 
MCse-
MCse

G
S −  

MCse-
MCse

G
S −  

MCse-
MCse

FL
RL −

MCse-
MCse

FL
RL −  

1β  1.01 1.01 1.63 1.56 0.99 1.03 

2β  1.01 0.99 1.78 1.68 1.01 1.05 

3β  0.97 1.00 1.84 1.50 1.00 1.06 

γ 1  1.00 0.99 1.44 1.47 1.00 1.04 
γ 2  0.97 0.99 2.02 1.56 1.01 1.05 

1δ  1.00 1.00 1.65 1.57 1.00 1.03 

2δ  1.00 0.98 1.60 1.44 1.02 1.06 
2
e0

σ  0.99 0.99 2.68 1.56 1.00 1.03 

 

TABLE 2. Monte Carlo mean, variance and percentiles for the chi-square test statistics with 6 

degrees of freedom 

Mean Variance 10% 25% 50% 75% 90% 95% 99% 
6.0 11.7 9.2 23.6 49.7 75.9 90.5 96.3 98.9 
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